
Definition and basic properties○

Review of positive semidefinite matrices○

SDP duality○

Semidefinite programming (SDP)•

The Lovasz upper bound on the stability 
number of a graph



Combinatorial optimization ○

Lower bounds for nonconvex polynomial 
minimization



Polynomial optimization○

SDP relaxations for nonconvex optimization•

This lecture:
Instructor: 

Amir Ali Ahmadi

Semidefinite programming in standard form:•

Input data:•

SDP is an optimization problem over the space of symmetric matrices.•

Affine constraints in the entries of the decision matrix   ○

This latter constraint is what distinguishes SDP from LP.

A constraint forcing some matrix to be positive semidefinite.○

It has two types of constraints:•

    denotes the space of    real symmetric matrices○

"Tr" denotes the trace of a matrix; i.e., sum of its diagonal elements 
(which also equals the sum of its eigenvalues).

○

Notation:•
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Why SDP?

The reasons will become more clear throughout this lecture, but here is a 
summary:

SDP is a very natural generalization of LP.•
It is still a convex optimization problem (in the geometric sense).•
We can solve SDPs efficiently (in polynomial time to arbitrary accuracy). 
This is typically done by interior point methods, although other types of 
algorithms are also available.

•

The expressive power of SDPs is much richer than LPs.•
When faced with a nonconvex optimization problem, SDPs typically 
produce much stronger bounds/relaxations than LPs do.

•

Just like LP, SDP has a beautiful and well-established theory. Much of it 
mirrors the theory of LP.

•

Why the trace notation?

It's just a convenient way of expressing affine constraints in the entries of 
a matrix:

•

Positive semidefinite matrices (reminder)
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Feasible set of SDPs

The feasible set of an SDP is called a spectrahedron.•
Every polyhedron is a spectrahedron. (This is because every LP can be 
written as an SDP as we'll show shortly.)

•

But spectrahedra are far richer geometric objects than polyhedra. (This is 
the reason why SDP is more powerful than LP.)

•

The "elliptope":○

Here is an example of a spectrahedron which is not a polyhedron:•

The set of psd matrices forms a convex set (the proof was easy and 
given in a previous lecture).

○

Affine constraints define a convex set.○

Intersection of convex sets is convex.○

Spectrahedra are always convex sets•

The objective is an affine function of the entries of the matrix.○

The feasible set is a convex set.○

However, the feasible set is not written in the explicit functional form 
"convex function    affine function=0".

○

When we say an SDP is a convex optimization problem, we mean this in 
the geometric sense.

•

Replace      with linear constraints   
             ○

Can reduce this be a countable infinity by only taking      ○

One can write an SDP as an infinite LP:•

Replace     with     minor inequalities coming from Sylvester's 
criterion.

○

One can also write an SDP in standard functional form as a nonlinear program:•

However, treating the matrix constraint    directly is often the right thing 
to do.

•
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Like we mentioned already, geometry of SDP is far more complex than LP.•
For example, unlike polyhedra, spectrahedra may have an infinite 
number of extreme points. Here is a simple example:

•

This is the fundamental reason why SDP is not naturally amenable to 
"simplex-type" algorithms.

•

On the contrary, interior points for LP (which we mentioned in class but 
did not cover) very naturally extend to SDP.

•

LP as a special case of SDP

Consider an LP:•

This can be written as the following SDP (why?)•

So LP is really a special case of SDP where all matrices are diagonal --
positive semidefiniteness for a diagonal matrix simply means 
nonnegativity of its diagonal elements.

•
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SDP Duality

A toy SDP example and the CVX syntax

cvx_begin
variables x y
minimize(x+y)
[x 1;1 y]==semidefinite(2);
x+y<=3;
cvx_end

Exercise: write this SDP in standard 
form.

•

Note: all SDPs can be written in 
standard form, but this transformation 
is not needed (most solvers do it 
automatically if they need to work 
with the standard form).

