This lecture:

- Convex optimization
- Convex sets
- Convex functions
- Convex optimization problems
- Why convex optimization? Why so early in the course?

Recall the general form of our optimization problems:

$$
\min . f(x)
$$

s.t. $x \in \Omega$

- In the last lecture, we focused on unconstrained optimization: $\Omega=\mathbb{R}^{n}$.
- We saw the definitions of local and global optimality, as well as first and second order optimality conditions.
- In this lecture, we consider a very important special case of constrained optimization problems known as "convex optimization problems".
- For these problems,
- f will be a "convex function".
- Ω will be a "convex set".
- These notions are defined formally in this lecture.
- Roughly speaking, the high-level message is this:
- Convex optimization problems are pretty much the broadest class of optimization problems that we know how to solve efficiently.
- They have nice geometric properties;
- e.g., a local minimum is automatically a global minimum.
- Numerous important optimization problems in engineering, operations research, machine learning, etc. are convex.
- There is available software that can take (a large subset of) convex problems written in very high-level language and solve it.
- You should take advantage of this!
- Convex optimization is one of the biggest success stories of modern theory of optimization.

Lec4p2, ORF363/COS323

Convex sets

Definition. A set $\Omega \subseteq \mathbb{R}^{n}$ is convex, if for all $x, y \in \Omega$, the line segment connecting x and y is also in Ω. In other words,

$$
x, y \in \Omega, \lambda \in[0,1] \Rightarrow \lambda x+(1-\lambda) y \in \Omega
$$

- A point of the form $\lambda x+(1-\lambda) y, \lambda \in[0,1]$ is called a convex combination of x and y.
- Note that when $\lambda=0$, we are at y; when $\lambda=1$, we are at x; for intermediate values of λ, we are on the line segment connecting x and y.

Illustration of the concept of a convex combination:
$0.1 x+0.9 y \leftarrow \underbrace{y}$

Convex:

Not convex:

Convex sets \& Midpoint Convexity

Midpoint convexity is a notion that is equivalent to convexity in most practical settings, but it is a little bit cleaner to work with.

Definition. A set $\Omega \subseteq \mathbb{R}^{n}$ is midpoint convex, if for all $x, y \in \Omega$, the midpoint between x and y is also in Ω. In other words,

$$
x, y \in \Omega \Rightarrow \frac{1}{2} x+\frac{1}{2} y \in \Omega .
$$

- Obviously, convex sets are midpoint convex.
- Under mild conditions, midpoint convex sets are convex
- e.g., a closed midpoint convex sets is convex.
- What is an example of a midpoint convex set that is not convex? (The set of all rational points in $[0,1]$.)

The nonconvex sets that we had are also not midpoint convex (why)?:

Common convex sets in optimization

(Prove convexity in each case.)

- Hyperplanes: $\left\{x \mid a^{T} x=b\right\}\left(a \in \mathbb{R}^{n}, b \in \mathbb{R}, a \neq 0\right)$

- Halfspaces: $\left\{x \mid a^{T} x \leq b\right\}\left(a \in \mathbb{R}^{n}, b \in \mathbb{R}, a \neq 0\right)$

$$
\begin{aligned}
& \text { Proof: } \operatorname{det} H:=\left\{x \mid a^{\top} x \leqslant b\right\} \text {. Take } x, y \in \mathcal{H} \\
& a^{\top}(\lambda x+(1-\lambda) y)=\lambda a^{\top} x+(1-\lambda) a^{\top} y \leqslant \lambda b+(1-\lambda) b=b \\
& \Rightarrow \lambda x+(1-\lambda) y \in \mathcal{H} .
\end{aligned}
$$

- Euclidean balls: $\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\} \quad\left(x_{c} \in \mathbb{R}^{n}, r \in \mathbb{R},\|\cdot\| 2\right.$-norm $)$

$$
\begin{aligned}
& \text { Proof: Let } B:=\left\{x \mid\left\|x-x_{c}\right\| \leqslant r\right\} \text {. Take } x, y \in B . \\
& \left\|\lambda x+(1-\lambda) y-x_{c}\right\|=\left\|\lambda\left(x-x_{c}\right)+(1-\lambda)\left(y-x_{c}\right)\right\|
\end{aligned}
$$

$\begin{aligned} & \text { Triangle } \\ & \text { ineq. }\end{aligned} \leqslant\left\|\lambda\left(x-x_{c}\right)\right\|+\left\|(1-\lambda)\left(y-x_{c}\right)\right\| \stackrel{\text { honog. }}{=} \lambda\left\|x-x_{c}\right\|+(1-\lambda)\left\|y-y_{c}\right\| \stackrel{x_{c}, y \in B}{\leqslant} \lambda r+(1-\lambda) r=r . \Rightarrow \lambda x+(1-\lambda) y \in B$. ■

- Ellipsoids: $\left\{x \mid\left(x-x_{c}\right)^{T} P\left(x-x_{c}\right) \leq r\right\} \quad\left(x_{c} \in \mathbb{R}^{n}, r \in \mathbb{R}, P>0\right)$
(P here is an $n \times n$ symmetric matrix)
Proof hint: Wait until you see convex functions and quasiconvex functions. Observe that ellipsoids are sublevel sets of convex quadratic
 functions.

