This lecture:

- Gradient descent methods
- Choosing the descent direction
- Choosing the step size
- Convergence
- Convergence rate

Let's recall our unconstrained optimization problem:

$$
\min _{x} . f(x), \quad\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)
$$

Where we stand so far:

- Learned about some structural properties of local optimal solutions (first and second order conditions for optimality).
- Learned that for convex problems, local optima are automatically global.
- But how to find a local optimum?
- How to even find a stationary point (i.e., a point where the gradient vanishes)? Recall that this would suffice for global optimality if f is convex.
- We now begin to see some algorithms for this purpose, starting with gradient descent algorithms.
- These will be iterative algorithms: start at a point, jump to a new point that hopefully has a lower objective value and continue.
- Our presentation uses references [Bert03], [Bert09], [Tit13], [CZ13].

General form of the iterations:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

$k \in \mathbb{Z}_{+}$: index of time (iteration number)
$x_{k} \in \mathbb{R}^{n}$: Current point $\quad d_{k} \in \mathbb{R}^{n}$: Direction to move along at iteration k
$x_{k+1} \in \mathbb{R}^{n}:$ Next point $\quad \alpha_{k} \in \mathbb{R}_{+}$: Step size at iteration k
Goal is to make the sequence $\left\{f\left(x_{k}\right)\right\}$ decrease as much as possible.

- How to choose d_{k} ? How to choose α_{k} ?

Gradient methods

- Throughout this lecture, we assume that f is at least C^{1} (continuously differentiable).
- Gradient methods: the direction d_{k} to move along at step k is chosen "based on information from" $\nabla f\left(x_{k}\right)$.
- Why is $\nabla f\left(x_{k}\right)$ a natural vector to look at? Lemmas 1 and 2 below (proved on the next page) provide two reasons.

Lemma 1: Consider yourself sitting at a point $x \in \mathbb{R}^{n}$ and looking (locally) at the value of the function f in all directions around you. The direction with the maximum rate of decrease is along $-\nabla f(x)$.

Remark: When we speak of direction, the magnitude of the vector does not matter; e.g., $\nabla f(x), 5 \nabla f(x), \frac{\nabla \mathrm{ff}(x)}{20}, \frac{\nabla f(x)}{|\nabla f(x)| \mid}$ all are in the same direction.

Definition: For a given point $x \in \mathbb{R}^{n}$, a direction $d \in \mathbb{R}^{n}$ is called a descent direction, if there exists $\bar{\alpha}>0(\alpha \in \mathbb{R})$ such that

$$
f(x+\alpha d)<f(x), \quad \forall \alpha \in(0, \bar{\alpha})
$$

Interpretation: There is a small enough (but nonzero) amount that you can move in direction d and be guaranteed to decrease the function value.

Lemma 2: Consider a point $x \in \mathbb{R}^{n}$. Any direction d satisfying

$$
\langle d, \nabla f(x)\rangle<0
$$

is a descent direction. (In particular, $-\nabla f(x)$ is a descent direction.)

- Red: direction of steepest descent
- Descent direction d would have been better

Lec8p3, ORF363/COS323

Remark: The condition $\langle\mathrm{d}, \nabla f(x)\rangle<0$ in Lemma 2 geometrically means that the vectors d and $\nabla f(x)$ make an angle of more than 90 degrees (on the plane that contains them).
Why? $\langle\mathrm{d}, \nabla f(x)\rangle=||d|| \cdot| | \nabla f(x) \| \cos (\theta)$

Proof of Lemma 1.

