

Management of Empty aTaxis

by

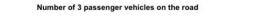
ALAIN L. KORNHAUSER, PHD

Professor, Operations Research & Financial Engineering

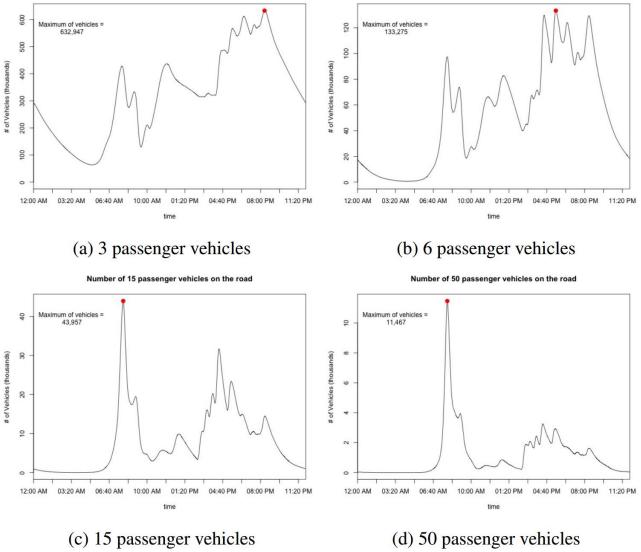
Director, Program in Transportation

Faculty Chair, PAVE (Princeton Autonomous Vehicle Engineering)

University


November 29, 2017

Key References


- S. Zhu'16 "<u>Making Transportation Great</u> <u>Again</u>" 2016 Senior Thesis
- S. Zhu'16 & A. Kornhauser*71
 Interplay Between Fleet-size, LoS and EmptyRepositioning

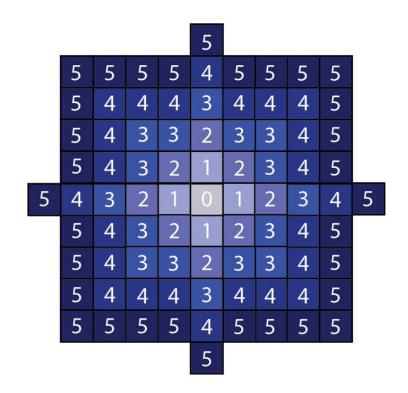
Basic Problem:

- Demand for aTaxis is NOT Symmetric (even in the long run)
- Thus empty aTaxis end up where no one else wants to get in.
- Thus they need to be repositioned
- If you have a big enough fleet, you may be able to wait a long time, but eventually, you'll need to reposition them.

Number of 6 passenger vehicles on the road

FIGURE 2 : Number of vehicles on the road as a function of time. The minimum number of vehicles needed to operate the system is the maximum of each vehicle type.

Early Morning Repositioning Costs


$$\min \sum_{i \in \mathscr{I}} \sum_{j \in \mathscr{J}} D_{ij} T_{ij}$$

subject to $T \ge 0$
 $T_{i,i} = 0$
 $\sum_{i \in \mathscr{I}} T_{ij} = A_j, \quad \forall j \in \mathscr{J}$
 $\sum_{j \in \mathscr{J}} T_{ij} = P_i, \quad \forall i \in \mathscr{I}$ (1)

where:

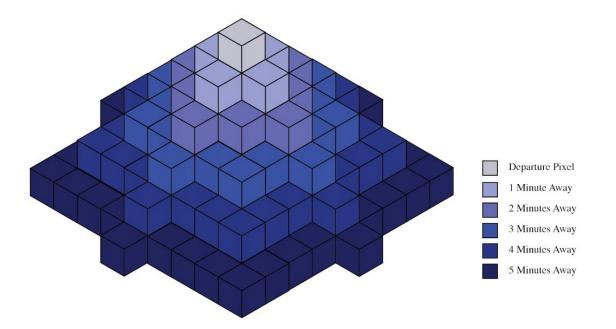
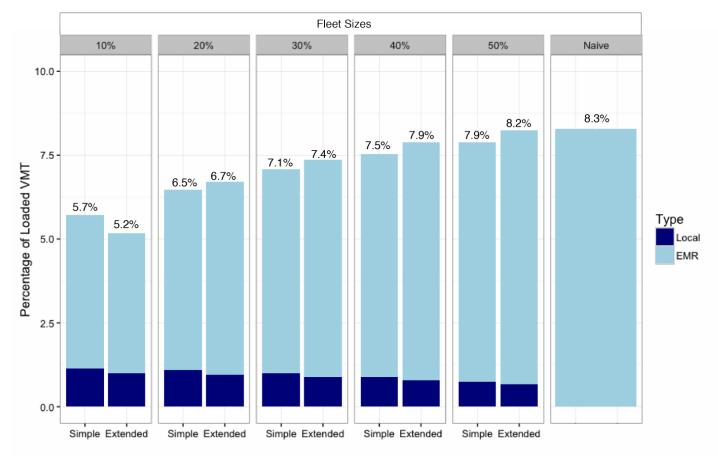
 D_{ij} is the distance between aTaxi stand *i* and aTaxi stand *j*, calculated as $1.2^*D_{cartesian}$. T_{ij} is trip matrix, or the number of vehicles moved from aTaxi stand *i* to aTaxi stand *j*. \mathscr{I} and \mathscr{J} are the set of active aTaxi stand. P_i is the number of excess vehicles available at the aTaxi stand *i*.

