
1

Limits of Computation
+

Course Recap

ORF 363/COS 323

Instructor: Amir Ali Ahmadi

Reminder: NP-hard and NP-complete problems

2

▪A decision problem is said to be NP-hard if every problem in NP reduces to it via a
polynomial-time reduction.
(roughly means “harder than all problems in NP.”)

Definition.

▪A decision problem is said to be NP-complete if

(i)It is NP-hard

(ii)It is in NP.

(roughly means “the hardest problems in NP.”)

Definition.

▪NP-hardness is shown by a reduction from a problem that’s already known to be NP-hard.

▪Membership in NP is shown by presenting an easily checkable certificate of the YES
answer.

▪NP-hard problems may not be in NP (or may not be known to be in NP as is often the
case.)

Remarks.

The complexity class NP

3

RINCETO

▪TSP

▪ MAXCUT

▪STABLE SET

▪SAT

▪3SAT

▪PARTITION

▪KNAPSACK

▪IP

▪COLORING

▪VERTEXCOVER

▪3DMATCHING

▪SUDOKU,…

NP-complete

Reductions

4

▪A reduction from a decision problem A to a
decision problem B is

▪a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

▪the answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.

▪This enables us to answer A by answering B.

▪Using reductions for showing NP-hardness:

▪ If A is known to be hard, then B must also be hard.

P versus NP

5

▪All NP-complete problems reduce to each other!

▪If you solve one in polynomial time, you solve ALL in polynomial time!

▪Today: limits of computation in general
 (and under no assumptions)

Matrix mortality

6

We say the collection is mortal if there is a finite product out of the matrices (possibly
allowing repetition) that gives the zero matrix.

Example 1:

Example from [W11].

Mortal.

Matrix mortality

7

We say the collection is mortal if there is a finite product out of the matrices (possibly
allowing repetition) that gives the zero matrix.

Example 2:

Not mortal. (How to prove that?)

• In this case, can just observe that all three matrices have
nonzero determinant.

• Determinant of product=product of determinants.

But what if we aren’t so lucky?

Matrix mortality

8

▪MATRIX MORTALITY

• This means that there is no finite time algorithm that can take as input two 21x21
matrices (or seven 3x3 matrices) and always give the correct yes/no answer to the
question whether they are mortal.

• This is a definite statement.
(It doesn’t depend on complexity assumptions, like P vs. NP or anything like that.)

• How in the world would someone prove something like this?

• By a reduction from another undecidable problem!

The Post Correspondence Problem (PCP)

9

Given a set of dominos such as the ones above,
can you put them next to each other (repetitions allowed) in such a
way that the top row reads the same as the bottom row?

Emil Post
(1897-1954)

Answer to this instance is YES:

The Post Correspondence Problem (PCP)

10

What about this instance?
Emil Post
(1897-1954)

Answer is NO. Why?

There is a length mismatch, unless we only use (3), which is not good enough.

But what if we aren’t so lucky?

The Post Correspondence Problem (PCP)

11

Emil Post
(1897-1954)

▪PCP

Reductions

12

• There is a rather simple reduction from PCP to MATRIX MORTALITY;
 see, e.g., [Wo11].

• This shows that if we could solve MATRIX MORTALITY in
finite time, then we could solve PCP in finite time.

• It’s impossible to solve PCP in finite time (because of
another reduction!)

• Hence, it’s impossible to solve MATRIX MORTALITY in
finite time.

• Note that these reductions only need to be finite in
length (not polynomial in length like before).

Integer roots of polynomial equations

13

Fermat’s last theorem tells us the
answer is NO to all these
instances.

▪Sure:

And there are infinitely many more…

▪How about

▪How about

▪How about

Integer roots to polynomial equations

14Source: [Po08]

YES: (3,1,1)

But the answer is YES!!

No one knows!

Integer roots of polynomial equations

15

▪POLY INT

• Hilbert’s 10th problem (1900): Is there an algorithm for POLY INT?

Fr
o

m

Lo
gi

co
m

ix

• Matiyasevich (1970) – building on earlier work by Davis,
Putnam, and Robinson:
No! The problem is undecidable.

Real/rational roots of polynomial equations

16

• If instead of integer roots, we were testing existence of real roots, then
the problem would become decidable.

– Such finite-time algorithms were developed in the past century
(Tarski–Seidenberg)

• If instead we were asking for existence of rational roots,

– We currently don’t know if it’s decidable!

• Nevertheless, both problems are NP-hard. For example for

– A set of equations of degree 2

– A single equation of degree 4.

– Proof on the next slide.

A simple reduction

17

• We give a simple reduction from STABLE SET to
show that testing existence of a real (or
rational or integer) solution to a set of
quadratic equations is NP-hard.

• Contrast this to the case of linear equations
which is in P.