Consider a point x, a direction d, and the univariate function

$$
g(\alpha)=f\left(x+\alpha \frac{d}{\|d\|}\right) .
$$

The rate of change of f at x in direction d is given by $g^{\prime}(0)$, which by the chain rule equals

$$
\frac{1}{\|d\|}\langle\nabla f(x), d\rangle .
$$

By the Cauchy-Schwarz inequality (see, e.g., Theorem 2.3 of [CZ13] for a proof), we have:

$$
-\frac{1}{\|d\|} \cdot| | \nabla f(x)\|\cdot\| d\left\|\leq \frac{1}{\|d d\|}\langle\nabla f(x), d\rangle \leq \frac{1}{\|d\|} \cdot\right\| \nabla f(x)\|\cdot\| d \|,
$$

which after simplifying gives

So the rate of change in any direction cannot be larger than $\|\nabla f(x)\|$, or smaller than $-\|\nabla f(x)\|$. However, if we take $d=\nabla f(x)$, the right inequality is achieved:

$$
\frac{1}{\|\nabla f(x)\|}\langle\nabla f(x), \nabla f(x)\rangle=\frac{1}{\|\nabla f(x)\|} \cdot\|\nabla f(x)\|^{2}=| | \nabla f(x) \| .
$$

Similarly, if we take $d=-\nabla f(x)$, then the left inequality is achieved.

Proof of Lemma 2.
By Taylor's theorem, we have \int

$$
g(\alpha):=f(x+\alpha d)
$$

$f(x+\alpha d)=f(x)+\alpha \nabla f(x)^{T} d+o(\alpha)$.
Since $\lim _{\alpha \rightarrow 0} \frac{|o(\alpha)|}{\alpha}=0$, there exists $\bar{\alpha}>0$ such that

$$
\frac{|o(\alpha)|}{\alpha}<\left|\nabla f(x)^{T} d\right|, \quad \forall \alpha \in(0, \bar{\alpha}) .
$$

This, together with our assumption that $\nabla f(x)^{T} d<0$, implies that $\forall \alpha \in(0, \bar{\alpha})$ we must have:

$$
f(x+\alpha d)-f(x)<0 .
$$

Hence, d is a descent direction.

Lemma 3: Consider any positive definite matrix B. For any point x, with $\nabla f(x) \neq 0$, the direction $-B \nabla f(x)$ is a descent direction.

Proof. We have $\langle-B \nabla f(x), \nabla f(x)\rangle=-\nabla f(x)^{T} B \nabla f(x)<0$, by the assumption that B is positive definite.

This suggests a general paradigm for our descent algorithms:

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k} \nabla f\left(x_{k}\right), \quad\left(\text { with } B_{k} \succ 0, \forall k\right) .
$$

Common choices of descent direction:

- Steepest Descent: $\quad B_{k}=I, \forall k$.

Simplest descent direction but not always the fastest.

- Newton Direction: $B_{k}=\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}$ (assuming Hessian positive definite).

More expensive, but can have much faster convergence.

- Diagonally Scaled Steepest Descent: $B_{k}=\operatorname{diag}\left(d_{1, k}, \ldots, d_{n, k}\right), d_{i, k}>0$.

For example, can take $d_{i, k} \approx\left(\frac{\partial^{2} f\left(x_{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}$; i.e., diagonally approximate Newton.

- Modified Newton Direction: $B_{k}=\left(\nabla^{2} f\left(x_{0}\right)\right)^{-1}, \forall k$

Compute Newton direction only at the beginning, or once every M steps.

- Quasi-Newton Directions: Chap. 11 of [CZ13].

Tradeoffs generally problem dependent.

Common choices of the step size α_{k}.

Back to the general form of our iterative algorithm:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

- Constant step size: $\alpha_{k}=s, \forall k \quad(s>0)$
- Simplest rule to implement, but may not converge if s too large; may be too slow if s too small.
- Diminishing step size: $\quad \alpha_{k} \rightarrow 0, \sum_{k=1}^{\infty} \alpha_{k}=\infty$. (e.g., $\alpha_{k}=\frac{1}{k}$)
- Descent not guaranteed at each step; only later when α_{k} becomes small.
- $\sum_{k=1}^{\infty} \alpha_{k}=\infty$ imposed to guarantee progress does not become too slow.
- Good theoretical guarantees, but unless the right sequence is chosen, can also be a slow method.
- Minimization rule (exact line search): $\alpha_{k}=\operatorname{argmin}_{\alpha \geq 0} f\left(x_{k}+\alpha_{k} d_{k}\right)$
- A minimization problem itself, but an easier one (one dimensional).
- Can use the line search methods that we learned in the previous lecture.
- No need to be very precise at each step.
- If f convex, the one dimensional minimization problem also convex (why?).
- Limited minimization: $\alpha_{k}=\operatorname{argmin}_{\alpha \in[0, s]} f\left(x_{k}+\alpha_{k} d_{k}\right)$
- Previous comments apply.
- Tries not to step too far.
- Successive step size reduction: well-known examples are Armijo rule and Goldstein rule (see, e.g., Section 7.8 of [CZ13]). We will cover Armijo in the next lecture.
- Try to ensure enough decrease in line search without spending time to solve it to optimality.

