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Fractional flow formulations of the multi-phase flow equations exhibit several
attractive attributes for numerical simulations. The governing equations are a
saturation equation having an advection diffusion form, for which characteristic
methods are suited, and a global pressure equation whose form is elliptic. The
fractional flow approach to the governing equations is compared with other
approaches and the implication of equation form for numerical methods discussed.
The fractional flow equations are solved with a modified method of characteristics for
the saturation equation and a finite element method for the pressure equation. An
iterative algorithm for determination of the general boundary conditions is
implemented. Comparisons are made with a numerical method based on the two-
pressure formulation of the governing equations. While the fractional flow approach is
attractive for model problems, the performance of numerical methods based on these
equations is relatively poor when the method is applied to general boundary
conditions. We expect similar difficulties with the fractional flow approach for more
general problems involving heterogenous material properties and multiple spatial
dimensions© 1999 Elsevier Science Ltd. All rights reserved.
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1 INTRODUCTION concomitant introduction of ancillary functions such as the
fractional flow function. The latter approach derives almost
Numerical simulation of multi-phase flow in complex exclusively from the petroleum literature. In 1973, Morel-
porous media remains one of the outstanding difficulties Seytoux wrote a classic paper in which he drew together
in the field of computational hydrology. The reasons for much of the previous research and explored unifying themes
this difficulty include the highly nonlinear nature of the between the disciplines. He showed that the flow of air and
coupled partial differential equations that govern the water in unsaturated soils can be viewed as a multi-phase
system, and the lack of reliable constitutive data for these system, and showed how the experience of petroleum
problems. This difficulty has led many researchers to engineering could aid in understanding of multi-phase
explore alternative forms of the governing equations, and flow problems in hydrology. Since then many developments
to seek specialized numerical algorithms that can improve have occurred, particularly in the area of numerical methods
the computational performance of a simulator. for the solution of the multi-phase flow equations.
Historically, there have been two main approaches to  Numerical methods are very sensitive to the choice of
modeling multi-phase flow, arising in the disciplines of form of the governing equation. Morel-Seytdughowed
hydrology and petroleum engineering. The first is based that there are several ways to write the governing equations
on individual balance equations for each of the fluids, of fluid flow, and that each method offered its own insights
while the second involves manipulation and combination into the solution. More recently, Ewifidnias also examined
of those balance equations into modified forms, with recent developments in the choice of equation form for
multi-phase flow. In the light of the new and continuing
*Corresponding author. E-mail: philip@civeng.newcastle.edu.au developments in numerical methods for the solution of the
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multi-phase flow equations, it is worthwhile revisiting the dimensions with variability in the intrinsic permeability of
question of the form of the governing equations and explor- the medium. Hansen et &.considered systematic treat-
ing the implications of this equation form for a numerical ment of the gravity terms in the fractional flow formulation.
method based on it. The problem of boundary condition implementation has
Two approaches to writing the governing equations will also been considered recently by Chen é&f'al.
be examined here: the two-pressure approach; and the frac- The pressure equation has been solved by a variety of
tional flow approach. The two-pressure approach to the methods. In one dimension, for incompressible flow the
governing equations has been widely used in the hydrologic total velocity is a constant in space that depends only on
literature. In this approach, the governing equations are the time varying boundary conditions, and so the pressure
written in terms of the pressures in each of the two phasesequation may be solved analyticailyn higher dimensions,
through a straightforward substitution of Darcy’s equation numerical methods must be employed. Evithgeviews
into the mass balance equations for each phase. Thisnumerical techniques for solution of the pressure equation
approach has been adopted by a number of authors includ-and demonstrates the importance of accurate determination
ing: Pinder and Abriolawho employed a finite difference  of velocities. Variations in material properties, particularly
approximation of the governing equations to describe non- the permeability, can cause sharp changes in pressures.
aqueous phase liquid flow in the saturated zone; Sleep and.arge errors can result if these pressures are differentiated
Syke$, and Kaluarachchi and ParRewho used a finite- to obtain the necessary velocities. Ewing and
element solver with a Newton—Raphson scheme to linearizeHeinemanA®?’ developed a mixed method for solution of
the equations; Celia and Binnifig’ who employed a finite  the pressure equation, with the aim of accurate determi-
element discretization with fully implicit time stepping and nation of velocities. They showed that mixed methods
