
This lecture:

The goal of this lecture is to refresh your memory on some 
topics in linear algebra and multivariable calculus that will be 
relevant to this course. You can use this as a reference 
throughout the semester. 

The topics that we cover are the following:

Formal definitions○

Euclidian inner product and orthogonality○

Vector norms○

Matrix norms○

Cauchy-Schwarz inequality○

Inner products and norms•

Definitions○

Positive definite and positive semidefinite matrices○

Eigenvalues and eigenvectors•

Continuity○

Linear, affine and quadratic functions○

Differentiability and useful rules for differentiation ○

Gradients and level sets○

Hessians ○

Elements of differential calculus•

Little o and big O notation○

Taylor expansion○

Taylor expansion•

Instructor: 
Amir Ali Ahmadi
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Inner products and norms

Definition of an inner product

Positivity:         and         iif x=0.•

Symmetry:              •

Additivity:                         •

Homogeneity :                     •

An inner product is a real-valued function                that satisfies the 
following properties:

Examples in small dimension

Here are some examples in  and   that you are already familiar with.

Example 1: Classical multiplication

               
             

Check that this is indeed a inner product using the definition.

Example 2:         

              
                                

This geometric definition is equivalent to the 
following algebraic one:
                

•

Notice that the inner product is positive when  is 
smaller than 90 degrees, negative when it is greater than 
90 degrees and zero when     degrees.
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Euclidean inner product

The two previous examples are particular cases (   and    ) of the Euclidean 
inner product:

            

 

   

                   

  
 
  
     

  
 
  
    

Check that this is an inner product using the definition.

Orthogonality

We say that two vectors  and  are orthogonal if         

Note that with this definition the zero vector is orthogonal to every other 
vector.

•

For example, ○

But two nonzero vectors can also be orthogonal.•
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Norms

Positivity:       and        iif    .•

Homogeneity:                 for all     •

Triangle inequality :                     •

A vector norm is a real valued function             that satisfies the 
following properties:

Basic examples of vector norms

Check that these are norms using the definition!•

When no index is specified on a norm (e.g.,       this is considered to be the 
Euclidean norm.

•

For the three norms above, we have the relation      
 
      

 
      

 
 •

Given any inner product       one can construct a norm given by       

      
      . But not every norm comes from an inner product. (For example, 

one can show that the        norm above doesn't.)

•

Cauchy Schwarz Inequality

For any two vectors  and  in   , we have the so-called Cauchy-Schwarz 
inequality:

                

Furthermore, equality holds iff (i.e., if and only if)       for some     
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Matrix norms (We skipped this topic in lecture. We'll come back to it as we need to.)

Similar to vector norms, one can define norms on matrices. These are functions 
              that satisfy exactly the same properties as in the definition of a vector 
norm (see page 36 of [CZ13]).

Induced norms

Consider any vector norm     
 
     . The induced norm     

 
       on the 

space of    matrices is defined as:

    
 
          

 
              

 
    

Notice that the vector norm and the matrix norm have the same notation; it is for you 
to know which one we are talking about depending on the context.

One can check that     
 
satisfies all properties of a norm.

Frobenius norm

The Frobenius norm       
      is defined by:

           
 

 

   

 

   

          
 

The Frobenius norm is an example of a matrix norm that is not induced by a vector 
norm. Indeed,        

 
  for any induced norm     

 
(why?) but           

Submultiplicative norms

A matrix norm is submultiplicative if it satisfies the following inequality:

              

All induced norms are submultiplicative.•
The Frobenius norm is submultiplicative.•
Not every matrix norm is submultiplicative:                     •

Take      
  
  

   Then                 

But     
  
  

  Hence        and              
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Continuity

Definition in   

A function         is continuous at     if :

                                         

Once again, if  is continuous at all points in its domain, then   is said to be 
continuous.

Definition in  

A function       is continuous at a point    if                  
for all  with          we have               

We first give the definition for a univariate function and then see that it 
generalizes in a straightforward fashion to multiple dimensions using the 
concept of a vector norm.

•

A function       is said to be continuous if it is 
continuous at every point over its domain.

This is because of "equivalence of norms in finite dimensions", a result 
we didn't prove. 

○

If in the above definition we change the 2-norm with any other vector 
norm, the class of continuous functions would not change. 

•

A function         given as    
  
 
  

 is continuous if and only if each 

entry     
    is continuous.

•

Remarks.

A function that is not continuous
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Linear, Affine and Quadratic functions

Linear functions

                      and      •
                         •

A function          is called a linear if:

Any linear function can be represented as •
                                       
      where   is an    matrix.