Tradeoffs generally problem dependent.

Stopping criteria.

- Once we have a rule for choosing the search direction and the step size, we are good to go for running the algorithm.
- Typically the initial point x_{0} is picked randomly, or if we have a guess for the location of local minima, we pick x_{0} close to them.
- But when to stop the algorithm?
- Some common choices ($\epsilon>0$ is a small prescribed threshold):
- $\|\nabla f(x)\|<\epsilon$
- Note: if we have $\nabla f\left(x_{k}\right)=0$, our iterates stop moving. We have found a point satisfying the first order necessary condition for optimality. This is what we are aiming for.
- $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\epsilon$
- Improvements in function value are saturating.
- $\left|\left|x_{k+1}-x_{k}\right|\right|<\epsilon$
- Movement between iterates has become small.
- $\frac{\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|}{\max \left\{1,\left|f\left(x_{k}\right)\right|\right\}}<\epsilon$
- A "relative" measure - removes dependence on the scale of f.
- The max is taken to avoid dividing by small numbers.
- $\frac{\left|\left|x_{k+1}-x_{k}\right|\right|}{\max \left\{1,\left|\left|x_{k}\right|\right|\right\}}<\epsilon$
- Same comments apply.

Steepest descent with exact line search for quadratic functions.

Goal: min. $f(x)=\frac{1}{2} x^{\top} Q x-b^{\top} x$, assume $Q y 0$.

- If Q has a negative eigenvalue, $f^{*}=-\infty$ (why?)
- If Q yo \Rightarrow unique global solution (why?)

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

Goal: Choose $\alpha_{k} \geqslant 0$ to minimize $f\left(x_{k+1}\right)$,
Let $g(\alpha):=f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)$

$$
=\frac{1}{2}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)^{\top} Q\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-b^{\top}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

$\circ g(\alpha)$ is quadratic and convex (why?)

$$
g(\alpha)=a \alpha^{2}+d \alpha+c \rightarrow \arg \min g(\alpha)=-\frac{d}{2 q}
$$

where $\quad a=\frac{1}{2} \nabla f^{\top}\left(x_{k}\right) Q \nabla f\left(x_{k}\right), d=\left(b^{\top}-x_{k}^{\top} Q\right) \nabla f\left(x_{k}\right)=-\nabla f^{\top}\left(x_{k}\right) \nabla f\left(x_{k}\right)$

$$
\Rightarrow \quad \alpha_{k}=\frac{\nabla f^{\top}\left(x_{k}\right) \nabla f\left(x_{k}\right)}{\nabla f^{\top}\left(x_{k}\right) Q \nabla f\left(x_{k}\right)}
$$

Overall Algorithm: $\quad \begin{aligned} & x_{k+1}=x_{k}-\left(\frac{\nabla f^{\top}\left(x_{k}\right) \nabla f\left(x_{k}\right)}{\nabla f^{\top}\left(x_{k}\right) Q \nabla f\left(x_{k}\right)}\right) \nabla f\left(x_{k}\right) \\ & \text { where } \nabla f\left(x_{k}\right)=Q x_{k}-b\end{aligned}$

Lec8p8, ORF363/COS323

Example.
$\min . f(x)=5 x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{2}-6 x_{1}-4 x_{2}+15$

Any stationary point must be the unique global minimizer (why?)