Picard iteration to solve the air and water flow equations; were far superior to conventional approaches when applied
and Schrefler and Xiaoyofgwho solved the consolidation to standard five-spot problems. Mixed methods are the
problem in the unsaturated zone with a finite element state-of-the-art at the current time.
discretization of the governing equations. Other approaches to the numerical solution of the frac-
The fractional flow approach originated in the petroleum tional flow equations include the work of Guarnaccia and
engineering literature, and employs the saturation of one of Pinder?® who employed the fractional flow formulation
the phases and a pressure as the independent variables. Theith the sequential solution method of Spillette et%to
fractional flow approach treats the multi-phase flow decouple the equations and a collocation method to dis-
problem as a total fluid flow of a single mixed fluid, and cretize the equations to solve the problem of NAPL
then describes the individual phases as fractions of the totalmigration in the water and gas phases.
flow. This approach leads to two equations: the pressure While the fractional flow and two-pressure approaches
equation; and the saturation equation. The pressure equatiomave been studied by various researchers, other methods
is an elliptic equation that is solved for the pressures and thehave also been developed to solve multi-phase flow
total flux. The saturation equation is written in advection— equations. One of the more important variants on these
diffusion form with a hyperbolic characteristic that methods is the pressure—saturation approach. Since the
describes the speed of an infiltrating front. The advective saturation is a function of the capillary pressure or differ-
term is nonlinear and usually leads to shock formations. Its ence between phase pressures, it is possible to reformulate
general behavior may be exploited to design a Lagrangianthe governing equations in terms of a saturation and one of
numerical algorithm that allows for relatively large time steps the phase pressures. The second phase pressure can then be
by projecting the solution forward along the characteristics. removed from the equations by expressing it in terms of the
In the absence of capillarity and gravity, the saturation saturation and the pressure in the other phase. The attraction
equation may be solved analytically; this approach dates toof this approach is that it is very well suited to problems
Buckley and Leveretf. Interest in the saturation equation where there may be phase disappearance. If the saturation in
and its analytic solution continues today. For example, one of the phases is zero, the pressure in that phase is poorly
Sander et al' have found an analytic solution for a defined. A standard two-pressure formulation will not be
restricted class of functional forms. Numerical solutions able to handle this problem. The pressure saturation
have been considered more recently. Morel-Seytoux andapproach has been employed by Faiskueper and
Billica®®*3 and Wangelf used finite difference methods, Frind?' Moridis and Reddelf? and Prues3® Forsyth*
and Chen et at® employed finite elements and mixed and Unger et af® have developed compositional simulators
methods to solve the fractional flow equation for one- to solve two- and three-phase multi-component systems,
dimensional systems with incompressible fluids, while a based on the P—S formulation and finite-volume approxima-
general characteristic-based approach was presented byions and nonlinear flux limiters. Abriola and Rathfeltfer
Douglas® and Espedal and Ewin§ The computational  implement and review both the two-pressure and the
work of Dahle et af®*® Celia and Binning’, and Langlo pressure—saturation formulations, examining the mass bal-
and Esped&l demonstrated the computational benefits of ance properties of each formulation. They show that, if the
the characteristic-based method, with the paper by Langlo coefficients and initial conditions are properly treated,
and Espeddf presenting simulation results in two accurate solutions can be obtained with both formulations.
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Since the governing equations for multi-phase flow are question of general boundary conditions, consider the impli-
highly nonlinear, numerical techniques must in general be cations of general material heterogeneities, speculate on the
employed for their solution. There are many choices of potential difficulties with multiple infiltration and drainage
numerical method, with temporal discretization being a fronts, and consider some general questions related to fluid
topic of great interest in the literature. In hydrologic appli- compressibility and gravity terms.
cations the predominant approach has been to employ fully
implicit schemes. Haverkamp et Hl.compared temporal
discretizations of Richards’ equation, and showed that 2 GOVERNING EQUATIONS
because of the stability restrictions on explicit solvers,
implicit solvers provide solutions five to ten times faster In this presentation, we consider balance and constitutive
than explicit solvers. The better performance of the implicit equations applicable to each fluid phase; we will not con-
solvers occurs, despite the need for iterations to deal with sider modeling of individual components or processes of
the nonlinearities. Multi-phase flow simulators in hydrology interphase transfer. For each fluid phas¢he mass balance
have similar behavior to that observed by Haverkamp, and equation may be written as
so fully-implicit time stepping is the dominant approach in 30,05,
hydrology and has been adopted by many auffiofs — TV (al)=0 1)