•

Just like LP, SDP has a nice duality theory. •
Every SDP has a dual, which itself is an SDP. The primal and dual SDPs 
bound the optimal value of each other.

•

Primal SDP

Dual SDP
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Theorem (SDP weak duality). For any  feasible to the primal and any  feasible 
to the dual, we have             

Theorem (SDP strong duality). If the primal and dual SDPs are both strictly 
feasible (i.e., if there exists a solution that makes the matrix which needs to be 
positive semidefinite, positive definite), then both problems achieve their optimal 
value and             (i.e., the optimal values match).

Unlike LP, SDP strong duality needs some (mild) assumptions to hold--in 
this case strict feasibility.

•

We do not prove this theorem as we didn't even prove strong duality for 
LP.  But the proof can be found in most standard textbooks.

•

Can you prove this theorem?•
Hint. Prove the following fact first:•

Contrast this theorem with weak duality of LP:•
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Applications of SDP in nonconvex optimization

SDPs are among the most powerful algorithmic tools for finding good 
bounds on the optimal value of difficult nonconvex optimization 
problems. 

•

We present two such applications here, one in combinatorial 
optimization and one in polynomial optimization.

•

An SDP upper bound for the stable set number 
of a graph

Stable set of a graph: a subset of the nodes 
that share no edges among them. Finding 
large stable sets has many applications in 
scheduling.

•

The size of the largest stable set of a graph 
 is denoted by     and it's called the 
stability number of the graph.

•

For example, we have    in the graph 
shown here.

•

Computing  is in general a very difficult 
problem. We will formalize what we mean 
by this in the next lecture. But think about 
how you would prove that there is no stable 
set of size    Seems difficult.

•

Yet, this is exactly what convex relaxations do!•
We have already seen an LP relaxation for this problem. We will review it 
again.

•

We will also see a new SDP relaxation which produces a bound that's 
always no worse than the LP bound and often way better. This SDP is due 
to László Lovász.

•
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Integer program

Linear programming 
relaxation

Semidefinite programming 
relaxation
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Proof:
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Examples.

But the gap between the LP and SDP bound can be much larger.•
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SDP lower bounds for nonconvex polynomial 
minimization*

We are interested in this section in solving the following problem:•

where     is a multivariate polynomial. 
(For example,          

    
         

  )

This is unconstrained polynomial minimization. Without assuming that 
the objective function is convex, this problem can be very difficult. (You 
are asked to show on your homework that when  has degree 4, this 
problem is NP-hard.)

•

Nevertheless, it turns out that by using semidefinite programming, we 
can find very good lower bounds on the optimal value and in fact often 
solve the problem globally. This approach also works in the constrained 
case, but we restrict attention to the unconstrained case for simplicity.

•

Note that in absence of convexity, the descent methods we've seen earlier 
in class (e.g., gradient descent, Newton, etc.) can get stuck in local minima.

•

The way SDP solves this problem is fundamentally different than the way 
local search methods work.

•

Instead of looking for a feasible point with lowest objective value, we look 
for the largest possible lower bound.

•

The starting point is the following simple observation.•
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The constraint in the optimization problem to the right requires us to force a 
certain polynomial (        to be nonnegative.

Defn. A polynomial  is nonnegative if              

In general, testing if a polynomial (of degree 4 or larger) is nonnegative is 
NP-hard.

•

Clearly, if   is sos, then  is nonnegative. (The converse is not true in 
general.)

•

However, we can check if a polynomial is sos by solving an SDP! (See the 
theorem on the next page).

•

This allows us to obtain lower bounds on the optimization problem above by 
solving the optimization problem below, which as we explain next can be 
reformulated as an SDP:

•

Defn. A polynomial  is a sum of squares (sos) if         
       

 for some other 
polynomials      
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Notes:
Semidefinite programming is not covered in [DPV08]. There are 
sections on SDP in [CZ13] and our reference book [BV04], but you are 
only responsible for a good understanding of the content of my notes. 
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