Let's try the steepest descent method: $d_{k}=-\nabla f\left(x_{k}\right)$
α_{k} : get from exact line search
$x_{0}=(0,10)^{T}$
Stopping criterion: $\|\nabla f(x)\|<10^{-6}$

Output:

K	x_{k}		$\nabla f\left(x_{k}\right)$		$\left\\|\nabla f\left(x_{k}\right)\right\\|$	α_{k}	$f\left(x_{k}\right)$
1.00000000000000				16.00000000000000		${ }^{0.008597728666997}$	
2.00000000000000	-2.923039454456893	8.624452021432051	-0.732586458840725	li.56746278085380	1.7725068242023932		
S.OOC000000000000000		${ }_{4}^{4.30620258979454416}$	2.251				
S.0.0000	${ }^{-}$				0.1268495517262910	0.085971788660497	
7.,00000000000000000				0.0046	\%.01090882937769894	0.0599717486650966	10.0008273320279
${ }^{\text {P10.00000000 }}$	-0.99998777334673	2919237	${ }^{\text {a }}$	-0.0037) 5 2685125	13888		10.000000280812026
12.000000000000		4.0000767598292956			(093728234775	-059727 7 7e6557213	10.000000000000 05352
						${ }^{-0.6}$	
14.000000000000000	151	587623959	29	0.00000282114731515	86	0.09578398900974771	10.000000000008070
${ }_{\text {15 }}^{15.00000000} 1$	-1.					570	10.000000000006079
		4.000004117245219		-	0.0		10.00000000000 3 S46
		4.000033335406067					
${ }_{\text {120 }}^{19.000000000000000000000000000 ~}$	\%ses	4.00000	-0.00000 122585236	0.00	O1221020	5468	10.000000000001959 10.0000000002959
${ }^{212.0000000000000000 ~}$	-1.00000012589892323	4.000003252979595959		0.00000149162121026	0.0000015655809997		10.00000000000292125
22.000000000000000000	1.000	4.0					
${ }_{25,000000000000000000}^{24.0}$	${ }^{8828}$	(0023293938	(00003266212766	${ }^{-0.00000011356736} 0.000086834999$	0.000003298969838		\%
					\downarrow		\downarrow
					< ϵ		$f\left(x^{*}\right)$

Theorem. ("the zig-zag theorem") Let $\left\{x_{k}\right\}$ be the sequence generated by the steepest descent algorithm. Then, for all k, $x_{k+1}-x_{k}$ is orthogonal to $x_{k+2}-x_{k+1}$.

Proof. Our iterations read:

$$
\begin{aligned}
& x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \\
& x_{k+2}=x_{k+1}-\alpha_{k+1} \nabla f\left(x_{k+1}\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\langle x_{k+1}-x_{k}, x_{k+2}-x_{k+1}\right\rangle=\alpha_{k} \alpha_{k+1}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)\right\rangle \tag{1}
\end{equation*}
$$

Recall that α_{k} minimizes $\varphi_{k}(\alpha):=f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)$.

$$
\begin{equation*}
\Rightarrow \frac{d \varphi_{k}}{d \alpha}\left(\alpha_{k}\right)=0 \tag{2}
\end{equation*}
$$

But by chain rule:

$$
\begin{aligned}
\frac{d \varphi_{k}}{d \alpha}\left(\alpha_{k}\right) & =\left\langle-\nabla f\left(x_{k}\right), \nabla f\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)\right\rangle \\
& =\left\langle-\nabla f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)\right\rangle \\
(1)+(2)+(3) & \Rightarrow\left\langle x_{k+1}-x_{k}, x_{k+2}-x_{k+1}\right\rangle=0 .
\end{aligned}
$$

Convergence

The descent algorithms discussed so far typically come with proofs of convergence to a stationary point (i.e., a point where the gradient of the objective function is zero). We state a couple such theorems here; the proofs are a bit tedious, and I won't require you to know them. But those interested can look some of these proofs up in [CZ13].

