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Fractional flow formulations of the multi-phase flow equations exhibit several
attractive attributes for numerical simulations. The governing equations are a
saturation equation having an advection diffusion form, for which characteristic
methods are suited, and a global pressure equation whose form is elliptic. The
fractional flow approach to the governing equations is compared with other
approaches and the implication of equation form for numerical methods discussed.
The fractional flow equations are solved with a modified method of characteristics for
the saturation equation and a finite element method for the pressure equation. An
iterative algorithm for determination of the general boundary conditions is
implemented. Comparisons are made with a numerical method based on the two-
pressure formulation of the governing equations. While the fractional flow approach is
attractive for model problems, the performance of numerical methods based on these
equations is relatively poor when the method is applied to general boundary
conditions. We expect similar difficulties with the fractional flow approach for more
general problems involving heterogenous material properties and multiple spatial
dimensions.q 1999 Elsevier Science Ltd. All rights reserved.
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1 INTRODUCTION

Numerical simulation of multi-phase flow in complex
porous media remains one of the outstanding difficulties
in the field of computational hydrology. The reasons for
this difficulty include the highly nonlinear nature of the
coupled partial differential equations that govern the
system, and the lack of reliable constitutive data for these
problems. This difficulty has led many researchers to
explore alternative forms of the governing equations, and
to seek specialized numerical algorithms that can improve
the computational performance of a simulator.

Historically, there have been two main approaches to
modeling multi-phase flow, arising in the disciplines of
hydrology and petroleum engineering. The first is based
on individual balance equations for each of the fluids,
while the second involves manipulation and combination
of those balance equations into modified forms, with

concomitant introduction of ancillary functions such as the
fractional flow function. The latter approach derives almost
exclusively from the petroleum literature. In 1973, Morel-
Seytoux1 wrote a classic paper in which he drew together
much of the previous research and explored unifying themes
between the disciplines. He showed that the flow of air and
water in unsaturated soils can be viewed as a multi-phase
system, and showed how the experience of petroleum
engineering could aid in understanding of multi-phase
flow problems in hydrology. Since then many developments
have occurred, particularly in the area of numerical methods
for the solution of the multi-phase flow equations.

Numerical methods are very sensitive to the choice of
form of the governing equation. Morel-Seytoux1 showed
that there are several ways to write the governing equations
of fluid flow, and that each method offered its own insights
into the solution. More recently, Ewing2 has also examined
recent developments in the choice of equation form for
multi-phase flow. In the light of the new and continuing
developments in numerical methods for the solution of the
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multi-phase flow equations, it is worthwhile revisiting the
question of the form of the governing equations and explor-
ing the implications of this equation form for a numerical
method based on it.

Two approaches to writing the governing equations will
be examined here: the two-pressure approach; and the frac-
tional flow approach. The two-pressure approach to the
governing equations has been widely used in the hydrologic
literature. In this approach, the governing equations are
written in terms of the pressures in each of the two phases
through a straightforward substitution of Darcy’s equation
into the mass balance equations for each phase. This
approach has been adopted by a number of authors includ-
ing: Pinder and Abriola3 who employed a finite difference
approximation of the governing equations to describe non-
aqueous phase liquid flow in the saturated zone; Sleep and
Sykes4, and Kaluarachchi and Parker5, who used a finite-
element solver with a Newton–Raphson scheme to linearize
the equations; Celia and Binning6–8 who employed a finite
element discretization with fully implicit time stepping and
Picard iteration to solve the air and water flow equations;
and Schrefler and Xiaoyong9, who solved the consolidation
problem in the unsaturated zone with a finite element
discretization of the governing equations.

The fractional flow approach originated in the petroleum
engineering literature, and employs the saturation of one of
the phases and a pressure as the independent variables. The
fractional flow approach treats the multi-phase flow
problem as a total fluid flow of a single mixed fluid, and
then describes the individual phases as fractions of the total
flow. This approach leads to two equations: the pressure
equation; and the saturation equation. The pressure equation
is an elliptic equation that is solved for the pressures and the
total flux. The saturation equation is written in advection–
diffusion form with a hyperbolic characteristic that
describes the speed of an infiltrating front. The advective
term is nonlinear and usually leads to shock formations. Its
general behavior may be exploited to design a Lagrangian
numerical algorithm that allows for relatively large time steps
by projecting the solution forward along the characteristics.

In the absence of capillarity and gravity, the saturation
equation may be solved analytically; this approach dates to
Buckley and Leverett10. Interest in the saturation equation
and its analytic solution continues today. For example,
Sander et al.11 have found an analytic solution for a
restricted class of functional forms. Numerical solutions
have been considered more recently. Morel-Seytoux and
Billica12,13, and Wangen14 used finite difference methods,
and Chen et al.15 employed finite elements and mixed
methods to solve the fractional flow equation for one-
dimensional systems with incompressible fluids, while a
general characteristic-based approach was presented by
Douglas16 and Espedal and Ewing17. The computational
work of Dahle et al.18,19, Celia and Binning20, and Langlo
and Espedal21 demonstrated the computational benefits of
the characteristic-based method, with the paper by Langlo
and Espedal22 presenting simulation results in two

dimensions with variability in the intrinsic permeability of
the medium. Hansen et al.23 considered systematic treat-
ment of the gravity terms in the fractional flow formulation.
The problem of boundary condition implementation has
also been considered recently by Chen et al.24.

The pressure equation has been solved by a variety of
methods. In one dimension, for incompressible flow the
total velocity is a constant in space that depends only on
the time varying boundary conditions, and so the pressure
equation may be solved analytically1. In higher dimensions,
numerical methods must be employed. Ewing25 reviews
numerical techniques for solution of the pressure equation
and demonstrates the importance of accurate determination
of velocities. Variations in material properties, particularly
the permeability, can cause sharp changes in pressures.
Large errors can result if these pressures are differentiated
to obtain the necessary velocities. Ewing and
Heinemann26,27 developed a mixed method for solution of
the pressure equation, with the aim of accurate determi-
nation of velocities. They showed that mixed methods
were far superior to conventional approaches when applied
to standard five-spot problems. Mixed methods are the
state-of-the-art at the current time.

Other approaches to the numerical solution of the frac-
tional flow equations include the work of Guarnaccia and
Pinder,28 who employed the fractional flow formulation
with the sequential solution method of Spillette et al.29 to
decouple the equations and a collocation method to dis-
cretize the equations to solve the problem of NAPL
migration in the water and gas phases.

