
Applications of linear programming○

History of linear programming○

Linear Programming (LP)•

Geometric and algebraic definition of a vertex and their equivalence○

Optimality of vertices○

Geometry of linear programming•

The idea behind the simplex algorithm○

An example of the simplex algorithm in use ○

The simplex method•

This lecture:

LP is an important and beautiful topic covered in much more depth in 
ORF 307 [Van14].  We'll only be scratching the surface here.

•

Our presentation in this lecture is mostly based on [DPV08], with some 
elements from [Ber09], [BT97], [CZ13], [Van14].

•

Linear Programming

Linear programming is a subclass of convex optimization problems in which 
both the constraints and the objective function are linear (or affine) functions. 

A linear program is an optimization problem of the form:•

minimize    

      
subject to     

where          and         This is called a linear program in 
standard form. 
Not all linear programs appear in this form but we will see later that they 
can all be rewritten in this form using simple transformations.   

•

In essence, linear programming is about solving systems of linear 
inequalities. The subject naturally follows the topic of the end of our last 
lecture, namely, that of solving systems of linear equations.

•

Instructor: 
Amir Ali Ahmadi

Lec11p1, ORF363/COS323

   Lec11 Page 1    



Applications of linear programming

Example 1: Transportation

All plants produce product A (in different quantities) and all 
warehouses need product A (also in different quantities). 

•

The cost of transporting one unit of product A from   to  is     •

We want to minimize the total cost of transporting product A while still 
fulfilling the demand from the warehouses and without exceeding the supply 
produced by the plants.

Decision variables:    , quantity transported from   to   •

The objective function to minimize:          
 
   

 
    •

The constraints are:•

Not exceed the supply in any factory:         
 
             ○

Fulfill needs of the warehouses:         
 
            ○

Quantity transported must be nonnegative:            ○
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Example 2: The maximum flow problem

The goal is to ship as much oil as possible from S to T. •
We cannot exceed the capacities on the edges. •
No storage at the nodes: for every node (except S and T), 
flow in=flow out.

•

Recall from Lecture 1:
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Example 3: LP relaxation for the largest independent set problem

Given an undirected graph, the goal is to find the largest collection of 
nodes among which no two share an edge.  (Recall that we saw some 
applications of this problem in scheduling in Lecture 1.)

•

We can write this problem as a linear program with integer constraints. 
Such a problem is called an integer program (more precisely a linear 
integer program).  Many integer programs of interest in practice are in 
fact binary programs; i.e., they only have 0/1 constraints. The maximum 
independent set problem is such an example.

•

Integer programs (IPs) are in general difficult to solve (we will formalize 
this statement in a few lecture). However, we can easily obtain the so-
called "LP relaxation" of this problem by replacing the constraint
         with          

                                                                      
                                        (LP)       s.t.         
                                                                        
                                                                       
                                                                         
                                                                      
                                                                              
                                                                                      

Observe that the optimal solution to the LP (denoted by      ), is an 
upperbound to the optimal solution to the IP (denoted by      ,); i.e.,

           .
(Why?)

Lec11p4, ORF363/COS323

   Lec11 Page 4    



Example 4: Scheduling nurses [Ber09]

This is another example of an LP relaxation for an integer program.

A hospital wants to start weekly nightshifts for its nurses. The goal is to 
hire the fewest number of nurses possible. 

There is demand   for nurses on days j=1,…7.•

Each nurse wants to work 5 consecutive days.•

How many nurses should we hire?

The decision variables here will be         where   is the number 

of nurses hired for day   

•

The objective is to minimize the total number of nurses:•

   
 
     

The constraints take into account the demand for each day but also 
the fact that the nurses want to work 5 consecutive days. This means 
that if the nurses work on day 1, they will work all the way through 
day 5.

•

                                      
                                      

                                  

                                     

                                    

                                    

                                     

Naturally, we would want        to be positive integers as it won't 
make sense to get fractions of nurses! Such a constraint results in an 
IP.  The LP relaxation of this IP is the following: impose only 
nonnegativity constraints           

•

The optimal value of the LP will give a lower bound on the optimal 
value of the IP; i.e., it will say that it is not possible to meet the 
demand with less than LPOPT  number of nurses (why?).

•

If it just so happens that the optimal solution to the LP is an integer 
vector, the same solution must also be optimal to the IP (why?).

•
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History of Linear Programming 

Solving systems of linear inequalities goes at least as far back as the late 1700s, 
when Fourier invented a (pretty inefficient) solution technique, known today as 
the "Fourier-Motzkin" elimination method.