Theorem. (See [Bert03].) Consider the sequence $\left\{x_{k}\right\}$ generated by any descent algorithm with

$$
d_{k}=-B_{k} \nabla f\left(x_{k}\right),
$$

such that eigenvalues of B_{k} are larger than some $m>0$, for all k, and the step size is chosen according to the minimization rule, or the limited minimization rule, (or the Armijo rule). Then, every limit point of $\left\{x_{k}\right\}$ is a stationary point.

Remark1: We say $x \in \mathbb{R}^{n}$ is a limit point of a sequence $\left\{x_{k}\right\}$, if there exists a subsequence of $\left\{x_{k}\right\}$ that converges to x.

Remark2: A stationary point may not be a local min! It may be a saddle point or even a local max! But there is a result called the "capture theorem" (see [Bert03]) which informally states that isolated local minima tend to attract gradient methods.

Question to think about: How would you check if the point that you end up with (assuming it is stationary) is actually a local minimum?

Theorem. (See [CZ13].) Consider a quadratic function $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$, with $Q>0$, and let x_{*} be the minimizer.

- For the steepest descent algorithm with exact line search, we have $x_{k} \rightarrow x_{*}$ starting from any x_{0}. (This is called global convergence.)
- For the steepest descent algorithm with a fixed step size, we have global convergence if and only if the step size α satisfies:

$$
0<\alpha<\frac{2}{\lambda_{\max }(Q)},
$$

where $\lambda_{\max }(Q)$ denotes the maximum eigenvalue of Q.

Lyapunov functions and proofs of convergence

- A very powerful technique for proving convergence of iterative algorithms is based on the idea of a Lyapunov function.
- This is a technique from the theory of dynamical systems and control. Roughly speaking, it is used to decide whether all trajectories of a dynamical system converge to a given point.
- The idea is due to the Russian mathematician, Aleksandr

Lyapunov
(1857-1918)

- We will typically try to prove that all trajectories of a dynamical system go to the origin; i.e., we want to show that for all $x_{0} \in \mathbb{R}^{n}, x_{k} \rightarrow 0$, as $k \rightarrow \infty$.
- In control theory, the vector x_{k} can denote the deviation of an airplane wing angles from its stable flying position at time k.
- When proving convergence of iterative algorithms, x_{k} can denote the deviation of the k-th point that our algorithm produces from the optimal solution x_{*}. (A better notation is perhaps e_{k}; for error at step k.)

Theorem. ("Lyapunov's global stability theorem in discrete time")
Consider a dynamical system

$$
x_{k+1}=g\left(x_{k}\right)
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuous map satisfying $g(0)=0$.
If there exists a continuous function $V: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (called "'Lyapunov function")
that satisfies: $\cdot V(0)=0, V(x)>0 \forall x \neq 0, \quad$ (positivity)

- $V(x) \rightarrow \infty$ as $\|x\| \rightarrow \infty, \quad$ (radial unboundedness)
- $V(g(x))<V(x) \quad \forall x \neq 0$,
(strict decrease)
then, $\forall x_{0} \in \mathbb{R}^{n}$ we have $x_{k} \rightarrow 0$ as $K \rightarrow \infty$.

Proof.
The decrease assumption of the theorem implies that the function V monotonically decreases along all trajectories of our dy namical system:

Take any x_{0} and consider the sequence $\left\{V\left(x_{k}\right)\right\}$ of the function \checkmark evaluated on the trajectory starting at x_{0}.
Since $\left\{V\left(x_{k}\right)\right\}$ is positive and lower bounded, it converges to Some $c \geqslant 0$.

If $c=0, V\left(x_{k}\right) \rightarrow 0$ implies that $x_{k} \rightarrow 0$ (because V is only zero at zero) and we would be done.