While the fractional flow and two-pressure approaches
have been studied by various researchers, other methods
have also been developed to solve multi-phase flow
equations. One of the more important variants on these
methods is the pressure–saturation approach. Since the
saturation is a function of the capillary pressure or differ-
ence between phase pressures, it is possible to reformulate
the governing equations in terms of a saturation and one of
the phase pressures. The second phase pressure can then be
removed from the equations by expressing it in terms of the
saturation and the pressure in the other phase. The attraction
of this approach is that it is very well suited to problems
where there may be phase disappearance. If the saturation in
one of the phases is zero, the pressure in that phase is poorly
defined. A standard two-pressure formulation will not be
able to handle this problem. The pressure saturation
approach has been employed by Faust,30 Kueper and
Frind,31 Moridis and Reddell,32 and Pruess.33 Forsyth34

and Unger et al.35 have developed compositional simulators
to solve two- and three-phase multi-component systems,
based on the P–S formulation and finite-volume approxima-
tions and nonlinear flux limiters. Abriola and Rathfelder36

implement and review both the two-pressure and the
pressure–saturation formulations, examining the mass bal-
ance properties of each formulation. They show that, if the
coefficients and initial conditions are properly treated,
accurate solutions can be obtained with both formulations.
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Since the governing equations for multi-phase flow are
highly nonlinear, numerical techniques must in general be
employed for their solution. There are many choices of
numerical method, with temporal discretization being a
topic of great interest in the literature. In hydrologic appli-
cations the predominant approach has been to employ fully
implicit schemes. Haverkamp et al.37 compared temporal
discretizations of Richards’ equation, and showed that
because of the stability restrictions on explicit solvers,
implicit solvers provide solutions five to ten times faster
than explicit solvers. The better performance of the implicit
solvers occurs, despite the need for iterations to deal with
the nonlinearities. Multi-phase flow simulators in hydrology
have similar behavior to that observed by Haverkamp, and
so fully-implicit time stepping is the dominant approach in
hydrology and has been adopted by many authors36,38.

The petroleum engineering literature contrasts with the
hydrology literature with the predominant approach being
explicit or semi-implicit. The most common approach
employed38 is the IMPES scheme (implicit pressure,
explicit saturation). This scheme has been favored because
it decouples the pressure and saturation equations, thus
reducing the computational effort required for their solution.
The IMPES scheme has been used by Sleep and Sykes39

who used it to simulate the behavior of an air–water system.
Sleep and Sykes compared the efficiency of an IMPES
scheme with a fully implicit scheme. They showed that
the IMPES was more restricted in time step size than the
implicit scheme. The difference in time step size made up
for any speed the IMPES gained by decoupling the
equations. However, the IMPES scheme requires less
memory, which may be a consideration for larger problems.
A new development in hydrology is the use of an adaptive
implicit scheme, which was first employed in the petroleum
literature. A fully implicit formulation is used in regions of
sharp changes of independent variables and the explicit
scheme used elsewhere. An example is the work of
Reeves and Abriola.40

In this paper, the equations that describe two-phase fluid
flow will be reviewed. The equations will be presented in a
two-pressure, or standard mass balance, form that is com-
monly used by hydrologists, as well as a modified form that
we will refer to as the fractional flow or global pressure–
saturation form that has been developed by petroleum
engineers. Computations will be used to demonstrate the
differences in performance between numerical approxima-
tions of the different equation forms, and the implications
for the future multi-phase modeling efforts discussed. The
paper will not discuss the various choices of temporal dis-
cretization, as these are examined in other works. A fully
implicit time discretization will be adopted for all numerical
schemes, and the focus of the paper will be on the form of
the governing equation and the implications of that form on
the performance of the numerical method.

The paper will also consider questions related to practical
implementation of the fractional flow approach to multi-
phase flow simulation. In particular, we will revisit the

question of general boundary conditions, consider the impli-
cations of general material heterogeneities, speculate on the
potential difficulties with multiple infiltration and drainage
fronts, and consider some general questions related to fluid
compressibility and gravity terms.

2 GOVERNING EQUATIONS

In this presentation, we consider balance and constitutive
equations applicable to each fluid phase; we will not con-
sider modeling of individual components or processes of
interphase transfer. For each fluid phasea, the mass balance
equation may be written as

](raJSa)
]t

þ =·(raqa) ¼ 0 (1)

wherera is the density of fluida, J is porosity,Sa is fluid
saturation, andqa is the volumetric flux vector for phasea.
For a two-fluid-phase system, eqn (1) is written for each
fluid phase, and is augmented by constitutive relationships
that relate saturations to capillary pressure (eqn (2)),
specify a closure condition on saturations (eqn (3)), and
relate volumetric fluxes to pressure gradients via a multi-
phase version of the Darcy equation (eqn (4)) which
includes relative permeabilities (eqn (5)),

Sa ¼ Sa(pc) ¼ Sa(pnw ¹ pw) (2)

Sw þ Snw ¼ 1 (3)

qa ¼ ¹
kkra

ma

·(=pa ¹ rag) (4)

kra ¼ kra(Sa) (5)

wherepc ; pw ¹ pnw is the capillary pressure,pa denotes
the individual phase pressures withw andnw denoting the
wetting and non-wetting phases respectively,k is the intrin-
sic permeability tensor,ma is the viscosity in phasea, g is
the gravitational vector (the vertical coordinate is oriented
positive down), andkra is the relative permeability to phase
a which is a nonlinear function of saturation.

If fluid or matrix compressibility is considered, then
appropriate compressibility coefficients also need to be
defined. For the purposes of this paper all fluids, as well
as the solid matrix, will be considered to be incompressible.

Given this set of equations, boundary and initial condi-
tions must be supplied to complete the mathematical
description. These are usually given as known pressures,
saturations or fluxes in each of the fluid phases. Many dif-
ferent combinations of these boundary conditions occur in
practical problems. An important criteria for acceptance of a
numerical method is that it must be able to solve the govern-
ing equations for the wide variety of possible boundary
conditions.

The governing equations, eqns (1)–(5) are a set of
coupled, nonlinear partial differential equations. The basic
equations can be mathematically manipulated into several
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alternate forms with various choices of primary dependent
variables. The choice of equation form and primary solution
variables have considerable implications for the numerical
method used to solve the equations. Two possible formula-
tions will be considered here and the benefits of each
discussed. In the two-pressure formulation, the pressures
in each phase are chosen as independent variables and the
governing equations are parabolic in nature. The other
formulation employed is the fractional flow approach
where a saturation and a ‘global pressure’ are chosen as
independent variables. In this case, the governing equation
for saturation is parabolic (hyperbolic in the case of zero
capillarity) and the equation for pressure elliptic.

2.1 Two-pressure approach

The conventional approach to solving the governing
equations, eqns (1)–(5) in hydrology involves a straight-
forward substitution of the Darcy equation (eqn (4)) into
the mass balance equation (eqn (1)) to eliminate the fluxes
from the equations. The primary unknowns are chosen to be
the two phase pressures,pw andpnw. The saturation in the
non-wetting phase is eliminated using eqn (3).

J
]Sw

]t
¹ =·

kkrw

mw
·(=pw ¹ rwg)

� �
¼ 0 (6)

¹J
]Sw

]t
¹ =·

kkrnw

mnw
·(=pnw ¹ rnwg)

� �
¼ 0 (7)

The equations are coupled and nonlinear, and are closed by
specification of the pressure–saturation relation (eqn (2))
and relative permeability relation (eqn (5)).