•

In 1930s, Kantorovich and Koopmans brought new life to linear programming by 
showing its widespread applicability in resource allocation problems. They 
jointly received the Nobel Prize in Economics in 1975.

•

Von Neumann is often credited with the theory of "LP duality" (the topic of our 
next lecture). He was a member of the IAS here at Princeton. 

•

In 1947, Dantzig invented the first practical algorithm for solving LPs: the 
simplex method. This essentially revolutionized the use of linear programming in 
practice. (Interesting side story: Dantzig is known for solving two open problems 
in statistics, mistaking them for homework after arriving late to a lecture at 
Berkeley. This inspired the first scene in the movie Good Will Hunting.)

•

John von Neumann (1903-1957)                               George Dantzig (1914-2005)

In 1979, Khachiyan showed that LPs were solvable in polynomial time using the 
"ellipsoid method". This was a theoretical breakthrough more than a practical 
one, as in practice the algorithm was quite slow.

•

In 1984, Karmarkar developed the "interior point method", another polynomial 
time algorithm for LPs, which was also efficient in practice. Along with the 
simplex method, this is the method of choice today for solving LPs.

•

Narendra Karmarkar (b. 1957)Leonid Khachiyan (1952 - 2005)
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LP in alternate forms

As mentioned before, not all linear programs appear in the standard form:

min.    
s.t.     
          

Essentially, there are 3 ways in which a linear program can differ from the 
standard form:

it is a maximization problem instead of a minimization problem,•

some constraints are inequalities instead of equalities:   
      •

some variables are unrestricted in sign.•

There are simple transformations that reduce these alternative forms to 
standard form. We briefly showed how this is done in class. The reader can 
find these simple transformations in section 7.1.4 of [DPV08].

Solving an LP in two variables geometrically

  s.t.        
                                                                 

                                                                   
                                                                      
                                                                    

We are trying to find the "largest" 
level set of the objective function 
that still intersects the feasible 
region.
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All possibilities for an LP

Infeasible case 

min.      
s.t.          
                 

                                 

Unbounded case

min.       
s.t.         
                

Infinite number of optimal 
solutions 

                                
                     s.t.        
                                  
                                     
                                   

The three regions in the drawing do not intersect : there are no feasible solutions.

The intersection of the green and the blue regions is 
unbounded; we can push the objective function as high up as 
we want.

There is an entire "face" of the feasible region that is optimal. Notice that the 
normal to this face is parallel to the objective vector.

Unique optimal solution

                               
                     s.t.        
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Geometry of LP

The geometry of linear programming is very beautiful. The simplex 
algorithm exploits this geometry in a very fundamental way. We'll prove 
some basic geometric results here that are essential to this algorithm. 

Definition of a polyhedron: 

The set            where   is a nonzero vector in   is called a 
hyperplane.

•

The set             where  is a nonzero vector in     is called a 
halfspace.

•

This is always a convex set:○

Halfspaces are convex (why?) and intersections of convex sets 
are convex (why?).

○

The intersection of finitely many half spaces is called a polyhedron. •

A set     is bounded if      such that                •

A bounded polyhedron is called a polytope.                         •
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Extreme points

A point   is an extreme point of a convex set  if it cannot be written as a 
convex combination of two other points in  . In other words, there does 
not exist      ,          and    0,1] such that
            

Alternatively,    is an extreme point if                    
             or     

               Which is extreme?             What are the extreme points here?

Extreme points are always on the boundary, but not every point on the 
boundary is extreme. 

  
          

  
          

  
           

Definition. Consider a set of constraints 

Given a point     we say that a constraint   is tight (or active or binding) at 
  if   

        
Equality constraints are tight by definition. 

Definition. Two constraints are linearly independent if the corresponding 
  
  are independent. 

With these two definitions, we can now define the notion of a vertex of a 
polyhedron.

•
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it is feasible (     (i)
  linearly independent constraints that are tight at   (ii)

Vertex

A point     is a vertex of a polyhedron  , if

You may be wondering if extreme points and vertices are the same thing. 
The theorem below establishes that this is indeed the case.

•

Note that the notion of an extreme point is defined geometrically while the 
notion of a vertex is defined algebraically.

•

The algebraic definition is more useful for algorithmic purposes and is 
crucial to the simplex algorithm. Yet, the geometric definition is used to 
prove the fundamental fact that an optimal solution to an LP can  always be 
found at a vertex. This is crucial to correctness of the simplex algorithm.