We claim that we cannot have $c>0$. Indeed if $c>0$, then the trajectory starting at x_{0} would forever be traversing in the compact set

$$
\begin{aligned}
& S:=\{x \mid V(x) \geqslant c\} \cap\left\{x \mid V(x) \leqslant V\left(x_{0}\right)\right\} . \\
& \left\{V(x)=V\left(x_{0}\right)\right\}
\end{aligned}
$$

Let $\delta:=\min _{x \in S}|V(g(x))-V(x)|$. Since the objective is continuous and
positive and since S is compact, δ exists and is positive. Therefore, in each iteration $V\left(x_{k}\right)$ decreases by at least δ.
This, however, implies that $\left\{V\left(x_{k}\right)\right\} \rightarrow-\infty$ which contradicts nonnegativity of V.

- As an application, we show how Lyapunov's theorem can be used to prove that our steepest descent algorithm with exact line search is globally convergent.

Theorem. Let $f(x)=\frac{1}{2} x^{\top} Q x-b^{\top} x$, with $Q y_{0}$. Then, $\forall x_{0} \in \mathbb{R}^{n}$, the iterates x_{k} of the steepest descent algorithm converge to the unique global minimum x^{*} of f.

Proof. Let $e_{k}:=x_{k}-x^{*} \quad$ (error at step k).
Consider the $\mathcal{L y}_{9}$ punor function

$$
V(e)=f\left(e+x^{*}\right)-f\left(x^{*}\right)
$$

Then, $V(0)=f\left(x^{*}\right)-f\left(x^{*}\right)=0$,

$$
\begin{aligned}
& V(e)>0 \quad \forall e \neq 0, \quad\left(b / c x^{*} \text { is the unique global min }\right) \\
& \begin{aligned}
& V\left(e_{k+1}\right)=f\left(x_{k+1}-x^{+}+x^{*}\right)-f\left(x^{+}\right)<f\left(x_{k}-x^{*}+x^{*}\right)-f\left(x^{*}\right) \\
&=V\left(e_{k}\right), \forall e_{k} \neq 0
\end{aligned}
\end{aligned}
$$

(Recall our algorithm had a strict decrease guarantee).
Lyupunov's

$$
\forall e_{0}, e_{k} \rightarrow 0 \text { as } k \rightarrow \infty \Rightarrow \forall x_{0}, x_{k} \rightarrow x^{*} \text { as } k \rightarrow \infty
$$ theorem

Rates of convergence

- Once we know an iterative algorithm converges, the next question is how fast?
- If $\left|f\left(x_{k}\right)-f\left(x_{*}\right)\right| \approx \frac{1}{\log (\log (k))}$, then sure, this difference will go to zero eventually. But to see it go even below 0.1, you need to write a letter to your grandson (to tell him to write a letter to his grandson, etc.)
- Let us formalize this.

Definition (see [Tit13]). Let $\left\{x_{k}\right\}$ converge to x_{*}. We say the convergence is of order $p(\geq 1)$ and with factor $\gamma(>0)$, if $\exists k_{0}$ such that $\forall k \geq k_{0}$,

$$
\left|\left|x_{k+1}-x_{*}\left\|\leq \gamma| | x_{k}-x_{*}\right\|^{p} .\right.\right.
$$

Make sure the following comments make sense:

- The larger the power p, the faster the convergence.
- For the same p, the smaller γ, the faster the convergence.
- If $\left\{x_{k}\right\}$ converges with order p, it also converges with order p^{\prime} for any $p^{\prime} \leq p$.
- If $\left\{x_{k}\right\}$ converges with order p and factor γ, it also converges with order p^{\prime} and factor γ^{\prime}, for any $\gamma^{\prime} \geq \gamma$.
- So we typically look for the largest p and the smallest γ for which the inequality holds.

Some more terminology:

- If $p=1$, and $\gamma<1$, we say convegence is linear.
- If $p=1$, and $\gamma=1$, we say convegence is sublinear.
- If $p>1$, we say that convergence is superlinear. (This is slightly stronger than the usual definition of superlinear convergence, but we will go with it.)
- If $p=2$, we say that convergence is quadratic.
- Why called linear convergence?