• How would you go from here to a single equation of degree 4?

Tiling the plane

18

• Given a finite collection of tile
types, can you tile the 2-
dimenstional plane such that the
colors on all tile borders match.

• Cannot rotate or flip the tiles.

• The answer is YES, for the
instance presented.

• But in general, the problem is
undecidable.

All undecidability results are proven via reductions

19

But what about the first undecidable problem?

The halting problem

20

▪HALTING

An instance of HALTING:

The halting problem

21

An instance of HALTING:

• We’ll show that the answer is no!

• This will be a proof by contradiction.

The halting problem is undecidable

22

Proof.

• Suppose there was such a program terminates(p,x).

• We’ll use it to create a new program paradox(z):

function paradox(z)

1: if terminates(z,z)==1 goto line 1.

• What happens if we run paradox(paradox) ?!

– If paradox halts on itself, then paradox doesn’t halt on itself.

– If paradox doesn’t halt on itself, then paradox halts on itself.

– This is a contradiction→ terminates can’t exist.

Typical 1st time reaction to the proof of the halting problem

23

The halting problem (1936)

24

Alan Turing
(1912-1954)

A simpler story to tell strangers at a bar…

25

(aka Russell’s paradox)

The power of reductions (one last time)

26

A simple paradox/puzzle:

A fundamental
algorithmic question:

(lots of nontrivial mathematics,

including the formalization of the
notion of an “algorithm”)

▪POLY INT

A remarkable implication of this…

27

In each case, you can explicitly write down a polynomial of degree 4 in 58 variables,
such that if you could decide whether your polynomial has an integer root, you would
have solved the open problem.

Proof.

1) Write a code that looks for a counterexample.

2) Code does not halt if and only if the conjecture is true (one instance of the halting
problem!)

3) Use the reduction to turn into an instance of POLY INT.

Take your favorite long-standing open problem in mathematics:
e.g.,

• Is there an odd perfect number? (an odd number whose proper divisors add up to
itself?)

• Is every even integer >2 the sum of two primes? (the Goldbach conjecture)

A look back at ORF 363/COS 323

28

Topics we covered in optimization

29

• Optimality conditions for unconstrained optimization

• Convex analysis

– Convex sets and functions

– Optimality conditions for constrained convex problems

– Convexity detection and convexity-preserving rules

• Modeling a problem as a convex program

– Solving it in CVX or CVXPY

• Algorithms for convex unconstrained optimization

• Algorithms for constrained linear optimization

• Semidefinite programming

• Convex relaxations for non-convex and combinatorial
optimization

• Theory of NP-completeness

• Undecidability

Topics we covered in numerical computing

30

• Least squares

– Optimality conditions and normal equations

• Singular value decomposition

• Solving linear systems

• Conjugate gradient methods

• Root finding

– Bisection, the secant method

– The Newton method

• Nonlinear least squares

– The Gauss-Newton method

• Iterative descent algorithms

– Convergence rates of gradient descent and Newton

– Condition number

• Approximation and fitting

Applications of these tools are ubiquitous…

31

Optimal control

Support vector machines
Optimal facility location

Event planning

Scheduling

Minimum intensity radiation therapy
…

Image compression

Hillary vs. Bernie

We met lots of mathematicians!

32

Who is who?

And on what topic did they feature in this class?

How to check if an optimization problem is easy?

33

• Checking convexity may not be easy

• But the calculus of convex functions and convexity-preserving rules often suffice.

How to check if an optimization problem is easy (formally)?

34

• Can you reduce it to a problem in P?

• If yes, then it’s often easy

– Unless the polynomial in the running time has high degree or large constants—often rare

– Unless your input size is massive --- not so rare these days in the era of “big data”
(we almost finished the course without using the term “big data”….damn.)

• Can you show it’s NP-hard?

• You must reduce a different NP-hard problem to it.

– If you succeed, an exact efficient algorithm is out of the picture (unless P=NP)

• NP-hard problems still routinely solved in practice.

• Workarounds: heuristics, solving special cased exactly, convex relaxations.

• Convex optimization is often a powerful tool for approximating non-convex and
NP-hard problems.

• We saw many examples in recent weeks; e.g., LP and SDP relaxations.

Slide from lecture 1: Course objectives

35

▪The skills I hope you acquire:

▪Ability to view your own field through the lens of optimization and computation

▪To help you, we’ll draw applications from operations research, statistics, economics, machine
learning, engineering, …

▪Learn about several topics in scientific computing

▪More mathematical maturity and ability for rigorous reasoning

▪There will be some proofs in lecture. Easier ones on homework.

▪Enhance your coding abilities

▪There will be a coding component on every homework and on the take-home final.

▪Ability to recognize hard and easy optimization problems

▪Ability to use optimization software

▪Understand the algorithms behind the software for some easier subclass of problems.