•

Theorem 1: Equivalence of extreme point and vertex

Let                 be a non-empty polyhedron with       . 
Let       Then,

  is an extreme point    is a vertex.

Proof:

(  Let       be a vertex. This implies that   linearly independent constraints 
are tight at     Denote by   an     matrix whose rows are that of  associated 
with the tight constraints. Similarly let    be a vector of size   collecting entries 
of  corresponding to the tight constraints. So         

Suppose we could write               for some       and           

         Then                 ,        We have:
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If    then     as   is invertible. If    then      If          then 
the previous equality forces              which means that       as 
  is invertible.

    Suppose     is not a vertex. Let         
        Since   is not a 

vertex, there does not exist  linearly independent vectors         

We claim that there exists a vector                      
Indeed, take at most      linearly independent   ,      We want to argue 
that the linear system

 
   

 

 
 

     
  

  
 
 
 
   

has nontrivial solution. But recall that each   
 is of length   So this is an 

underconstrained linear system. Hence, it has infinitely many solutions, 
among which there is at least one nonzero solution, which we take to be    

Let        and        where  is some positive scalar. 

for       
     

     , because   
     •

for     the claim follows from continuity of the function•

       
  and the fact that      

      when     

We claim that for  small enough we have       

As    
 

 
  

 

 
 , this implies that  is not an extreme point of  .

Corollary. Given a finite set of linear inequalities, there can only be a finite 
number of extreme points. 

Proof: 
We have shown that extreme points and vertices are the same, so we prove 
the result for vertices. Suppose we are given a total of  constraints. To 
obtain a vertex, we need to pick  linearly independent constraints that are 

tight. There are at most  
 
 
 ways of doing this and each subset of   linearly 

independent constraints can give a unique vertex (recall the vertex  

satisfies        where    is invertible). We conclude that there are at most 

 
 
 
 vertices. (Note that this may be a loose upper bound as the solution to 

some of these  
 
 
 linear systems may not be feasible and hence won't 

qualify as a vertex.)
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Definition. A polyhedron contains a line if      and           such 
that
                                                                           

Theorem 2: Existence of extreme points

  does not contain a line.1.
  has at least one extreme point.2.

Consider a nonempty polyhedron  . The following are equivalent:

Corollary.
Every bounded polyhedron (i.e., every polytope) has an extreme point. 

Theorem 3: Optimality of extreme points

       s.t.         
Consider the LP:                

Suppose  has at least one extreme point. Then, if there exists an optimal 
solution, there also exists an optimal solution which is at a vertex. 

Proof.
Let Q be the set of optimal solutions (assumed to be nonempty). In other 
words, if  is the optimal value of the LP, then
                     
Observe the following implications:
 has an extreme point                has no lines   s  ce Q⊆P    has 
no lines  (by Thm.2)  has an extreme point. Let   be an extreme point 
of   We will show that   is also an extreme point of    Once this is 
proved, since we know       , we would be done. 
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Suppose that   is not an extreme point of   Then            
                                       s.t.              
Multiplying by   on both sides, we obtain:
                                                    
Since  is optimal,            . Combined with the previous equality, this 
implies:                        is not an extreme point of   
Contradiction.

An implication of these theorems

These theorems show that when looking for an optimal solution, it is 
enough to examine only the extreme points (=vertices).

•

This leads to an algorithm for solving an LP: if there are  constraints in 
  (the polytope is          then pick all possible subsets of  linearly 

independent constraints out of the   Solve (in worst case)  
 
 
 systems 

of equations of the type       where      are the restrictions of   and  
to the subset of  constraints. This can be done, e.g., by the conjugate 
gradien method from the previous lecture or by Gaussian elimination. 
Check feasibility of the solution, evaluate the objective function at each 
solutuion, and pick the best.

•

Unfortunately, this algorithm, even though correct, is very inefficient. The 

reason is that there are too many vertices to explore as the number  
 
 
 is 

exponential in  . For example, consider the constraints           
         You see that we have only   inequalities, but   extreme 
points:

•

The simplex method is an intelligent algorithm for reducing the number of 
vertices that we have to visit.

•
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The Simplex algorithm

Main idea

        s.t.     
                         

Consider some generic LP:         

start at a vertex, •
while there is a better neighboring vertex, move to it. •

In a nutshell, this is all the simplex algorithm does:

Definition. Two vertices are neighbors if they share    tight constraints. 