2.2 Fractional flow approach

The fractional flow approach is again based on a set of two
nonlinear equations, each of which has its origin in eqns
(1)–(5), but with a different choice of dependent variables.
Definition of these variables requires extensive manipula-
tion and rearrangement of the two-phase equations. For
simplicity of presentation, consider the case of constant
fluid densities and constant porosity. Then the individual
phase mass-balance equations (eqn (1)) sum to form

=·(qw þ qnw) ¼ =·qT ¼ 0 (8)

where qT, called the total flux, is the sum of the phase-
volumetric fluxes. In one dimension this equation has the
particularly simple solution that the total flux is a constant
in space determined by the boundary conditions. A new
independent variable is now introduced, called the global
pressure, with the aim of expressing the total flux solely in
terms of the gradient of the global pressure and not in terms
of the individual phase pressures. Following Chavent and
Jaffré,41 a global pressure is defined by

P¼
1
2
(pw þ pa) ¹

∫Sw

Sc

fw ¹
1
2

� �
dpc

dSw
dSw (9)

where Pc(Sc) ¼ 0, and fw is the fractional flow function,
defined by

fw(Sw) ;
krw =mw

(krw=mw) þ (krnw=mnw)
(10)

Given these definitions, the total velocity may be related to
the total pressure.41 This expression for the total velocity
may then be substituted into eqn (8) to obtain the nonlinear
elliptic partial differential equation that governs the
evolution of the total pressureP,

=·L·=P¹ =·(LG) ¼ 0 (11)

where

L(Sw) ; k
krw

mw
þ

krnw

mnw

� �
is the total mobility coefficient, and

G(Sw) ; (fwrw þ (1¹ fw)rnw)g

is a nonlinear function of saturation that accounts for
gravitational effects. Eqn (11) forms the first of the two
governing equations in the fractional flow approach.

The second equation used in the fractional-flow equation
set is derived from manipulation of eqn (1) witha ¼ w, such
that the primary dependent variable is wetting-phase satura-
tion Sw. Because eqn (1) contains an individual phase flux
that is dependent on an individual phase pressure, an
equation is found relating the individual phase flux,qw to
the total flux

qw ¼ Fw(Sw,P) ¼ fw(Sw)

3 qT þ
kkrnw

mnw

dpc

dSw
=Sw þ (rw ¹ rnw)g

� �� �
ð12Þ

In eqn (12),Fw is the fractional flow function incorporating
both gravity and capillarity. In one dimension, substitution
of eqn (12) into eqn (1) witha ¼ w, and assuming incompres-
sible flow, results in the following saturation equation.1,41

J
]Sw

]t
þ Fw9(Sw)

]Sw

]z
¹

]

]z
D(Sw)

]Sw

]z

� �
¼ 0 (13)

where

Fw(Sw) ¼ fw qT þ
kkrnw

mnw
(rw ¹ rnw)g

� �
(14)

and

D(Sw) ¼ ¹ fw
kkrnw

mnw

dpc

dSw
(15)

The coefficient D(Sw) is the capillary diffusion term, while
Fw is the fractional flow, containingfw as well as the gravity
drive, and is defined so thatqw ¼ Fw(Sw,P) in the absence of
capillary forces. The definition Fw degenerates intoqTfw in
the absence of gravity. Note that the definition of Fw in eqn
(14) differs slightly from that of Chavent and Jaffre´41 and
Morel Seytoux,1 whose definition is divided by the total
flux qT. The equation form presented here follows the
approach of Hansen et al.,23 who included the multiplicand
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qT in Fw, in order that it remained well defined in the case
of zero total flux.

When eqns (11) and (13) are supplemented with appro-
priate boundary conditions, they may be solved for the
unknowns P and Sw. Implementation of boundary con-
ditions is discussed below. The equations are coupled
through the dependence of the nonlinear coefficientsL

and G in the pressure equation on the saturationSw and
through the dependence of the total velocityqT appearing
in the saturation equation on the global pressureP. Note that
the definition of global pressure means that the pressure and
saturation equations are only loosely coupled. Other defini-
tions of pressure and saturation will increase the coupling
between the equations. The other advantage of the choice of
global pressure and saturation as independent variables is
that these variables are smoother than the individual phase
pressures, and so the performance of numerical methods
based on these equations should in principle be better than
solvers employing phase pressures as the independent
variables.2

In an oil–water system, with typical relative permeability
functions given by18,42

krw ¼ S3
w (16)

krnw ¼ (1¹ Sw)3 (17)

the fractional flow function has characteristic S-shape, in
the absence of gravity and assuming equal fluid viscosities.
Fig. 1 shows both the relative permeability functions and
the fractional flow functionf. This S-shaped fractional flow
function leads to solutions that combine a shock front with
a rarefaction wave when gravity is absent; this is the
classical Buckley–Leverett solution. When capillary diffu-
sion is considered, the front exhibits some spreading, but
this is often relatively minor. Fig. 2 shows the Buckley–
Leverett solution, together with the full solution of the
saturation equation with permeabilities given by eqns (16)
and (17) and D(Sw) ¼ 0.04«Sw(1 ¹ Sw) with « ¼ 0.01 (See
Dahle18 for details of these functional forms). In either
case, the frontal speed may be estimated from the classic
theory of hyperbolic equations.

For an air–water system the fractional flow and capillary
diffusion functions are quite different from the oil–water
case, because of the much higher viscosity difference
between fluids. For air and watermw ¼ 0.001 N s m¹2 and
ma ¼ 1.83 3 10¹5 N s m¹2 at 208C, leading to a mobility
ratio of 54.6, as opposed to the oil–water system above,
which was modeled with a mobility ratio of 1. As pointed
out by Morel Seytoux,1 this viscosity contrast causes both
curves to shift significantly toward the higher water
saturations, greatly diminishing the rarefaction wave and
expanding the shock range. As an example, the relative
permeability functional forms determined experimentally
by Touma and Vauclin43 are used to derive the fractional
flow and capillary diffusion functions. The appropriate
functional forms, determined experimentally by
Touma and Vauclin, are as follows: the capillary

Fig. 1. Functional forms of Young42 and Dahle et al.18 for an oil–
water system. (a) Relative permeability curves. (b) Fractional flow
function. The slope of the Welge49 tangent line drawn gives the
speed of shock fronts formed in the solution. (c) Approximate

capillary diffusion function with« ¼ 0.01.
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pressure–saturation relationship, obtained by fitting a van
Genuchten44 form to the data, is

Sw ¼
Sws¹ Swr�����1þ a

pc

rowg

� �n
�����
1¹

1
n

þ Swr

whereSws ¼ 0.843;Swr ¼ 0.0716;a ¼ 0.044 cm¹1; n ¼ 2.2
androw is the density of water at standard temperature and
pressure. For the hydraulic conductivities, Touma and
Vauclin fitted a polynomial to experimental observations
with the results:

kw ¼
Aw

Kws
(JSw)Bw

kra ¼
Aa

Aa þ
pc

rowg

� �Ba

with Aw ¼ 18 130 cm h¹1; Bw ¼ 6.07; the porosityJ ¼ 0.37;
the saturated conductivity of waterKws ¼ 15.40 cm h¹1;
Aa ¼ 3.86 3 10¹5; and the saturated conductivity of air
is Kas ¼ 2800 cm h¹1. The air and water functional forms
are shown in Fig. 3. The figure is plotted using the normal-
ized water saturationS¼ Sw ¹ Swr

Sws¹ Swr
. The water relative perme-

ability does not reachkrw ¼ 1 because the maximum
saturationSws is less than 1 during infiltration. The figure
also shows the fractional flow function and the capillary
diffusion function.