The petroleum engineering literature contrasts with the
hydrology literature with the predominant approach being
explicit or semi-implicit. The most common approach

wherep,, is the density of fluidy, ¢ is porosity,S, is fluid
saturation, and,, is the volumetric flux vector for phase
employed® is the IMPES scheme (implicit pressure For a two-fluid-phase system, eqn (1) is written for each
.y . . ' _fluid phase, and is augmented by constitutive relationships
explicit saturation). This scheme has been favored becausethat relate saturations to capillary pressure (eqn (2))

it decouples the pressure and saturation equations, thus:S ecify a closure condition on saturations (eqn (3)), and
reducing the computational effort required for their solution. P d '

The IMPES scheme has been used by Sleep and ykes relate volumetric fluxes to pressure gradients via a multi-

who used it to simulate the behavior of an air—watersystem..phase version of the Darcy equation (eqn (4)) which

Sleep and Sykes compared the efficiency of an IMPES includes relative permeabilities (eqn (5)),

scheme with a fully implicit scheme. They showed that S, = S.(Pc) = S.(Paw — Pw) (2)
the IMPES was more restricted in time step size than the

implicit scheme. The difference in time step size made up Sy+Sw=1 3)
for any speed the IMPES gained by decoupling the Kk,

equations. However, the IMPES scheme requires less q,= — —2%(Vp, —0,0) 4)
memory, which may be a consideration for larger problems. Ha

A new development in hydrology is the use of an adaptive ko =k o(S) )

implicit scheme, which was first employed in the petroleum
literature. A fully implicit formulation is used in regions of ~wherep; = py — pnw iS the capillary pressurg,, denotes
sharp changes of independent variables and the explicitthe individual phase pressures withandnw denoting the
scheme used elsewhere. An example is the work of wetting and non-wetting phases respectiv&lis the intrin-
Reeves and Abriol&° sic permeability tensom, is the viscosity in phase, g is

In this paper, the equations that describe two-phase fluidthe gravitational vector (the vertical coordinate is oriented
flow will be reviewed. The equations will be presented in a positive down), and is the relative permeability to phase
two-pressure, or standard mass balance, form that is com-« which is a nonlinear function of saturation.
monly used by hydrologists, as well as a modified form that I fluid or matrix compressibility is considered, then
we will refer to as the fractional flow or global pressure— appropriate compressibility coefficients also need to be
saturation form that has been developed by petroleum defined. For the purposes of this paper all fluids, as well
engineers. Computations will be used to demonstrate theas the solid matrix, will be considered to be incompressible.
differences in performance between numerical approxima-  Given this set of equations, boundary and initial condi-
tions of the different equation forms, and the implications tions must be supplied to complete the mathematical
for the future multi-phase modeling efforts discussed. The description. These are usually given as known pressures,
paper will not discuss the various choices of temporal dis- saturations or fluxes in each of the fluid phases. Many dif-
cretization, as these are examined in other works. A fully ferent combinations of these boundary conditions occur in
implicit time discretization will be adopted for all numerical practical problems. Animportant criteria for acceptance of a
schemes, and the focus of the paper will be on the form of numerical method is that it must be able to solve the govern-
the governing equation and the implications of that form on ing equations for the wide variety of possible boundary
the performance of the numerical method. conditions.

The paper will also consider questions related to practical The governing equations, eqns (1)—(5) are a set of
implementation of the fractional flow approach to multi- coupled, nonlinear partial differential equations. The basic
phase flow simulation. In particular, we will revisit the equations can be mathematically manipulated into several
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alternate forms with various choices of primary dependent where R(S,) = 0, andf,, is the fractional flow function,
variables. The choice of equation form and primary solution defined by
variables have considerable implications for the numerical Ko /

) . _ Hw
method used to solve the equations. Two possible formula-  fu(Sw) = (o ien) + (K )
tions will be considered here and the benefits of each Hw nw Hw
discussed. In the two-pressure formulation, the pressuresGiven these definitions, the total velocity may be related to
in each phase are chosen as independent variables and thée total pressur&* This expression for the total velocity
governing equations are parabolic in nature. The other may then be substituted into eqn (8) to obtain the nonlinear
formulation employed is the fractional flow approach elliptic partial differential equation that governs the
where a saturation and a ‘global pressure’ are chosen asevolution of the total pressure,