For k large enough, we have $\left|\left|x_{k+i}-x_{*}\left\|\leq \gamma^{i}| | x_{k}-x_{*}\right\|\right.\right.$. So $\log \left|\left|x_{k+i}-x_{*}\right|\right| \leq i \log \gamma+\log \left\|x_{k}-x_{*}\right\|$. Hence, $-\log | | x_{k+i}-x_{*}| |$, which is a measure of the number of correct significant digits in x_{k+i}, grows linearly with i.

$$
-\log _{10} 0.1=1,-\log _{10} 0.01=2,-\log _{10} 0.001=3 \text {, etc. }
$$

Lec8p15, ORF363/COS323

Examples:

- $\left\|x_{k}-x_{*}\right\| \approx \frac{1}{k} \quad$ sublinear convergence.
- $\left|\left|x_{k}-x_{*}\right|\right| \approx a^{k}, 0<a<1 \quad$ linear convergence.
- $\left\|x_{k}-x_{*} \mid\right\| \approx a^{2^{k}}, 0<a<1 \quad$ quadratic convergence. (Verify!)
- Quadratic convergence is super fast! Number of correct significant digit doubles in each iteration (why?).

Convergence rate of steepest descent for quadratic functions

Theorem. Consider a quadratic function $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$, with $Q>0$. Let m and M respectively denote the smallest and largest eigenvalue of Q. Then the sequence $\left\{f\left(x_{k}\right)\right\}$ generated by the steepest descent algorithm with exact line search converges to the unique global minimum of f, where the convergence is linear (order 1), and with factor $\left(\frac{M-m}{M+m}\right)^{2}$.

- $\kappa:=\frac{M}{m}$ is called the condition number of the matrix Q. (Note $\kappa \geq 1$.)
- Very important quantity in numerical analysis
- Note: $\left(\frac{M-m}{M+m}\right)^{2}=\left(\frac{\kappa-1}{\kappa+1}\right)^{2}$
- We want κ small for fast convergence (close to one).

From [Bert09]:

κ	$\left(\frac{M-m}{M+m}\right)^{2}$	\# of iterations needed to reduce optimality gap by 0.1
1.1	0.0023	1
3	0.25	2
10	0.67	6
100	0.96	58
200	0.98	116
400	0.99	231

Analysis first done by Kantorovich (winner of 1975 Nobel Prize in Economics).

USSR
CONFIDENTIAL
Leonid Vital'yevich KANTOROVICH
Head, Problems Laboratory of Economic-Mathematical Methods and Operations Research, Institute of Management of the National Economy

An internationally recognized creative genius in the fields of mathematies and the application of electronic computers to economic affairs, Academician Leonid Kantorovich (pronounced kahntuhROHvich) has worked at the Institute of Management of the National Economy since 1971. He has been involved in advanced mathematical research since
the age of 15; in 1939 he invented
 linear programming, one of the most significant contributions to economic management in the twentieth century. Kantorovich has spent most of his adult life battling to win acceptance for his revolutionary concept from Soviet academic and economic bureaucracies; the value of linear programming to Soviet economie practices was not really recognized by his country's authorities until 1965, when Kantorovich was awarded a Lenin Prize for his work. International recognition came in October 1975, when the mathematician was awarded the Nobel Prize for Economics jointly with T. C. Koopmans, a Dutch-born American economist who discovered the same concept independently a few years after Kantorovich.

In addition to his mathematical research, Kantorovich has been directly involved in developing improved designs for high-speed digital computers, an activity apparently motivated by the Soviet Union's need for improved computers in solving large economic planning problems.

The Institute of Management of the National Economy

The Institute of Management of the National Economy was established to train high-level economic and industrial administrators in modern methods of management, production organization and the use of cconomicmathematical methods and computers in planning. When the institute opened in early 1971. Premier Aleksey Kosygin and Party Sectetary Andrey Kirilenko attended the ceremonies, thus suggesting the importance that the Sowiet Government and Party attach to the application of modern management techniques to Soviet industrial administration and economic planning. CONFIDENTIAL

CR 77.10705

Lec8p17, ORF363/COS323

Large κ :

Image credit: [Bert09]

Small κ :

- What if the function f we are minimizing is not quadratic?
- Denote the optimal solution by x_{*}
- Locally the function is well approximated by a quadratic: $\frac{1}{2} \mathrm{x}^{\mathrm{T}} \nabla^{2} f\left(x_{*}\right) x$ (plus linear and constant terms)
- Hence $\kappa\left(\nabla^{2} f\left(x_{*}\right)\right)$ (i.e., the condition number of the Hessian at x_{*}) dictates convergence rate

We will see in future lectures how we can achieve a better than linear rate of convergence by using the Newton method.