Lec4p5, ORF363/COS323

Fancier convex sets

Many fundamental objects in mathematics have surprising convexity properties.

For example, prove that the following two sets are convex.

- The set of (symmetric) positive semidefinite matrices:

$$
S_{+}^{n \times n}=\left\{P \in S^{n \times n} \mid P \succcurlyeq 0\right\}
$$

$$
\text { Proof. Let } A \nVdash 0, B \succcurlyeq 0 \text {. Let } \lambda \in[0,1] \cdot x^{\top}(\lambda A+(1-\lambda) B) x=\lambda \underbrace{\lambda x^{\top} A x}_{\geqslant 0}+(1-\lambda) \underbrace{x^{\top} B x}_{\geqslant 0} \geqslant 0 . \square
$$

$$
\text { e.g., }\left\{x, y, z \left\lvert\,\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \succcurlyeq 0\right.\right\} \text { : }
$$

- The set of nonnegative polynomials in n variables and of degree d. (A polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ is nonnegative, if $p(x) \geq 0, \forall x \in \mathbb{R}^{n}$.)

$$
\text { e.g., }\left\{\left(c_{1}, c_{2}\right) \mid 2 x_{1}^{4}+x_{2}^{4}+c_{1} x_{1} x_{2}^{3}+c_{2} x_{1}^{3} x_{2} \geq 0, \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right\} \text { : }
$$

Intersections of convex sets

- Easy to see that intersection of two convex sets is convex:

$$
\Omega_{1} \text { convex, } \Omega_{2} \text { convex } \Rightarrow \Omega_{1} \cap \Omega_{2} \text { convex. }
$$

Proof:

$$
\begin{aligned}
& \text { Pick } x \in \Omega_{1} \cap \Omega_{2}, y \in \Omega_{1} \cap \Omega_{2} \\
& \forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in \Omega_{1} \quad\left(b / c \quad \Omega_{1}\right. \text { is convex) } \\
& {\left[\begin{array}{ll}
\lambda x+(1-\lambda) y \in \Omega_{2} & (b / c \\
\left.\Omega_{2} \text { is convex }\right) \\
& \lambda x+(1-\lambda) y \in \Omega_{1} \cap \Omega_{2}
\end{array}\right.}
\end{aligned}
$$

- Obviously, the union may not be convex:

Polyhedra

- A polyhedron is the solution set of finitely many linear inequalities.
- Ubiquitous in optimization theory.
- Feasible sets of "linear programs" (an upcoming subject).
- Such sets are written in the form:

$$
\{x \mid A x \leq b\},
$$

where A is an $m \times n$ matrix, and b is an $m \times 1$ vector.

- These sets are convex: intersection of halfspaces $a_{i}^{T} x \leq b_{i}$, where a_{i}^{T} is the i-th row of A.

$$
\text { e.g., } A=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1 \\
0 & 1 \\
1 & 1
\end{array}\right], b=\left[\begin{array}{l}
0 \\
0 \\
1 \\
3
\end{array}\right]
$$

Convex functions

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if its domain is a convex set and for all x, y in its domain, and all $\lambda \in[0,1]$, we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) .
$$

- In words: take any two points $x, y ; f$ evaluated at any convex combination should be no larger than the same convex combination of $f(x)$ and $f(y)$.
- If $\lambda=\frac{1}{2}$, interpretation is even easier: take any two points $x, y ; f$ evaluated at the midpoint should be no larger than the average of $f(x)$ and $f(y)$.
- Geometrically, the line segment connecting $(x, f(x))$ to $(y, f(y))$ sits above the graph of f.

$$
(f: \mathbb{R} \rightarrow \mathbb{R})
$$

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

- Concave, if $\forall x, y, \forall \lambda \in[0,1]$ $f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)$.
- Strictly convex, if $\forall x, y, x \neq y, \forall \lambda \in(0,1)$

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

- Strictly concave, if $\forall x, y, x \neq y, \forall \lambda \in(0,1)$

$$
f(\lambda x+(1-\lambda) y)>\lambda f(x)+(1-\lambda) f(y)
$$

Note: f is concave if and only if $-f$ is convex. Similarly, f is strictly concave if and only if $-f$ is strictly convex.