(10)

independent variables. In this case, the governing equation  y.5.yp_ v.(AG)=0 (11)
for saturation is parabolic (hyperbolic in the case of zero
capillarity) and the equation for pressure elliptic. where
ka kfI"IW)
A =k —+
2.1 Two-pressure approach (Sw) ( Ly How

The conventional approach to solving the governing 'S the total mobility coefficient, and
equations, eqns (1)—(5) in hydrology involves a straight-  G(S,) = (fuow + (1 = fu)onw)d
forward substitution of the Darcy equation (egn (4)) into
the mass balance equation (eqn (1)) to eliminate the fluxes
from the equations. The primary unknowns are chosen to be
the two phase pressurgs, andp,,. The saturation in the
non-wetting phase is eliminated using eqgn (3).

is a nonlinear function of saturation that accounts for
gravitational effects. Eqn (11) forms the first of the two
governing equations in the fractional flow approach.

The second equation used in the fractional-flow equation
Kk set is derived from manipulation of eqn (1) with= w, such

ISy w _ that the primary dependent variable is wetting-phase satura-
T V-<—-(pr—pwg)> =0 © tion S,. Because eqn (1) contains an individual phase flux

that is dependent on an individual phase pressure, an
ISy KK _ equation is found relating the individual phase flay, to
< '(Vpnw - ing)> =0 (7)

o _ Y.
¢ ot the total flux

W

Penw

The equations are coupled and nonlinear, and are closed by gy, =7 (Sy, P) =fw(Sy)
specification of the pressure—saturation relation (eqn (2))

and relative permeability relation (egn (5)). X ot + kkfnw(g—g;VSN+(pW—pnw)g>] 12
Hnw
2.2 Fractional flow approach In egn (12)#, is the fractional flow function incorporating

both gravity and capillarity. In one dimension, substitution
The fractional flow approach is again based on a set of two of eqn (12) into eqn (1) witkx = w, and assuming incompres-
nonlinear equations, each of which has its origin in eqns sible flow, results in the following saturation equatiof.
(1)-(5), but with a different choice of dependent variables.

Definition of these variables requires extensive manipula- @ﬁ—i— FW’(SN)@— i<D(SN) @> =0 (13)
tion and rearrangement of the two-phase equations. For ot 0z 9z 0z
simplicity of presentation, consider the case of constant where
fluid densities and constant porosity. Then the individual Kk
phase mass-balance equations (eqn (1)) sum to form Fu(Sy) =fw (qT + —(oy, — pnw)g> (14)
nw
V(0w + nw) = Va7 =0 (8)
and
where g+, called the total flux, is the sum of the phase- Kk 1,y dp,
volumetric fluxes. In one dimension this equation has the D(S,) = — fy —— =% (15)
particularly simple solution that the total flux is a constant ow 0Sy

in space determined by the boundary conditions. A new The coefficient Dg,) is the capillary diffusion term, while
independent variable is now introduced, called the global F,, is the fractional flow, containinfy, as well as the gravity
pressure, with the aim of expressing the total flux solely in drive, and is defined so tha}, = F,(S,,P) in the absence of
terms of the gradient of the global pressure and not in termscapillary forces. The definition ffdegenerates intg+f,, in
of the individual phase pressures. Following Chavent and the absence of gravity. Note that the definition gfifr eqn

Jaffre*! a global pressure is defined by (14) differs slightly from that of Chavent and Jaffteand
1 S N d Morel Seytouxt whose definition is divided by the total
P=Z(py+Pa) — J (fw_ _> ﬁdsm (9) flux gr. The equation form presented here follows the
2 S 2] dSy approach of Hansen et &F who included the multiplicand
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gt in Fy, in order that it remained well defined in the case
of zero total flux.