   .               
s.t.                      
                              

Example:

                                                            
                                                      
                                                                            

Here is the feasible set:

Po  ts A    I  re vert ces of t e pol  edro   Co s der B          t e t g t 
constraints here are (6) as     ,  (1) as                 and (4) as    
     . These are three linearly independent constraints so B is indeed a vertex.

Points A and B are neighbors as they both have constraints (6) and (4) tight, but A 
has (5) tight whereas B has (1) tight. The point C is another neighbor of B.

Image credit: [Jon06]
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Section 7.6 of [DPV08] gives a very neat presentation of the simplex algorithm in 
surprisingly few pages. We won't repeat this here since it's done beautifully in the 
book and we followed the book closely in lecture. Instead, we just give an outline 
of the steps involved and an example. The example is different from the one in the 
book, so you can read one and do the other for practice. 

At every iteration of the simplex algorithm, we complete two tasks:

Check whether the current vertex is optimal (if yes, we're done),1.
If not, determine the vertex to move to next. 2.

We start the algorithm at the origin. We are assuming for now that the origin 
is feasible (i.e.,     .  Note that if    is feasible, then it is a vertex (why?)

•

The origin is optimal if and only if         (why?).○

If       for some  , we can increase   until a new constraint becomes 
tight. Now we are at a new vertex (why?).

○

Both tasks listed above are easy if the vertex is at the origin (we are assuming 
throughout that there are no "degenerate" vertices; see [DPV]):

•

Once at a new vertex, we move it to the origin by a "change of coordinates". 
Then we simply repeat. See Section 7.6 of [DPV08] for details.

•

Finally, if the origin is not feasible, to get the algorithm started we first solve 
an "auxiliary LP"; see Section 7.6.3 of [DPV].

•

An example in two dimensions

  s.t.                     
                                                                 

                                                                                 
                                                                           
                                                                                      
                                                                                      
Here is the feasible set:
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Iteration 1: The origin is feasible and all   are positive. Hence we can 
pick either    or   as the variable we want to increase. We pick    and 
keep      

The origin corresponds to the intersection of (4) and (5). By increasing 
  , we are releasing (4). As we increase   , we must make sure we still 
satisfy the constraints. In particular, we must have       (1) and 
              which means         Note that constraint (1) 
becomes tight before constraint (3) (recall that   remains at zero as we 
increase       Hence, the new vertex is at the intersection of (1) and (5), 
i.e., D=(200,0).

We now need to bring D to the origin via a change of coordinates from  
to  :          and        

Rewriting   and    in terms of    and   , we get a new LP:

max.           
s.t.                       

                                                                     
                                                            
                                                                       
                                                                                 

Since the coefficient of   is positive, we must continue.

Lec11p17, ORF363/COS323

   Lec11 Page 17    



Iteration 2: The current vertex corresponds to the intersection of (1), 
(5). As the coefficient of   is positive, we pick   as the variable to 
increase, i.e., we release (5). The other constraints have to be satisfied, 
namely     and (3). This requires        and         As     
    constraint (3) is the one becoming tight next.

The new vertex is then at the intersection of (1) and (3). Reverting to 
the original LP, we can see that this is C.

We then change coordinates again to bring C to the origin. This is done 
by letting      and                i.e.,       and        
      

The problem becomes:

max.             
s.t.                   (1)

                                                              
                                                                      
                                                                      
                                                             

Since coefficient of   is positive, we must continue.
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Iteration 3: The current vertex is at the intersection (1) and (3). As the 
coefficient for   is positive, we pick   as the variable we will increase 
while keeping       This means that we are releasing constraint (1).

We have to meet all the constraints, limiting how much we can increase 
                   and          So (2) is the constrint becoming 
tight next. 

The new vertex is the intersection of (3) and (2).  This is the point B.

We change coordinates to make B the new origin. This is done by letting 
             and         i.e.,              and       

The problem becomes:

max.            

s.t.                   (1)
                                                                                  
                                                                                   
                                                                        
                                                                                

Both coefficients are negative. Hence we conclude that vertex B is 
optimal. The optimal value of our LP is 1900.
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Notes:
The relevant chapter form [DPV08] for this lecture is Chapter 7. 
To minimize overlap with ORF 307, we skipped the sections on 
bimatrix games and the network algorithm for max-flow. Your 
[CZ13] book also has a chapter on linear programming, but 
reading that is optional.
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