3 NUMERICAL METHODS

Three numerical methods are presented. The first solves
eqns (6) and (7) and is called a two-pressure solution. The

second and third solve the fractional flow equations
(eqns (11) and (13)) using a finite difference and
characteristics formulation. All numerical results are
presented here for one-dimensional problems. The
two-pressure solution has been generalized to higher
dimensions.45 The numerical solutions of the fractional
flow equations (eqns (11) and (13)) have not been extended
to higher dimensions using the methodology presented
here, although several other authors have presented
solutions to the saturation equation (eqn (13)) in
two-dimensions.18,22,46,47

3.1 Solution of two-pressure equations

The two-pressure equation formulation was employed by
Celia and Binning6 in their numerical simulation of two-
phase air and water flow in the unsaturated zone. Their
method is based on a finite element discretization in
space, a backward Euler approximation in time, and a so-
called modified Picard linearization. With superscriptsn and
m denoting time level and iteration level, respectively, the
time-discretized equation takes the following form (see
Celia and Binning for details):

J:
dSw

dpc

�����
nþ 1,m

dpnþ 1,m
a ¹ dpnþ 1,m

w

Dtnþ 1

¹
]

]z
kknþ 1,m

rw

mw

]dpnþ 1,m
w

]z

� �
¼

]

]z
kknþ 1,m

rw

mw

]pnþ 1,m
w

]z
¹ rwg

� �� �
¹J

Snþ 1,m
w ¹ Sn

w

Dtnþ 1 ¼ Rnþ 1, m
w ð18Þ

Fig. 2. Solution of the saturation eqn 13) using the oil–water functional relationships shown in Fig. 1. The MMOC solution of the full
saturation equation is shown as a line with nodal positions marked. The Buckley–Leverett solution is shown as a solid line for comparison.

The Buckley–Leverett front speed is 4/3.
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Fig. 3. Functional forms of Touma and Vauclin43 for air and water in a coarse sand. (a) Relative permeabilities. (b) Pressure saturation
curve. (c) Capillary diffusion function. (d) Fractional flow functionf. (e) Fractional flow functionF for the caseqT ¼ 0. The dashed line is

discussed in Section 3.2.3.

Multi-phase flow simulation 467



¹J:
dSw

dpc

�����
nþ 1, m

dpnþ 1,m
a ¹ dpnþ 1,m

w

Dtnþ 1

¹
]

]z
kknþ 1,m

ra

ma

]dpnþ 1,m
a

]z

� �
¼J

Snþ 1,m
w ¹ Sn

w

Dtnþ 1 þ
]

]z
kknþ 1,m

ra

ma

]pnþ 1,m
a

]z
¹ rag

� �� �
¼ Rnþ 1, m

a ð19Þ

where Dtnþ1 ¼ tnþ1 ¹ tn is the time step size,
knþ 1, m

ra ¼ kra(Snþ 1,m
w ), and dpnþ 1,m

a ¼ pnþ 1,mþ 1
a ¹ pnþ 1, m

a .
These equations are linearized with unknownsdpnþ 1,m

w

and dpnþ 1,m
a . The right hand sideRnþ 1,m

a is a function of
the known pressures at the new time level and old iteration
(n þ 1,m) and old time (n) levels. At each iteration step the
equations are solved and thedpnþ 1,m

a used to update the
pressures. Iteration proceeds until the residualRnþ 1,m

a

given by the right hand side of each equation reaches a
user specified error tolerance. The residual can be seen to
be a measure of the degree to which the numerical solution
satisfies the governing equation.

To complete the discretization, a spatial approximation is
required. A lumped Galerkin finite element discretization is
chosen using piecewise linear basis functions. Lumping of
the mass matrix is useful in controlling oscillations that
arise through the finite-element discretization of the time
derivative. The numerical equations are solved simul-
taneously for the air and water pressures, with the air and
water equations at each node being written alternately in the
matrix formation. This leads to a five-banded block
symmetric matrix.

3.2 Numerical solution of the fractional flow equations

The fractional flow approach comprises two equations—the
pressure equation (eqn (11)) and the saturation equation
(eqn (13)). These equations present a greater numerical
challenge than those of the two-pressure approach. The
two-pressure approach involves two equations with a simi-
lar mathematical character, and so the same numerical
method can be used for both equations leading to a simple
numerical technique. In contrast, the fractional flow
approach involves two equations with completely different
characters, and so separate numerical techniques must be
devised for each equation.

3.2.1 Saturation equation
One of the main attractions of the fractional flow approach
is the form of the nonlinear advection term in eqn (13). The
family of characteristics associated with the hyperbolic part
of these equations provide the physically-correct speed for
an infiltrating front. Numerical methods may be developed
to take advantages of this information, thereby leading to
potentially improved numerical performance. Two methods
of solution of the saturation equation are presented here. The

first is an Eulerian approach due to Morel-Seytoux and
Billica,12,13 who employed a simple finite difference
scheme. The second is an Eulerian–Lagrangian approach
that solves the saturation equation using a modified
method of characteristics (MMOC).

3.2.2 Finite difference solution of the saturation equation
The finite difference scheme developed by Morel-Seytoux
and Billica employs a centered-in-space discretization and a
Euler backward time stepping, with a Picard iteration
scheme for the nonlinear coefficients. For evenly spaced
nodes and a constant (in space) total velocity, the scheme
can be written

¹
DtDnþ 1,m

j ¹ 1=2

Dz2

" #
Snþ 1,mþ 1

j ¹ 1

þ J þ
Dt
Dz

Dnþ 1,m
j ¹ 1=2

Dz
þ

Dnþ 1, m
j þ 1=2

Dz

 !" #
Snþ 1,mþ 1

j

¹
DtDnþ 1,m

j þ 1=2

Dz2

" #
Snþ 1,mþ 1

j þ 1 ¼JSn
j

þ
Dt
Dz

(Fnþ 1,m
j ¹ 1=2 ¹ Fnþ 1,m

j þ 1=2 ) ð20Þ

wherej is an index over space,n denotes the time level, and
m the iteration level.

3.2.3 MMOC solution of the saturation equation
While the finite difference approximation (eqn (20)) has
certain benefits, especially for one-dimensional problems,
it ignores the fact that the hyperbolic part of the saturation
equation may be solved by numerical methods that take
advantage of the secondary (hyperbolic) characteristics of
eqn (13). The total flux is constant in one dimension and
smooth in higher dimensions, and so an infiltrating front of
the wetting fluid will move at a fairly uniform velocity with
a fairly constant shape.

The saturation equation (eqn (13)) can be solved by a
characteristic-based approximation. One such method,
based on the MMOC with localized grid refinement, was
outlined and implemented by Celia and Binning for the case
of knownqT and simple boundary conditions. Other similar
approaches include the recent Eulerian–Lagrangian loca-
lized adjoint method (ELLAM) approach of Dahle et al.,48

as well as earlier work of Dahle,18Espedal and Ewing,17and
others cited earlier in this paper. The procedure used herein
is an extension of the MMOC approach outlined in Celia
and Binning.20 The key enhancements to the original
algorithm of Espedal and Ewing17 include the changed defi-
nition of Fw so that it remains well defined in the case of zero
total flux, the definition of operator splitting for growing
infiltration fronts, and the development of an algorithm to
handle general boundary conditions.

