Transportation Systems Analysis

Fall 2017/18
Class \#6

Part 2: Planning and Analysis Tools of Transportation Demand and Investment

Trip Distribution

Gravity Model:

The gravity Model states that the trips, $\left(\mathrm{P}_{\mathrm{i}}\right)$, produced in zone i will be distributed to each other zone $\mathrm{j},\left(\mathrm{T}_{\mathrm{ij}}\right)$, according to the relative intensity of activity of each zone $\mathrm{j},\left(\mathrm{A}_{\mathrm{j}} / \Sigma_{\mathrm{j}=1, \mathrm{n}} \mathrm{A}_{\mathrm{j}}\right)$, in combination with the relative accessibility of each zone $\mathrm{j},\left(\mathrm{F}\left(\mathrm{t}_{\mathrm{ij}}\right) / \Sigma_{\mathrm{j}=1, \mathrm{n}} \mathrm{F}(\mathrm{t})_{\mathrm{ij}}\right)$, to assemble the relative attractiveness of each zone j , : $\mathrm{F}\left(\mathrm{t}_{\mathrm{ij}}\right) \mathrm{K}_{\mathrm{ij}} \mathrm{A}_{\mathrm{j}} / \Sigma_{\mathrm{j}=1, \mathrm{n}} \mathrm{F}(\mathrm{t})_{\mathrm{ij}} \mathrm{K}_{\mathrm{ij}} \mathrm{A}_{\mathrm{j}}$ This means that: Trips between i and $\mathrm{j}=$ trips produced at $\mathrm{i} \times$ attractiveness characteristics of j$\}$ / \{attractiveness characteristics of all zones in the area\}

$$
\begin{aligned}
T_{i j} & \left.=\left\{P_{i} F(t)_{i j}\right) K_{i j} A_{j}\right\} / \Sigma_{j=1, n} F\left(t t_{i j} K_{i j} A_{j}\right. \\
& =\left\{P_{i} / \Sigma_{j=1, n} F(t)_{i j} K_{i j} A_{j}\right\} F(t)_{i j} K_{i j} A_{j}
\end{aligned}
$$

In vector notation: $\mathrm{T}=\mathrm{Q} \mathrm{G}$
With: $\mathrm{G}=\mathrm{FK} ; \mathrm{S}=\mathrm{GA} ; \mathrm{R}=\mathrm{P} / \mathrm{S} ; \mathrm{Q}=\mathrm{R} \mathrm{A}^{\mathrm{T}}$
dimensions of P, A, R, S are (nx1), and dimensions of T, G, $\mathrm{Q}, \mathrm{F}, \mathrm{K}$ are (nxn)
Where K_{ij} is a socio-economic adjustment factor (we will take it to be the Identity matrix) and $\mathrm{F}\left(\mathrm{t}_{\mathrm{ij}}\right.$ is a disutility (or sometimes called, impedance) measure between i and j which can be different at different times, t . For simplicity, we will take, $\mathrm{F}\left(\mathrm{t}_{\mathrm{ij}}=1 / \mathrm{D}^{2}{ }_{\mathrm{ij}}\right.$ where D_{ij} is the distance between i and j . You can take D_{ij} to be the Euclidian distance or the Manhattan distance or other similar measures. You could also multiply these distance times 1.2, a very good estimate of the circuity (the ratio of actual "over-the-road" distance to Euclidean distance between any two points). For intra-zonal computations ($\mathrm{i}=\mathrm{j}$), sqrt(zone area) is a good simple distance measure to use. (It is a little longer than what might be the average access distance which can account for some amount of "fixed" disutility associated with any trip).

If we sum T_{ij} across the rows, then: $\Sigma_{\mathrm{j}=1, \mathrm{n}} \mathrm{T}_{\mathrm{ij}}=\mathrm{P}_{\mathrm{i}}$ which is good. The sum of the distributed trips cross any row equals the trips produced; however, the same is not guaranteed for the columns. The sum down columns: $\Sigma_{\mathrm{i}=1, \mathrm{n}} \mathrm{T}_{\mathrm{ij}}$ <-> A_{j} is not necessarily equal to the trips attracted to a zone. (<-> reads: "not equal") Use an adjustment factor $\boldsymbol{A}_{\mathrm{jk}}$

$$
\boldsymbol{A}_{\mathrm{jk}}=\mathrm{A}_{\mathrm{j}} \boldsymbol{A}_{\mathrm{j},(\mathrm{k}-1)} / C_{\mathrm{j},(\mathrm{k}-1)}
$$

Where:
$\boldsymbol{A}_{\mathrm{jk}}=$ adjusted attraction factor for attraction zone $(\mathrm{col}) \mathrm{j}$, iteration k
$\boldsymbol{A}_{\mathrm{j}, 0}=\mathrm{A}_{\mathrm{j}} \quad($ note: $\mathrm{k}=0)$
$C_{\mathrm{j}, \mathrm{k}}=$ actual computed attraction total for zone j , iteration k
$\mathrm{A}_{\mathrm{j}}=$ desired attractions for zone j
$\mathrm{k}=$ iteration number
iterate until $C_{\mathrm{j}, \mathrm{k}}=\mathrm{A}_{\mathrm{j}}$

Simple 4-zone example

Matrices

Excel can also be used to multiply or invert matrices. For example, suppose you have a 3×3 matirx whose entries are contained in the 9 cells in columns E,F,G and rows $5,6,7$. To find the inverse of this matrix, proceed as follows:
Use the mouse to select a 3×3 block of cells into which you want to put inverse matrix. For definiteness, let us suppose that you select the cells in columns J,K,L and rows 9,10 and 11 . While the selection is still active (so that all but the top-left cell J9 is dark), write the formula "=MINVERSE(E5:G7)" but don't press the Enter key. Instead, press Control-Shift-Enter simultaneously. (This ensures that the formula applies to the entire block of cells from J9 to L11, rather than just the top-left cell J9.) The inverse matrix should then appear in the required block of cells.

Multiplying matrices is similar. For example, suppose you want to multiply the 3×3 matrix X stored in the block of cells E5:G7 by a 3×3 matrix Y stored in the block of cells A5:C7, and put the product XY in the block of cells F1:H3. Use the mouse to select the block F1:H3, and while the selection is still active type the formula "=MMULT(E5:G7, A5:C7)" and then, instead of pressing the Enter key, press Control-Shift-Enter simultaneously.

Now test your skills by multiplying the matrix in the block E5:G7 by its inverse, which is in the block J9:L11. Do you get the identity matrix? If not, why not?

Calibrating Gravity Model:

Take the friction factors to be of the form: $\mathrm{F}_{\mathrm{ij}}=1 / \mathrm{W}_{\mathrm{ij}} \mathrm{c}_{\mathrm{ij}}$
If we then take the \log of booth sides:
$\operatorname{Ln} \mathrm{F}_{\mathrm{ij}}=-\mathrm{c}_{\mathrm{ij}} \ln \mathrm{W}_{\mathrm{ij}}$. This is a linear relationship that we then can use historical data in a regression analysis.
K_{ij} are correction factors that account for special conditions that would substantially change perceived disutility values between zone pairs that aren't properly quantified by the friction factors F_{ij}. For MyCity, you may assume that K_{ij} is an Identity array.

Lincoln NE Trip Distribution used a Gamma Function instead of an inverse power model.