When eqgns (11) and (13) are supplemented with appro-
priate boundary conditions, they may be solved for the i
unknownsP and S,. Implementation of boundary con- 08 [
ditions is discussed below. The equations are coupled i
through the dependence of the nonlinear coefficiehts
and G in the pressure equation on the saturat®nand
through the dependence of the total velodtyappearing
in the saturation equation on the global pres$unsote that
the definition of global pressure means that the pressure and
saturation equations are only loosely coupled. Other defini-
tions of pressure and saturation will increase the coupling
between the equations. The other advantage of the choice of
global pressure and saturation as independent variables is L
that these variables are smoother than the individual phase 0 Lol = AP PR -~ Liiu
pressures, and so the performance of numerical methods 0 010203040506 070809 1
based on these equations should in principle be better than (a) Saturation
solvers employing phase pressures as the independent
variables?

In an oil-water system, with typical relative permeability L
functions given by**? 08 L

Ko = Si (16)
Krnw = (1 — SN)3 (17)

the fractional flow function has characteristic S-shape, in
the absence of gravity and assuming equal fluid viscosities. 0.4
Fig. 1 shows both the relative permeability functions and
the fractional flow functiori. This S-shaped fractional flow
function leads to solutions that combine a shock front with
a rarefaction wave when gravity is absent; this is the L :
classical Buckley—Leverett solution. When capillary diffu- o L T T P N AN A T
sion is considered, the front exhibits some spreading, but 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
this is often relatively minor. Fig. 2 shows the Buckley— (b) Saturation

Leverett solution, together with the full solution of the
saturation equation with permeabilities given by eqgns (16)
and (17) and D&,) = 0.04S,(1 — S,) with ¢ = 0.01 (See
Dahle'® for details of these functional forms). In either 0.01
case, the frontal speed may be estimated from the classic
theory of hyperbolic equations.

For an air—water system the fractional flow and capillary
diffusion functions are quite different from the oil-water
case, because of the much higher viscosity difference
between fluids. For air and watgr, = 0.001 N s m? and
pa= 183X 10°Nsm? at 20C, leading to a mobility
ratio of 54.6, as opposed to the oil-water system above, _
which was modeled with a mobility ratio of 1. As pointed 0.002 -
out by Morel Seytoux, this viscosity contrast causes both i
curves to shift significantly toward the higher water Y A T T TP TPTT TPTI IO TV TP TR
saturations, greatly diminishing the rarefaction wave and 0 010203 04 05 0.6 07 08 09 1
expanding the shock range. As an example, the relative  (c) Saturation
permeability functional forms determined experimentally

by Touma and Vaucliff are used to derive the fractional ! o .
flow and capillary diffusion functions. The apbpropriate water system. (a) Relative permeability curves. (b) Fractional flow
pillary ) pprop function. The slope of the Wel§2tangent line drawn gives the

functional  forms, determined experimentally by speed of shock fronts formed in the solution. (c) Approximate
Touma and Vauclin, are as follows: the capillary capillary diffusion function withe = 0.01.

0.6 | Krnw

04 |

relative permeability

02 [

0.012

LI B B B

0.008

0.006 |

0.004

D(S) (Dimensionless)

Fig. 1. Functional forms of Yountf and Dahle et at® for an oil—
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Fig. 2. Solution of the saturation eqn 13) using the oil-water functional relationships shown in Fig. 1. The MMOC solution of the full
saturation equation is shown as a line with nodal positions marked. The Buckley—Leverett solution is shown as a solid line for comparison.
The Buckley—Leverett front speed is 4/3.

pressure—saturation relationship, obtained by fitting a vansecond and third solve the fractional flow equations

Genuchtef* form to the data, is (egqns (11) and (13)) using a finite difference and
Suc— Sur characteristics formulation. All numerical results are
Sv= 1+5wr presented here for one-dimensional problems. The

1- two-pressure solution has been generalized to higher
dimension$’® The numerical solutions of the fractional

1 ( pC )n
+ | o
Powd flow equations (eqgns (11) and (13)) have not been extended
whereS,. = 0.843:S,, = 0.0716:a = 0.044 cnil; n = 2.2 to higher dimensions using the methodology presented
s= 0.843;S,, = 0. o = 0. yn=2.

andp,y is the density of water at standard temperature and here,_ although several cher auth.ors have presen_ted
pressure. For the hydraulic conductivities, Touma and Solutions to tr;ezzzagratmn equation (eqn (13)) in
Vauclin fitted a polynomial to experimental observations two-dimensions.>##4®

with the results:

K= };ﬂm(qosm)ﬁ‘w

n

3.1 Solution of two-pressure equations

The two-pressure equation formulation was employed by
Celia and Binnin§ in their numerical simulation of two-

ko= LB phase air and water flow in the unsaturated zone. Their
A +< Pc ) : method is based on a finite element discretization in
@ Powd space, a backward Euler approximation in time, and a so-

with A, = 18 130 cm h™: B,, = 6.07; the porosity = 0.37; called m.odifigd Picard Iineqrizatipn. With superscr:rpmd

m denoting time level and iteration level, respectively, the
time-discretized equation takes the following form (see
Celia and Binning for details):

the saturated conductivity of watét,s = 15.40 cm h™;

A, = 3.86 X 107> and the saturated conductivity of air
is K45 = 2800 cm hL. The air and water functional forms
are shown in Fig. 3. The figure is plotted using the normal-

ized water saturatio= =3« The water relative perme- a5, " spn LM gt
ability does not reachk,, = 1 because the maximum 0.— a 1
saturationS, is less than 1 during infiltration. The figure dpe At
also shows the fractional flow function and the capillary +1masn+lm
diffusion function. _9 %%p"vi
0z L 0z

_ i kwv\j’l,m p\l'llv+1,m_p g
3 NUMERICAL METHODS oz L 9z w
Th ical method ted. The first sol S-S, .

ree numerical methods are presented. The first solves e —RHLM (18)

egns (6) and (7) and is called a two-pressure solution. The A1
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Fig. 3. Functional forms of Touma and Vaucfifor air and water in a coarse sand. (a) Relative permeabilities. (b) Pressure saturation

curve. (c) Capillary diffusion function. (d) Fractional flow functiér(e) Fractional flow functior for the caseyr = 0. The dashed line is
discussed in Section 3.2.3.
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n+tlm . niim n+1,m first is an Eulerian approach due to Morel-Seytoux and
ds, 6Pa — oph Hian 12,13 ; . :
A AP Billica,*® who employed a simple finite difference
Pe scheme. The second is an Eulerian—Lagrangian approach
KKLH 1 gopn+Lm that solves the saturation equation using a modified
( —) method of characteristics (MMOC).
oz Ha 0z
S“W“ m_g KKLFL™ 7 gphtdm 3.2.2 Finite difference solution of the saturation equation
At +1 0z P az — Pad The fi_ni_te difference scheme dgveloped k_)y Mo_rel—_Seytoux
im and Billica employs a centered-in-space discretization and a
=Ry 19 Euler backward time stepping, with a Picard iteration
scheme for the nonlinear coefficients. For evenly spaced
where At™! = t™!' — " is the time step size, nodes and a constant (in space) total velocity, the scheme
n+1 m—kr (S}/‘l’l m) and 5pn+l m_ngrl m+1 p2+1m can be written

These equations are linearized with unknowap§,™ ™

and spl* ™. The right hand sid&}™*™ is a function of

the known pressures at the new time level and old iteration ~ _

(n+ 1,m) and old time () levels. At each iteration step the

equations are solved and thgl**™ used to update the

pressures. lIteration proceeds until the residgdir ™™

given by the right hand side of each equation reaches a

user specified error tolerance. The residual can be seen to

be a measure of the degree to which the numerical solution _

satisfies the governing equation.

To complete the discretization, a spatial approximation is

required. A lumped Galerkin finite element discretization is _(F]”jﬁzm anfﬁzm) (20)

chosen using piecewise linear basis functions. Lumping of

the mass matrix is useful in controlling oscillations that

arise through the finite-element discretization of the time wherej is an index over spaca,denotes the time level, and

derivative. The numerical equations are solved simul- m the iteration level.

taneously for the air and water pressures, with the air and

water equations at each node being written alternately in the3.2.3 MMOC solution of the saturation equation

matrix formation. This leads to a five-banded block While the finite difference approximation (egn (20)) has

symmetric matrix. certain benefits, especially for one-dimensional problems,
it ignores the fact that the hyperbolic part of the saturation

3.2 Numerical solution of the fractional flow equations equation may be solved by numerical methods that take
advantage of the secondary (hyperbolic) characteristics of

The fractional flow approach comprises two equations—the egn (13). The total flux is constant in one dimension and

pressure equation (eqn (11)) and the saturation equationsmooth in higher dimensions, and so an infiltrating front of