The numerical method solves the saturation equation
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(eqn (13)), which we will rewrite:

J
DSw

Dt
¹

]

]z
D(Sw)

]Sw

]z

� �
¼ 0 (21)

where

DSw

Dt
¼

]Sw

]t
þ

Fw9(Sw)
J

]Sw

]z
(22)

is the material derivative of saturation. The hyperbolic part
of the equationDSw

Dt
¼ 0 is nonlinear and produces solutions

with shocks, although these shocks (or fronts) move with
well-defined speed. This frontal speed is calculated using
the convex envelope of the fractional flow function through
the following algorithm. The saturation equation is split
into two equations

DSw

Dt
¼

]Sw

]t
þ

F̄9(Sw)
J

]Sw

]z
(23)

J
DSw

Dt
þ

](b(Sw)Sw)
]z

¹
]

]z
D(Sw)

]Sw

]z

� �
¼ 0 (24)

where the new functions̄F9 and b are defined in order that
the equationDSw

Dt ¼ 0 gives the physical frontal speed. Eqn
(23) can be termed a ‘characteristic equation’ and eqn (24)
a ‘diffusion correction equation’. The correct definitions for
F̄(Sw) and b(Sw) are found by examining the Buckley–
Leverett solution to the equation. This leads to the
following definition:

F(Sw) ¼ F̄(Sw) þ b(Sw)Sw

where

F̄(Sw) ¼

Fw(Sw) St
w # Sw # 1

Fw(St
w) ¹ Fw(Sb

w)
St

w ¹ Sb
w

Sw # St
w

264 (25)

and b(Sw) is defined in the appropriate manner. Note that
the above splitting is based on the assumption that Fw(Sw) is
concave forSw $ St

w.
The simulations presented in this paper are all one-

dimensional. Splitting in the higher-dimensional case
including gravity has been considered by Hansen47 and
Hansen et al.23 The functionF̄(Sw) for oil and water, as
used by Dahle,18 is shown in Fig. 1b, as the concave
envelope of the fractional flow function.

While the shock is never fully developed for problems
with non-zero capillary diffusion, the algorithm is designed
to assume that the infiltrating front is fully developed, so
that the Buckley–Leverett saturation is used forSt

w. The
Buckley–Leverett saturation is found using the tangent
law of Welge49 which solves the equation

F(Sw)
Sw

¹
dFw

dSw
¼ 0 (26)

for the Buckley–Leverett saturationSBL. If the maximum
saturation in the domain is less than the Buckley–Leverett
saturation thenSt

w is reduced to this lower value.

The operator splitting discussed above is for the case of
the wetting fluid infiltrating into non-wetting fluid. Under
drainage, and combined drainage–infiltration events, the
definition needs to be modified. The discussion of these
modifications is beyond the scope of this work. Questions
also arise in heterogeneous materials where the character-
istics cross the boundaries between two materials having
different fractional flow function definitions. It is not clear
how this would be handled with the current method. While
the work of Langlo and Espedal22 addresses the issue of
heterogeneity, it avoids this problem by using hetero-
geneous materials where only the absolute permeability
varies, with the nonlinear functional forms remaining the
same.

Numerically, eqns (23) and (24) are solved separately
18,50. The characteristic eqn (23) is solved using a character-
istic algorithm, and the diffusion correction eqn (24) is
solved using a spatially optimal Petrov–Galerkin finite
element method.

The first step in the numerical algorithm is the numerical
determination of the operator splitting. This is done by find-
ing St

w and Sb
w. Eqn (26) is solved using the method of

bisection and the result compared to the maximum satura-
tion in the domain to defineSt

w as above.Sb
w is defined to be

the minimum saturation in the domain.
Localized grid refinement is very attractive with a

Lagrangian approach to the governing equations. The
saturation equation can be solved analytically for frontal
speed, and the speed used a priori to refine the grid at the
projected location of the infiltrating front at the new time
step. The frontal location is defined by examining the
gradient of saturation. In regions where the grid has been
refined but the gradient of the solution is no longer large, the
mesh refinement is removed.

The characteristic equation (eqn (23)) is solved by back-
tracking along characteristics from the new time level to
find the characteristic solution̄Sn17. Because the velocity
of the front is a function of the saturation, an iterative
scheme must be employed to find the correct solution.
Note that a major source of error in the numerical solution
is through the interpolation of the saturation to grid
locations inbetween nodes.

The material derivative in the diffusion correction
equation is then approximated using the characteristic
solution and the diffusion correction equation is written as

J
Snþ 1

w ¹ S̄n
w

Dt
þ

]

]z
(b(Snþ 1

w )Snþ 1
w )

¹
]

]z
D(Snþ 1

w )
]Snþ 1

w

]z

� �
¼ 0 ð27Þ

The diffusion correction is discretized using quadratic
Petrov–Galerkin finite elements, and linearized using a
standard Picard iteration scheme. The Picard iteration
scheme lags the nonlinear coefficients in the diffusion cor-
rection equation (eqn (27)) by one iteration, thus linearizing
the equation. The Petrov–Galerkin method divides the
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domain intoE elementsQe ¼ [ze,zeþ1]. Piecewise linear
basis functions,v i, and spatially ‘optimal’ test functions,
w i are used, with sufficient upstream weighting added to
provide enough artificial diffusion at the solution front so
that non-unique solutions do not form.50 The test functions
are weighted ‘upstream’ in relation to the b(Snþ 1, m

w ) term,
which is an advection term in the opposite direction to the
flow. Fig. 4 shows a fully upstream weighted test function
for a front that is moving from left to right (sinceb is an
advection term that sharpens the front it is in the opposite
direction to the frontal movement). Within the Petrov–
Galerkin procedure, the temporal derivatives are lumped
using theL1 scheme of Milly,51 and the grouped term
b(S)S is expanded using the finite element representation.
The resultant algebraic system is tridiagonal in structure,
and is solved using the Thomas algorithm. See Binning45

for details.

3.3 Solution of pressure equation

Compared to the saturation equation the pressure equation is
very well behaved. The pressure equation is a highly non-
linear elliptic equation. The pressure, however, is relatively
smooth and the numerical approximation is straightforward.
Since all simulations presented here are for a homogeneous
medium, a simple Galerkin finite element method with
piecewise linear basis functions is used instead of the
mixed methods of Ewing and Heinemann.27

3.4 Treatment of boundary conditions

If the fractional flow approach is applied to general multi-
dimensional, incompressible fluid flow problems, the
appropriate equations are the pressure equation (eqn (11)),
and the saturation equation (eqn (13)). This set of equations
is solved for the water saturation,Sw, and the global pressure,
P. The boundary conditions for these equations can be
specified either in terms of the saturation of water or in
terms of the global pressure (which is a non-physical

variable). Boundary conditions may also be specified in
terms of the total fluxqT (or gradients ofP). The total-
flux-type boundary condition is often used in simulations
of petroleum reservoirs. In petroleum reservoirs the total
flux can conveniently be specified as zero, as the domain
of simulation is often enclosed by no-flow boundaries (for
example in a five-spot problem).