The special case where    will be encountered a lot. In this case, linear 
functions take the form         for some vector       

•

Affine functions

A function        is affine if there exists a linear function            and 
a vector       such that:

                         

When     affine functions are functions of the form
           where          

Linear      Affine      

Linear         
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Quadratic functions

A quadratic form       is a function that can be represented as

           

where Q is a     matrix that we can assume to be symmetric without loss of 
generality (i.e.,       

Why can we assume this without loss of generality?

If  is not symmetric, then we can define    
 

 
       which is a symmetric matrix 

(why?) and we would have           (why?).

What do these functions look like in small dimensions?

When     we have          where     

When        
  
  

 , and                  
  
  

    
  
     

             
  

A quadratic function is a function that is the sum of a quadratic form and an 
affine function:                 

Quadratic form    Quadratic form    Quadratic function    
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Eigenvalues and Eigenvectors

Definition

Let  be an    square matrix. A  scalar  and a nonzero vector  satisfying
the equation        are respectively called an eigenvalue and an eigenvector
of  . In general,  both  and  may be complex.

•

For  to be an eigenvalue it is necessary and sufficient for the matrix       to
be singular, that is             ( here is the    identity matrix).

•

We call the polynomial                    
             the

characteristic polynomial of  . 
•

The fundamental theorem of algebra tells us that the characteristic polynomial 
must have   roots. These roots are the eigenvalues of   

•

Once an eigenvalue  is computed, we can solve a linear system to      to 
obtain the eigenvectors.

•

You should be comfortable with computing eigenvalues of    matrices.•

Eigenvalues and eigenvectors of a symmetric matrix

 is a symmetric matrix if      

All eigenvalues of a symmetric matrix are real. •

Any real symmetric    matrix has a set of  real eigenvectors that are 
mutually orthogonal. (We did not prove this.)

•

Proof.

Lec2p9, ORF363/COS323

   Lec2 Page 9    



Positive definite and Positive semidefinite matrices

A symmetric     matrix  is said to be

Positive semidefinite (psd) if        for all       •

Positive definite (pd) if        for all           •

Negative semidefinite if   is positive semidefinite.•

Negative definite if   is positive definite.•

Indefinite if it is neither positive semidefinite nor negative 
semidefinite.

•

Notation

Note: The [CZ13] book uses the notation    instead of     (and 
similarly for the other notions). We reserve the notation    for matrices 
whose entries are nonengative numbers. The notation    is much more 
common in the literature for positive semidefiniteness.

Link with the eigenvalues of the matrix

A symmetric matrix  is postive semidefinite (resp. positive definite) 
if and only if all eigenvalues of  are nonnegative (resp. positive).

•

As a result, a symmetric matrix  is negative semidefinite (resp. 
negative definite) if and only if the eigenvalues of  are nonpositive 
(resp. negative).

•

Here is the easier direction of the proof (the other direction is also 
straightforward; see [CZ13]):
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Positive definite and positive semidefinite matrices (cont'd)

Sylvester's criterion

Sylvester's criterion provides another approach to testing positive definiteness or 
positive semidefiniteness of a matrix.

A symmetric matrix   is positive definite if and only if 
                             are positive, where            are submatrices 
defined as in the drawing below. These determinants are called the leading 
principal minors of the matrix  .

•

There are always  leading principal minors.•

A symmetric matrix   is positive semidefinite if and only if 
                                are nonnegative, where            are 
submatrices obtained by choosing a subset of the rows and the same 
subset of the columns from the matrix  . The scalars 
                               are called the principal minors of  .

•
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Gradients, Jacobians, and Hessians

Partial derivatives

Recall that the partial derivative of a function         with respect to a 
variable   is given by
  

   
       

   

             

 
                 

where   is the  -th standard basis vector in    i.e., the  -th column of the    
identity matrix.

The Jacobian matrix

For a function         given as                      
 

,  the Jabocian 

matrix is the    matrix of first partial derivatives:
                                                                                                                             

       

 

 
 

       

   
      

 

   
        

   
       

 
       

   
         

       

   
       

 

 
 

The first order approximation of   near a point   is obtained using the Jacobian 
matirx:                  

         Note that this is an affine function of  .

The gradient vector

The gradient of a real-valued function       is denoted by      and is 
given by

      

 

 
 

  
   
      

 
  
   
      

 

 
 
      

  

This is a very important vector in optimization.
As we will see later, at every point, the gradient
vector points in a direction where the function
grows most rapidly.