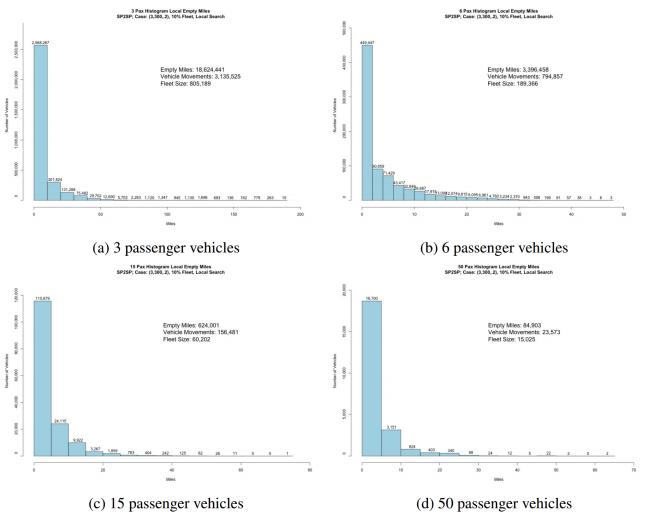
 A_j is the number of vehicles needed at pixel j.

Near-by Repositioning

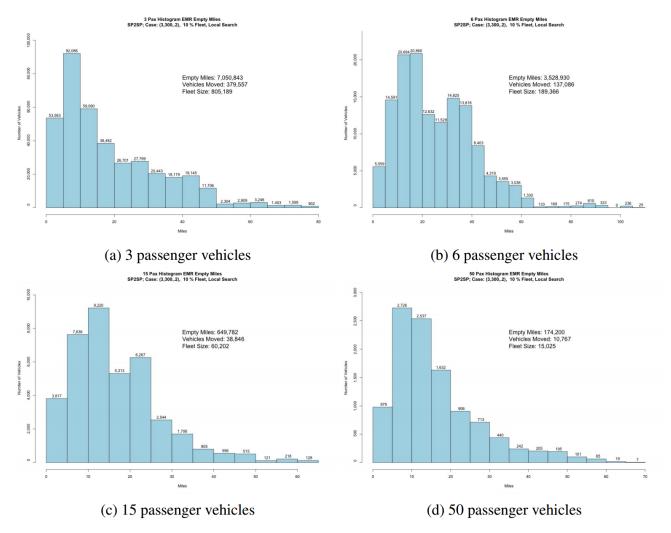
FIGURE 3 : aTaxi stands that can be reached from the departure stand within 5 minutes a 30 mph travel

Near-by Repositioning


Figure 5.2: Voxelization of pixels in local repositioning

Repositioning v Fleet Size: NJ


TIGURE 4 : Comparison of empty vehicle repositioning cost, as a percentage of loaded vehicle niles traveled, for fleets of varying sizes

Empty Miles: NJ

FIGURE 5 : Histograms of empty distances traveled by vehicle type for the 10% fleet size case in local repositioning.

Empty Miles: 10% Fleet Size case

FIGURE 6 : Histograms of empty distances traveled by vehicle type for the 10% fleet size case in Early Morning Repositioning.

Summary

TABLE 3 : Percentage of vehicle trips served within advertised level of service in each repositioning strategy

	Fleet Size									
	10%	20%	30%	40%	50%	Naive				
Simple Strategy	82.7	87.7	91.3	94.1	96.1	100				
Extended Search	86.7	89.6	92.0	94.1	95.9	100				

TABLE 4 : Percentage of passengers served as wait time increases beyond advertised level of service for various fleet sizes

	Fleet Size						
	10%	20%	30%	40%	50%		
Within advertised	95.4	96.4	97.2	97.9	98.6		
Within advertised + 1 minute	95.7	96.3	97.5	98.2	98.8		
Within advertised + 5 minutes	96.8	97.8	98.5	99.0	99.5		
Within advertised + 10 minutes	97.8	98.7	99.2	99.6	99.8		

Princeton University

Discussion!

Thank You

alaínk@prínceton.edu

www.SmartDrívíngCar.com

Orf467F'17