36

An example: Jacob Eisenberg’s work

Robust minimum-
volume ellipsoids
obtained from
semidefinite
programming

• The “real strike zone” in major league baseball!

The final exam!

37

What to study for the final?

• All the lecture notes.

• Psets 1-8, practice exams.

• If you need extra reading, the last page of the notes points you to certain sections of the book for
additional reading.

• Be comfortable with MATLAB/Python and CVX/CVXPY. Make sure your software is running.

• Take-home. No collaboration allowed. Can only ask clarification questions as public questions on Ed
Discussion. Can use all lecture notes, psets/previous exam solutions, and reference books of the
course. Can only use “Google/ChatGPT” for problems with MATLAB/Python/software (although even
that should not be needed).

• Exam will go out on Saturday, December 16, 8AM EST.

• Have to take it in 48 consecutive hours (clock starts when you download).

• To be submitted on Gradescope as a single PDF file.

– Keep an electronic copy of your exam.

• Latest submission time is Thursday, December 21, 10PM EST (University deadline).

• Don’t forget that pset 8 is due Wednesday, December 13, at 1PM EST.

Some good news

38

• Undecidability from today’s lecture won’t be on the final.

• Theory of NP-completeness won’t be on the final (but it is on HW 8).

• Lecture 10 (conjugate gradients) and Lecture 12 (duality) are optional and not on the final.

• The TAs and I will hold office hours throughout reading period and up to the day of the
day of the exam. Regular schedule (see syllabus, or slides of lecture 1).

• In addition, we will have the following review sessions:

Pier (pset 1&2) Friday Dec 8, 1-3 PM EST, Friend 008

Pier (pset 3&4) Monday Dec 11, 1-3 PM EST, Friend 008

Silu (pset 5&6) Tuesday Dec 12, 1-3 PM EST, Friend 008

Yixuan (psets 7&8) Wednesday Dec 13, 1-3 PM EST, Friend 008

Jackie (past finals) Thursday Dec 14, 1-4 PM EST, Julis Romo Rabinowitz A17

AAA (comprehensive review) Friday Dec 15, 6-9 PM EST, Friend 008

• Five practice final exams (with solutions) are already posted. Python solutions will
be added this week.

There will be pizza!

Last but not least…

39

• It was great for me to teach after 2 years.

• Thank you for making this an enjoyable and rewarding semester!

• Go make optimal decisions in your lives! (Make sure you optimize
for the right objective functions!)

• And keep in touch!

AAA.
December 7, 2023

Notes & References

40

▪References:

-[Wo11] M.M. Wolf. Lecture notes on undecidability, 2011.

-[Po08] B. Poonen. Undecidability in number theory, Notices of the
American Mathematical Society, 2008.

-[DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms.
 McGraw Hill, 2008.

▪Notes:

- Chapter 8 of [DPV08] mentions undecidability and the halting
problem. Chapter 9 of [DPV08] is optional but a fun read.

	Slide 1: Limits of Computation + Course Recap
	Slide 2: Reminder: NP-hard and NP-complete problems
	Slide 3: The complexity class NP
	Slide 4: Reductions
	Slide 5: P versus NP
	Slide 6: Matrix mortality
	Slide 7: Matrix mortality
	Slide 8: Matrix mortality
	Slide 9: The Post Correspondence Problem (PCP)
	Slide 10: The Post Correspondence Problem (PCP)
	Slide 11: The Post Correspondence Problem (PCP)
	Slide 12: Reductions
	Slide 13: Integer roots of polynomial equations
	Slide 14: Integer roots to polynomial equations
	Slide 15: Integer roots of polynomial equations
	Slide 16: Real/rational roots of polynomial equations
	Slide 17: A simple reduction
	Slide 18: Tiling the plane
	Slide 19: All undecidability results are proven via reductions
	Slide 20: The halting problem
	Slide 21: The halting problem
	Slide 22: The halting problem is undecidable
	Slide 23: Typical 1st time reaction to the proof of the halting problem
	Slide 24: The halting problem (1936)
	Slide 25: A simpler story to tell strangers at a bar…
	Slide 26: The power of reductions (one last time)
	Slide 27: A remarkable implication of this…
	Slide 28: A look back at ORF 363/COS 323
	Slide 29: Topics we covered in optimization
	Slide 30: Topics we covered in numerical computing
	Slide 31: Applications of these tools are ubiquitous…
	Slide 32: We met lots of mathematicians!
	Slide 33: How to check if an optimization problem is easy?
	Slide 34: How to check if an optimization problem is easy (formally)?
	Slide 35: Slide from lecture 1: Course objectives
	Slide 36: An example: Jacob Eisenberg’s work
	Slide 37: The final exam!
	Slide 38: Some good news
	Slide 39: Last but not least…
	Slide 40: Notes & References