In hydrology, complex boundary conditions involving
combinations of individual fluid fluxes or pressures often
must be specified. These types of boundary conditions at
the land surface are difficult to implement using the
fractional flow form of the equations, because of the non-
physical nature of the global pressure. For example, for
infiltration problems, the boundary conditions at the land
surface are typically specified as a given air pressure and
a water flux. From these two values, neitherP norSw can be
calculated.

In one-dimensional problems it is possible to derive
analytically an expression for total flux1. Because we wish
to develop algorithms that are applicable to higher-
dimensional problems, where analytical expressions are
not available, we will not employ the analytical expressions
in the one-dimensional problem. Rather, a more general
technique will be developed.

An iterative technique is required for implementation of
general boundary conditions. Consider the case where the
flux of wetting phaseqw and pressure of the non-wetting
phasepnw are known at the top boundary and the saturation
and global pressure are specified at the lower boundary. In
this case the saturation and global pressure within the
domain, boundary conditions at the top end of the column
and the total velocity are unknown. An iterative solution for
P, Sw andqT in the interior andP andSw at the boundary is
developed. The procedure can be described as follows:

1. Begin the solution by estimating the total flux by
using the known wetting phase boundary fluxqT ¼

qw.
2. Next estimateStop, the saturation at the top boundary

by dividing the given value ofqw by the saturated
hydraulic conductivity. Use this ratio as a guess for
krw, and determine the value ofStop implied by
that value of krw. Mathematically, solve

qw
krowg=mw

¹ krw(Stop) ¼ 0 for the saturation Stop at
the top boundary.

3. Given Stop at the boundary solve the saturation
eqn (13) using MMOC.

4. Given the solutionSw, calculate the capillary pressure
at the top boundary, then with the givenpa at the
boundary, calculatepw. Now with pa, pw and Stop

known at the boundary, calculate the total pressure,
Ptop, at that boundary using eqn (9). The integral in
eqn (9) must be evaluated with care, because of the
highly nonlinear nature of the integrand. In particular
the derivative of capillary pressure is infinite at both
Sw ¼ Sws andSw ¼ Sc ¼ Swr. The extended midpoint
rule with Romberg’s method is used52 to construct aFig. 4. Basis and test funtions for the MMOC.
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lookup table for the integral in eqn (9). The integral
from the definition of global pressure is shown in
Fig. 5.

5. Given Ptop at the boundary, solve the pressure eqn
(11).

6. UpdateqT from the pressure solution, and then find
qw at the top boundary using eqn (12).

7. Update Sw at the top boundary by matching the
calculatedqw at the top boundary with the known
boundary flux. The algorithm has the following steps:

(a) In the first iteration on the boundary conditions
estimateDStop by employing a discrete version of the
mass balance eqn (1) in the boundary element

DStop ¼
qw2 ¹ qw1

Dz
Dt
J

where qw1, qw2 are the fluxes at the first and second
nodes of the domain respectively. These fluxes are
estimated using the current saturation solution and
eqn (12).

(b) In the first and subsequent iterations, compare the
calculated fluxqw1 with the desired boundary flux. If
the calculated flux is less than the desired boundary
flux, increment the saturation at the top boundary,
Stop, by DStop. Otherwise, decrementStop by DStop. In
each iteration decrease the size ofDStop by dividing by
2. This iterative approach is similar to the method of
bisection and will converge provided the initial esti-
mate ofDStop is large enough.

8. Re-solve the saturation equation by MMOC and
repeat the loop (steps 3–8) until the solution
converges.

Fig. 6 shows a simplified schematic of the algorithm. The
algorithm follows closely those proposed by Chen et al.24

and Vassilev (A. Vassilev, personal communication, 1996).
The boundary condition algorithm described above is

particular for the combination of a known flux in the
water phase and a known pressure in the air phase. The
algorithm is not directly applicable to other combinations
of phase fluxes/pressures at the boundary. Different
algorithms based on similar iterative techniques will need
to be developed for these combinations. The requirement for
different iterative algorithms for each boundary type will
not add to the computational time required to solve the
fractional flow equations. However, the complexity of the
computer code will be greatly increased in fractional flow
codes that are developed to satisfy generalized boundary
conditions. This contrasts with the two-pressure approach,
where different boundary conditions can be accommodated
relatively easily.

3.5 Mass-balance

A mass-balance calculation provides necessary (but not suf-
ficient) verification of the validity of the numerical solution.
The mass-balance for the two-pressure solution has been
described in Celia and Binning.6 They showed that mass-
balance errors for this numerical scheme are small. In
contrast, a MMOC discretization of the fractional flow
equations is prone to mass-balance errors. These arise
through a poor treatment of the boundary conditions in the

Fig. 5. Integral ¹
∫Sw

Sc
fw ¹

1
2

� �
dpc

dSw
dSw as a function of saturation in the definition of global pressure using the functional forms of Touma

and Vauclin43 for the case of air and water phases.

Fig. 6. Sequence of computation for solution of the pressure–
saturation equations with general boundary conditions. The
numbers in the diagram refer to sequence of steps explained in

the text.
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MMOC. The mass-balance errors inherent in the MMOC
have been noted by Healy and Russell.53 Recently, Dahle
et al.48 have shown how an ELLAM can be used to address
the mass-balance errors inherent in the MMOC discretiza-
tion of the saturation equation. The ELLAM was devised by
Celia et al.54 to provide a rigorous framework for character-
istic methods and an improved treatment of boundary
conditions.

The finite difference algorithm of Morel-Seytoux and
Billica is based on the conservative form of the governing
saturation equation (eqn (13)), and as with any implicit
centered finite difference approximation of the conservative
form of the advection–dispersion equation, it is perfectly
mass conservative.

Mass-balance errors have been calculated for all three
methods by comparing the mass change in the domain
calculated from the saturations with the boundary fluxes,
either specified as a boundary condition or calculated
from the solution. The results are reported for a number of
simulations below.

4 RESULTS

Several problems relevant to applications in hydrology are
presented. They consider multi-phase infiltration of water
into a porous medium initially filled with air and water. First
a simulation is presented where saturations are specified as
the boundary conditions and the total flux is known, so it
is only necessary to solve the saturation equation. A

comparison is made of the two-pressure approach, and the
finite difference and MMOC solutions of the saturation
equation. A second problem is then solved where general
hydrologic boundary conditions are applied, so the global
pressure equation must also be solved in the fractional flow
approach. For both problems, material properties are taken
from the measurements of Touma and Vauclin,43 as
presented above.