The only functions that are both convex and concave are affine functions; i.e., functions of the form:
$f(x)=a^{T} x+b, \quad\left(a \in \mathbb{R}^{n}, b \in \mathbb{R}\right)$.

convex
(and strictly convex)

concave (and strictly concave)

neither convex nor concave

both convex and concave (but not strictly)

Let's see some examples of convex functions (selection from [BV04]; see this reference for many more examples).

Examples of univariate convex functions $(f: \mathbb{R} \rightarrow \mathbb{R})$:

- $e^{a x}$
- $-\log x$
- $x^{a}\left(\right.$ defined on $\left.\mathbb{R}_{++}\right) a \geq 1$ or $a \leq 0$
- $-x^{a}$ (defined on $\left.\mathbb{R}_{++}\right) 0 \leq a \leq 1$
- $|x|^{a}, a \geq 1$
- $x \log x\left(\right.$ defined on $\left.\mathbb{R}_{++}\right)$
- Try to plot the functions above and convince yourself of convexity visually.
- Can you formally verify that these functions are convex?
- We will soon see some characterizations of convex functions that make the task of verifying convexity a bit easier.

Examples of convex functions $\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$

- Affine functions: $f(x)=a^{T} x+b$ (for any $a \in \mathbb{R}^{n}, b \in \mathbb{R}$)
(convex, but not strictly convex; also concave)

$$
\begin{aligned}
& \text { Proof: } \forall \lambda \in[0,1], f(\lambda x+(1-\lambda) y)=a^{\top}(\lambda x+(1-\lambda) y)+b \\
& =\lambda a^{\top} x+(1-\lambda) a^{\top} y+\lambda b+(1-\lambda) b=\lambda f(x)+(1-\lambda) f(y) .
\end{aligned}
$$

- Some quadratic functions:

$$
f(x)=x^{T} Q x+c^{T} x+d
$$

- Convex if and only if $Q \geqslant 0$.
- Strictly convex if and only if $Q>0$.

- Concave iff $Q \leqslant 0$; Strictly concave iff $Q \prec 0$.
- Proofs are easy from the second order characterization of convexity (coming up).
- Any norm: meaning, any function f satisfying:
a. $f(\alpha x)=|\alpha| f(x), \forall \alpha \in \mathbb{R}$
b. $f(x+y) \leq f(x)+f(y)$
c. $(f(x) \geq 0, \forall x, f(x)=0 \Rightarrow x=0)$
$\forall \lambda \in[0,1]$
Proof: $f(\lambda x+(1-\lambda) y) \leqslant f(\lambda x)+f((1-\lambda) y)$

$$
\stackrel{a}{=} \lambda f(x)+(1-\lambda) f(y) .
$$

Examples:

- $\left|\left|x \|_{\infty}=\max _{i}\right| x_{i}\right|$
- $\left||x|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad p \geq 1\right.$
- $\left|\mid x \|_{Q}=\sqrt{x^{T} Q x}, Q>0\right.$

Midpoint convex functions

Same idea as what we saw for midpoint convex sets.

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is midpoint convex if its domain is a convex set and for all x, y in its domain, we have

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2} f(x)+\frac{1}{2} f(y) .
$$

- Obviously, convex functions are midpoint convex.
- Continuous, midpoint convex functions are convex.

Convexity = Convexity along all lines

Theorem. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \rightarrow \mathbb{R}$, given by $g(t)=f(x+t y)$ is convex (as a univariate function), for all x in domain of f and all $y \in \mathbb{R}^{n}$. (The domain of g here is all t for which $x+t y$ is in the domain of f.)

- This should be intuitive geometrically:
- The notion of convexity is defined based on line segments.
- The theorem simplifies many basic proofs in convex analysis.
- But it does not usually make verification of convexity that much easier; the condition needs to hold for all lines (and we have infinitely many).
- Many of the algorithms we will see in future lectures work by iteratively minimizing a function over lines. It's useful to remember that the restriction of a convex function to a line remains convex. Here is a proof:

Suppose for some $x, y, g(\alpha)=f(x+\alpha y)$ was not convex.
$\Rightarrow \exists \lambda \in[0,1], \alpha_{1}, \alpha_{2}$ s.t. $g\left(\lambda \alpha_{1}+(1-\lambda) \alpha_{2}\right)>\lambda g\left(\alpha_{1}\right)+(1-\lambda) g\left(\alpha_{2}\right)$.
$\Rightarrow f\left(x+\left(\lambda \alpha_{1}+(1-\lambda) \alpha_{2}\right) y\right)=f\left(\lambda\left(x+\alpha_{1} y\right)+(1-\lambda)\left(x+\alpha_{2} y\right)\right)>\lambda f\left(x+\alpha_{1} y\right)+(1-\lambda) f\left(x+\alpha_{2} y\right)$.