Lec8p18, ORF363/COS323

- The content on these last two pages has been added in response to a question raised by a student on Piazza in Fall 2015.
- How to find the order and factor of convergence?

Recall the definition: $\left\{x_{k}\right\}$ converges to x_{\nrightarrow} with order p and factor γ if $\exists K_{0}$ such that $\forall K \geqslant K_{0}$ we have

$$
\left\|x_{k+1}-x_{*}\right\| \leqslant \gamma\left\|x_{k}-x_{*}\right\|^{p} .
$$

- We want the largest p for which the above inequality holds for k large. o For that p, we want the smallest γ that makes the inequality hold.
- Here is a simple way to find p and γ :

1) Take the following limit: $\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}-x_{k}\right\|^{p}}$
2) The order p is the largest number for which this limit is finite.
3) When you plug in that largest p, then the factor γ is just the value of the limit.
o Here are three examples.
(1)

$$
\begin{aligned}
& \left\{\frac{1}{k}\right\} \quad\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}, x_{*}=0 \\
& \lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x+\right\|}{\left\|x_{k}-x_{*}\right\|^{p}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{k+1}}{\frac{1}{k^{p}}}=\lim _{k \rightarrow \infty} \frac{k^{p}}{k+1}= \begin{cases}\infty, & \text { if } p>1 \\
1, & \text { if } p=1\end{cases} \\
& \Rightarrow p=1, \quad \gamma=1 .
\end{aligned}
$$

(2) $\left\{a^{k}\right\}$ for $0<a<1$. Say $a=\frac{1}{2}:\left\{\frac{1}{2^{k}}\right\} \quad\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots\right\}, x_{*}=0$.

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{+}\right\|}{\left\|x_{k}-x_{+}\right\|^{p}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{2^{k+1}}}{\left(\frac{1}{2^{k}}\right)^{p}}=\lim _{k \rightarrow \infty} \frac{2^{k p}}{2 \cdot 2^{k}}= \begin{cases}\infty, & \text { if } p>1 \\
\frac{1}{2}, & \text { if } p=1\end{cases} \\
\Rightarrow p=1, \quad \gamma=\frac{1}{2} .
\end{gathered}
$$

$$
\begin{gathered}
\text { (3) }\left\{\frac{1}{2^{2^{K}}}\right\} \quad\left\{\frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \frac{1}{65536}, \cdots\right\}, \quad x_{+}=0 \\
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{*}\right\|}{\left\|x_{k-} x_{*}\right\|^{p}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{2^{2^{k+1}}}}{2^{p \cdot 2^{k}}}=\lim _{k \rightarrow \infty} \frac{2^{p \cdot 2^{k}}}{2^{2 \cdot 2^{k}}}= \begin{cases}\infty, & \text { if } p>2 \\
1, & \text { if } p=2 \\
\Rightarrow p=2, \quad \gamma=1 .\end{cases}
\end{gathered}
$$

Notes:

- The relevant chapter of [CZ13] for this lecture is Chapter 8. You can have a look at some examples that are worked out there in detail, but if you understand the notes well, that should be enough.

References:

- [Bert09] D. Bertsimas. Lecture notes on optimization methods (6.255). MIT OpenCourseWare, 2009.
- [Bert03] D.P. Bertsekas. Nonlinear Programming. Second edition. Athena Scientific, 2003.
- [CZ13] E.K.P. Chong and S.H. Zak. An Introduction to Optimization. Fourth edition. Wiley, 2013.
- [Tit13] A.L. Tits. Lecture notes on optimal control. University of Maryland, 2013.