4.1 Example 1

In petroleum engineering applications it is natural to specify
boundary conditions in terms of the total flux and the satura-
tion of a single fluid. The first example considers a one-
dimensional problem in hydrology where it is possible to
specify such boundary conditions. For one-dimensional,
incompressible flow the pressure equation is degenerate
and so the total flux is constant in space and determined
by the boundary conditions. If the total flux is specified at
the boundary then it is not necessary to solve the pressure
equation. The first example considers infiltration of water
into an initially dry soil with a uniform normalized satura-
tion of 0.1646. The normalized water saturation at the soil
surface is specified to be 0.9159, and at the bottom of the
soil column it is 0.1646. The bottom of the column is sealed
to both the air and water phases, so that the total flux is zero.
Note that the boundary conditions at the bottom of the
column,qw ¼ qa ¼ 0 andSw ¼ 0.1646, are over-specified
(normally the saturation at the bottom of the column would
not be given) to avoid the need for an iterative procedure to

Fig. 7. Solution of a problem with constant saturation boundary conditions using three different numerical methods. The MMOC is shown
with nodes marked. The finite difference solution and the two-pressure solution are shown as solid lines and are indistinguishable from each
other. The computational effort involved in the MMOC solution is about one tenth that of the other techniques (see Table 1). There is,

however, some loss of accuracy in the colution.
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determine the bottom boundary conditions. For water to
infiltrate into the column it is necessary for the air to escape
through the soil surface. This is possible since the soil
surface is not saturated.

The problem is solved using three numerical methods.
The first is the two-pressure solution. The others are based
on the fractional flow approach, and use the MMOC and a
finite difference approximation to solve the saturation
equation. The two-pressure solution employs a spatial
discretization with elements of sizeDz¼ 1 cm and variable-
sized time steps. The total simulated time is 100 min, and
the initial time step size isDt ¼ 2 s. Initially it is necessary
to employ a small time step as the pressure changes are steep
at the infiltrating front and so the nonlinearities are strong.
However, as the water infiltrates into the column the infil-
trating front smooths, so the nonlinearities weaken and
larger time steps can be taken. In this case the time step
can be increased from its initial size of 2 s, up to 116 s at
the end of the simulation. In each iteration the error
tolerance on the residual (See eqns (18) and (19)) is set to
be 13 10¹3.

The finite difference solution employs the same spatial
grid as the two-pressure solution, and constant sized time
steps of sizeDt ¼ 200.0 s. The time step size is chosen to be
as large as possible, and is constrained by the need to ensure
that the nonlinear iteration scheme is convergent. The error
tolerance in the nonlinear iteration scheme on saturation is
0.001.

The MMOC solution employs a coarse spatial grid with
Dz ¼ 10.0 cm and localized grid refinement with the same
grid size as used in the two-pressure solution. The grid is
refined whenever the saturation change between neigh-
boring nodes exceeds 0.05 (see the solution in Fig. 7 for a
typical grid). A constant sized time step of 600 s is used and
the error tolerance on the nonlinear iteration schemes is set
to be 0.001 on the saturation.

A comparison of the solutions obtained by the three
methods is given in Fig. 7. Table 1 gives a comparison of
the computational effort required by the three methods. The
results from the three simulations suggest a significant
difference in computational efficiency. The two-pressure
solution was the most inefficient scheme, the finite
difference solution of the saturation equation marginally
better, and the MMOC solution of the saturation equation
the most efficient solution technique.

The efficiency of the MMOC is due to the lack of restric-
tion on time step size. The only restrictions of time step size

with the MMOC are due to the iteration scheme in the
solution of the ‘diffusion correction’ equation with a larger
number of iterations required as the strength of the non-
linearities increases. The single step integration of the
hyperbolic part of the equation will also become more
inaccurate with choice of a larger time step size. In contrast,
the time step choices for the finite difference and two-
pressure solutions are restricted by a Courant number
criterion, which for explicit schemes can be given by35

Cr ¼
1
J

Fw(St
w) ¹ Fw(Sb

w)
St

w ¹ Sb
w

 !
Dt
Dx

, 1

For the implicit schemes employed here the Courant
number criterion is less strict,55,56 but is still a good
guide for choice of time step.

4.2 Example 2

In hydrology, boundary conditions are frequently specified
in each phase separately. A common problem specifies a
flux in the water phase and a pressure in the air phase. In
this case the coupled pressure and saturation equations must
be solved simultaneously. For the present example, a
column of soil is considered with a normalized initial
saturation of 0.1655. The boundary conditions for the
problem are that the water flux is fixed at 8.3 cm h¹1 and
the air pressure equal to 0 cm water at the soil surface. The
air pressure is set to be 0.1204 cm and the water pressure
¹99.8796 cm at the bottom of the soil column. The air
boundary conditions are chosen to be those for a static
equilibrium in the air phase and the bottom boundary con-
dition on the water phase is chosen to match the initial water
content of the column. The column is filled with a coarse
sand, having the properties given in Fig. 3. The problem was
modeled by Celia and Binning6 using the two-pressure
approach. The problem is solved here using both the
fractional flow approach and the two-pressure solution and
comparisons are made between the methods.

The fractional flow approach employs the MMOC to
solve the saturation equation and the finite element method
to solve the pressure equation. The iterative methodology
described previously is used to determine the boundary con-
ditions. A coarse grid of 11 nodes with a spacing of 10 cm is
used. The grid is locally refined, with each element being
broken into 10 smaller elements whenever the normalized
saturation change between neighboring nodes exceeds 0.05.

Table 1. Comparison of the numerical efficiency of techniques for solving the two-phase flow problem in a case with fixed saturation
boundaries

Two-pressure solution MMOC Finite difference

Computational time (s) (Sun SPARCstation 5) 43.1 60.0 34.0
Number of time steps 96 10 30
Courant number 0.055–1.06 5.52 1.84
Iterations/time step 3–10 14–2 6–13
Mass balance error 0% 3.5% 0%
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This value was chosen as it provides a good balance
between computational efficiency and accuracy. Ten time
steps of size 10 min are employed in the solution. Error
tolerances on each of the iterative processes in the code
must also be specified. These are the iterative characteristic
solver and the iterative ‘diffusion correction’ in the solution
of the saturation equation, and the iteration criteria for con-
vergence of the boundary conditions. In all three cases an
error tolerance of 13 10¹3 was specified on the normalized
saturation.

The two-pressure solver uses a grid with the same resolu-
tion as the refined grid of the fractional flow solver, i.e. 101
nodes of spacing 1 cm. A time step size of 6 s is initially
applied, and the time step is increased by a factor of 1.05 at
later times when the number of nonlinear iterations falls
below 10. Using this time step acceleration scheme the
time step size could be increased from the initial 6 s to
101 s at the end of the simulation. The convergence criteria
on the solution is 13 10¹3 on the residual.

The two solutions are compared in Figs 8 and 9, and the
computational cost of each solution is shown in Table 2.
Fig. 8 shows saturation as a function of depth at various time
intervals. The distribution of nodes used in the fractional
flow solution is also shown in the figure. As can be seen
from the figure, the fractional flow solver has used a refined
grid in the neighborhood of the steep infiltration front. The
two-pressure solution is perfectly mass conservative. In
contrast the fractional flow solution shows a 4% mass
balance error, with the infiltrating front lagging behind the
correct location.

Fig. 8 shows that the infiltrating water has a fairly
uniform frontal speed and a constant shape. The uniform
frontal speed is given by the Buckley–Leverett equation.
The infiltrating front retains its shape as the capillary diffu-
sion is exactly balanced by the self-sharpening character of
the hyperbolic part of the equation. These observations are
the key to the computational efficiency of the MMOC solu-
tion. Note also that Fig. 3c shows that the capillary diffusion
acts only over high ranges of saturation, as observed in
Fig. 8. Analysis of the fractional flow function and the
capillary diffusion function give a good a priori idea of
the form of the solution to the equations.