Epigraph

Is there a connection between convex sets and convex functions?

- We will see a couple; via epigraphs, and sublevel sets.

Definition. The epigraph epi(f) of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a subset of \mathbb{R}^{n+1} defined as

$$
e p i(f)=\{(x, t) \mid x \in \operatorname{domain}(f), f(x) \leq t\}
$$

Theorem. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if its epigraph is convex (as a set).

Proof: Suppose f not convex $\Rightarrow \exists x, y \in \operatorname{dom}(f), \lambda \in[0,1]$

$$
\begin{equation*}
\text { st. } \quad f(\lambda x+(1-\lambda) y)>\lambda f(x)+(1-\lambda) f(y) . \tag{1}
\end{equation*}
$$

$\operatorname{Pick}(x, f(x)),(y, f(y)) \in$ epic (f).

$$
\text { (1) } \Rightarrow(\lambda x+(1-\lambda) y, \lambda f(x)+(1-\lambda) f(y)) \notin \text { ep }(f) .
$$

Suppose ep (f) not convex $\Rightarrow \exists\left(x, t_{x}\right),\left(y, t_{y}\right), \lambda \in[0,1]$

$$
\text { s.t. } \begin{aligned}
f(x) \leqslant t x, f(y) \leqslant t_{y}, \quad f(\lambda x+(1-\lambda) y) & >\lambda t_{x}+(1-\lambda) t_{y} \\
& \geqslant \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

$\Rightarrow f$ not convex.

Convexity of sublevel sets

Definition. The α-sublevel set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set

$$
S_{\alpha}=\{x \in \operatorname{domain}(f) \mid f(x) \leq \alpha\}
$$

Several sublevel sets (for different values of α)

Theorem. If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then all its sublevel sets are convex sets.

- Converse not true.
- A function whose sublevel sets are all convex is called quasiconvex.

Quasiconvex but not convex functions

Proof of theorem:

$$
\begin{aligned}
& \text { Pick } x, y \in S_{\alpha}, \lambda \in[0,1] \\
& x \in S_{\alpha} \Rightarrow f(x) \leqslant \alpha ; y \in S_{\alpha} \Rightarrow f(y) \leqslant \alpha \\
& f \text { convex } \Rightarrow f(\lambda x+(1-\lambda) y)
\end{aligned}
$$

Convex optimization problems

A convex optimization problem is an optimization problem of the form

$$
\begin{array}{ll}
\min . & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, k
\end{array}
$$

where $f, g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions and $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are affine functions.

- Let Ω denote the feasible set: $\Omega=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0, h_{j}(x)=0\right\}$.
- Observe that for a convex optimization problem Ω is a convex set (why?)
- But the converse is not true:
- Consider for example, $\Omega=\left\{x \in \mathbb{R} \mid x^{3} \leq 0\right\}$. Then Ω is a convex set, but minimizing a convex function over Ω is not a convex optimization problem per our definition.
- However, the same set can be represented as $\Omega=\{x \in \mathbb{R} \mid x \leq 0\}$, and then this would be a convex optimization problem with our definition.
- Here is another example of a convex feasible set that fails our definition of a convex optimization problem:

Convex optimization problems (cont'd)

- We require this stronger definition because otherwise many abstract and complex optimization problems can be formulated as optimization problems over a convex set. (Think, e.g., of the set of nonnegative polynomials.) The stronger definition is much closer to what we can actually solve efficiently.
- The software CVX that we'll be using ONLY accepts convex optimization problems defined as above.
- Beware that [CZ13] uses the weaker and more abstract definition for a convex optimization problem (i.e., the definition that simply asks Ω to be a convex set.)

Acceptable constraints in CVX:

- Convex \leq Concave
- Affine == Affine

This is really the same as:

- Convex ≤ 0
- Affine $==0$

Why?

(Hint: Sum of two convex functions is convex, and sums and differences of affine functions are affine.)

Notes:

- Further reading for this lecture can include the first few pages of Chapters $2,3,4$ of [BV04]. Your [CZ13] book defines convex sets in Section 4.3. Convex optimization appears in Chapter 22. The relevant sections are 22.1-22.3.

References:

- [BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. http://stanford.edu/~boyd/cvxbook/
- [CZ13] E.K.P. Chong and S.H. Zak. An Introduction to Optimization. Fourth edition. Wiley, 2013.