(The notation of the CZ book is      )

Image credit: [CZ13]

Lec2p12, ORF363/COS323

   Lec2 Page 12    



Level sets

For a scalar    , the  -level set of a function       is defined as 
                   
and the  -sublevel set of  is given by
                   

Fact: At any point       the gradient vector       is orthogonal to the 
tangent to the level set going through     See page 70 of [CZ14] for a proof.

Level sets and gradient vectors of a function. Zooming in on the same picture to see orthogonality.

The Hessian matrix

For a function       that is twice differentiable, the Hessian matrix is the    
matrix of second derivatives:

  
      

 

 
 

      

   
 

 

          
      

   
    
 

       

   

   
    

           
   

   
    

 

 
 
 

If  is twice continuously differentiable, the Hessian matrix is always a symmetric 
matrix. This is because partial derivatives commute:
   

   
    

      
   

   
    

     .

•

The [CZ13] book uses the notation     for the Hessian matrix.•
Second derivatives carry information about the "curvature" of the function   •

Remarks:
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Practical rules for differentiation

The sum rule

If        and          then                     

The product rule

Let         and          be two differentiable functions. Define the 
function       by               . Then  is also differentiable and

                           

and
           

  

The chain rule

Let       and        . We suppose that g is differentiable on an open set 
    and that          is diffentiable on (a,b). Then the composite function
          given by             is differentiable on (a,b) and: 

              
  

  
    
 

  
    

  

A special case that comes up a lot

Let  and  be two fixed vectors in    and let         Define a univarite 
function               
Then                  

Gradients and Hessians of affine and quadratic functions

If           , then        and            .•

If           and  is symmetric, then          and          .•
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Taylor expansion

Little o and Big O notation 
(I am skipping the Big O notation and anything that uses it)

These notions are used to compare the growth rate of two functions near the origin.

Definition

Let        be a function that does not vanish in a neighborhood around the origin, 
except possibly at the origin . Let         be defined in a domain      that 
includes the origin. Then we write:

            (pronounced " is big Oh of  ") to mean that the quotient 
             is bounded near 0; that is there exists     and    such that if 

          then 
      

      
        

•

            (pronounced " is little oh of  ") if•

   
        

      

      
         

Intuitively, this means that  goes to zero faster than   

Examples

            

       as 
   

   
          •

     
 

 
   (can take       

 

 
   •

           (why?)•

        (why?)•

           (why?)•
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Little o and Big O notation 

Examples (cont'd)

            

       •

 
  

       
      •

        •

      •

Remarks

We gave the definition of little o and big O for comparing growth rates around 
    One can give similar definitions around any other point. In particular, in 
many areas of computing, these notations are used to compare growth rates of 
functions at infinity; i.e. as     

•

If             then             but the converse is not necessarily 
true.

•
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Taylor expansion 

Taylor expansion in one variable

The idea behind Taylor expansion is to approximate a function around a 
given point by functions that are "simpler"; in this case by polynomials. 
As we increase the order of the Taylor expansion, we increase the 
degree of this polynomial and we reduce the error in our approximation. 

•

The little o and big O notation that we just introduced nicely capture 
how our error of approximation scales around the point we are 
approximating.

•

Here are two theorems we can state for functions of a single variable:

Assume that a function      is in    i.e.,   times continuously differentiable 
(meaning that                all exist and are continuous). Consider a point    
around which we will Taylor expand and define       Then,

          
 

  
            

  

  
              

  

  
                 

Version 1

Version 2

Assume that a function      is in      Consider a point    around which 
we will Taylor expand and define       Then,
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Extension to multiple variable functions

When         we will only care about first and second order Taylor 
expansions in this class. Here, the concepts of a gradient vector and a 
Hessian matrix need to come in to replace first and second derivatives. We 
state four different variations of the theorem below. The point we are 
approximating the function around is denoted by       

                      
 

 
                             

First order

Second order

                      
 

 
                             

If  is    

If  is    

                               

                               

If  is    

If  is    
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Notes:

The material here was a summary of the relevant parts of [CZ13] collected in one 
place for your convenience. 
The relevant sections for this lecture are chapters 2,3,5 and more specifically 
sections:

2.1

3.1, 3.2, 3.4

5.2, 5.3, 5.4, 5.5, 5.6.

I filled in some more detail in class, with some examples and proofs given here 
and there. Your HW 1 will give you some practice with this material.

References:

[CZ13] E.K.P. Chong and S.H. Zak. An Introduction to 
Optimization. Fourth edition. Wiley, 2013.

-
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