Fig. 9 shows the global pressure corresponding to the
saturation solution shown in Fig. 8. The global pressure is
a mathematical convenience and so no physical interpreta-
tion can be made of this figure. The figure does show one
problem with the fractional flow approach. The localized
grid refinement is based on gradients of the normalized
saturation and not on the global pressure. As can be seen
from Fig. 9 the global pressure gradient is quite large in
regions remote from the saturation front. In particular, the
global pressure variation at the boundary is quite large.
However, the coarse grid is used at the boundary after the
infiltration front has moved into deeper parts of the column.
This leads to quite large errors in the determination of the
boundary conditions. A modified grid refinement algorithm
could be employed where both the pressure and saturation
gradients are used to determine the degree of refinement.
However, such an approach would lead to large portions of
the grid requiring refinement, reducing the computational

Fig. 8.Saturation at various times in an initially uniform dry soil with a fixed water flux at the oil surface (depth¼ 0 cm). The figure shows
a comparison between the fractional flow solution and the two-pressure solution.
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advantages of localized grid refinement for the example
being considered here.

The two-pressure solution is more accurate than the frac-
tional flow solution, with large errors in the fractional flow
solution due to discretization errors leading to a poor treat-
ment of the boundary conditions. The computational effort
involved in obtaining these solutions is given in Table 2.
The two-pressure solution requires about twice as much
computational time as the fractional flow solution. The frac-
tional flow solution required 31.85 s on a Sun workstation.
Of this time the majority was spent in solving the highly
nonlinear saturation solution (29.9 s), with only a small
amount of time required to solve the much better behaved
pressure equation (1.0 s).

The simulation shown here has been chosen to illustrate
the deficiencies of the fractional flow solution. As the spatial
and temporal discretizations are refined the solutions con-
verge. To obtain a solution with the fractional flow approach
that is of similar accuracy to the two-pressure solution
requires a uniform fine grid. Localized grid refinement
based only on the saturation solution does not give satis-
factory results. If the fractional flow solution is required to
obtain a high accuracy solution the advantages in computa-
tional efficiency of the method over the two-pressure
approach disappear.

5 DISCUSSION

Numerical solutions based on the fractional flow form of the
governing equations appear potentially attractive, because
of the relatively simple form of the pressure equation
(eqn (11)), and the hyperbolic character of the saturation
equation (eqn (13)). Numerical algorithms can be designed
to take advantage of these properties, with the aim of gain-
ing significant improvements in computational efficiency.

The results presented here show that for problems in one
dimension where the saturation equation alone can be
solved, the fractional flow approach is far more efficient
than equivalent solvers employing the two-pressure
approach. However, for generalized boundary conditions,
such as those frequently employed in hydrology, the full
pressure–saturation solution of the fractional flow equations
must be coupled with an iterative scheme to find the
correct boundary conditions. In this case there was little
or no computational advantage gained by the fractional flow
approach.

The fractional flow approach, while offering some
computational attractions, is also far more complex to
understand and to implement in computer codes. The two-
pressure code requires approximately 690 lines of
generously commented code, whereas the fractional flow

Fig. 9. Global pressure obtained using the two-pressure and fractional flow approaches for the problem illustrated in Fig. 8.

Table 2. Comparison of computational effort for the fractional flow and two-pressure solutions for the problem illustrated in Fig. 8

Two-pressure solution Finite difference

Computational time (s) (Sun SPARCstation 5) 48.9 31.85
Time steps 105 10
Iterations/time step 5–10 5–19 diffusion, 3–11 boundary
Mass balance error 0% 4%
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code requires 2080 lines. The largest portion of the frac-
tional flow code is the MMOC solution of the saturation
equation. Given that no computer code is ever bug free,
the significantly larger amount of computer code required
for the fractional flow approach should be a serious
consideration when choosing the solution methodology.

The results presented here are for one dimension. It is
possible that in higher dimensions the fractional flow
approach will become more competitive. For example, it
was shown in Binning45 that the time step acceleration
that can be used very successfully in one dimension with
the two-pressure approach, gives little advantage in higher
dimensions. In contrast the fractional flow approach has
been demonstrated to be equally effective with large time
steps for petroleum problems in both one and higher dimen-
sions.18 Until the time when the higher-dimensional version
of the fractional flow approach with general boundary
conditions has been completed, no final conclusions on
the efficiency of the method can be made.

There are a number of drawbacks to the fractional flow
formulation. These include the non-physical nature of the
total pressure term; the associated complications in imple-
menting boundary conditions whose specification is
associated naturally with individual phases instead of
combinations of phase information; the complications intro-
duced by the nature of the gravity terms; the difficulties in
dealing with multiple infiltration and drainage fronts; the
problem of including compressibility; and the complications
in the characteristic solution when material heterogeneity is
introduced.

Implementation of general boundary conditions requires
different iteration schemes for each different pair of phase-
specific boundary conditions, one example of which is given
above. This causes both additional coding and additional
computations which largely offset the gains made by
developing numerical methods that exploit the form of the
governing equations. Note that for one-dimensional
problems, the analytical techniques of Morel-Seytoux and
Billica12,13 can be used to avoid solving the full pressure
equation. However, that approach does not generalize easily
to multiple dimensions, while the approach presented herein
does. The gravity issue has been addressed effectively by
Hansen et al.,23 although its implementation in multiple
dimensions implies some additional coding.

The two outstanding issues that appear to be most
significant at this time are the treatment of material hetero-
geneities in which the fractional flow function varies
spatially, and the treatment of multiple infiltration and
drainage fronts. Earlier work, by for example Langlo and
Espedal,21 incorporated heterogeneity in the intrinsic
permeability only, with the relative permeabilities (and
therefore the fractional flow functions) remaining spatially
constant. The more difficult case of heterogeneous
fractional flow functions requires that the splitting technique
used to determine frontal speeds and the associated
numerical characteristic curves must account for underlying
variability within a time step. This appears to have

implications for the back-tracking step of the characteristic
solution and the treatment of the ‘anti-diffusion’ correction
that is associated with the fractional flow splitting. Because
numerical solutions are quite sensitive to the treatment of
the anti-diffusion, additional study appears to be needed to
incorporate general material heterogeneities. A similar
situation arises when multiple infiltration and drainage
fronts occur, as might be expected for simulation of inter-
mittent rainfall events. In this case, different fractional flow
splittings are required for the different fronts, even when
hysteresis is ignored.

One of the most appealing features of the fractional flow
formulation is the physical insight offered by the form of the
saturation equation, as recognized by pioneers in this area
including Buckley and Leverett10 and Morel-Seytoux.1

While numerical methods based on the fractional flow
formulation of the governing equations are very attractive
for simple model problems, their extension to practical
problems remains to be demonstrated. The results presented
here for general boundary conditions suggest that potential
gains in numerical performance due to the equation form
may be offset by the additional complications of the
method. Much work needs to be done before numerical
methods based on the fractional flow approach will be
able to compete with methods having more general applic-
ability, such as those of Celia and Binning6 and Forsyth and
coworkers.34,35
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