(egn (13)). These equations present a greater numericakthe wetting fluid will move at a fairly uniform velocity with

challenge than those of the two-pressure approach. Thea fairly constant shape.

two-pressure approach involves two equations with a simi- The saturation equation (egn (13)) can be solved by a

lar mathematical character, and so the same numericalcharacteristic-based approximation. One such method,

method can be used for both equations leading to a simplebased on the MMOC with localized grid refinement, was

numerical technique. In contrast, the fractional flow outlined and implemented by Celia and Binning for the case

approach involves two equations with completely different of knowngy and simple boundary conditions. Other similar

characters, and so separate numerical techniques must bapproaches include the recent Eulerian—Lagrangian loca-

+1,
AtDJ”_ ol

SWJrl m+1

+1, +1,
n ¢+§<Djny2m Dr+u2m>1$+1m+1

Az

_:r]iL,erl — §0$

1,
A
AZ

devised for each equation. lized adjoint method (ELLAM) approach of Dahle et 4.,
as well as earlier work of Dahf€ Espedal and Ewing’ and
3.2.1 Saturation equation others cited earlier in this paper. The procedure used herein

One of the main attractions of the fractional flow approach is an extension of the MMOC approach outlined in Celia
is the form of the nonlinear advection term in eqn (13). The and Binning?® The key enhancements to the original
family of characteristics associated with the hyperbolic part algorithm of Espedal and Ewinginclude the changed defi-
of these equations provide the physically-correct speed for nition of F, so that it remains well defined in the case of zero
an infiltrating front. Numerical methods may be developed total flux, the definition of operator splitting for growing
to take advantages of this information, thereby leading to infiltration fronts, and the development of an algorithm to
potentially improved numerical performance. Two methods handle general boundary conditions.

of solution of the saturation equation are presented here. The The numerical method solves the saturation equation
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(egn (13)), which we will rewrite: The operator splitting discussed above is for the case of

the wetting fluid infiltrating into non-wetting fluid. Under

%— ;Z( (SM%) = (22) drainage, and combined drainage-—infiltration events, the
definition needs to be modified. The discussion of these

where modifications is beyond the scope of this work. Questions
DS, 9S, Fu'(S,)dS, _als_o arise in heterogeneeus materials where the charac_ter-
Dt - ot o 0z (22) istics cross the boundaries between two materials having

different fractional flow function definitions. It is not clear
is the material derivative of saturation. The hyperbolic part how this would be handled with the current method. While
of the equatlon% 0 is nonlinear and produces solutions  the work of Langlo and Espeddladdresses the issue of
with shocks, although these shocks (or fronts) move with heterogeneity, it avoids this problem by using hetero-
well-defined speed. This frontal speed is calculated using geneous materials where only the absolute permeability
the convex envelope of the fractional flow function through varies, with the nonlinear functional forms remaining the

the following algorithm. The saturation equation is split
into two equations

DS, _ Sy, F(S)9S,

Dt ot ¢ 0z (23)
DSN I(b(S)Sw) 9 ISy
ST 07 ( (Sw) ) (24)

where the new functions’ and b are defined in order that
the equation® =0 gives the physical frontal speed. Eqn

same.

Numerically, egns (23) and (24) are solved separately
18.50 The characteristic eqn (23) is solved using a character-
istic algorithm, and the diffusion correction egn (24) is
solved using a spatially optimal Petrov—Galerkin finite
element method.

The first step in the numerical algorithm is the numerical
determination of the operator splitting. This is done by find-
ing S, and . Eqn (26) is solved using the method of
bisection and the result compared to the maximum satura-
tion in the domain to defin&, as above&"(jv is defined to be

(23) can be termed a ‘characteristic equation’ and eqn (24) the minimum saturation in the domain.

a ‘diffusion correction equation’. The correct definitions for
F(S,) and bg,) are found by examining the Buckley—

Leverett solution to the equation. This leads to the

following definition:

F(Sw) = F(Sw) + b(S,)Sy
where
- Fu(Sw) S=S=1
FSW = | Fu(Sh) — Fu(Sh) _ (25)
- =S

Localized grid refinement is very attractive with a
Lagrangian approach to the governing equations. The
saturation equation can be solved analytically for frontal
speed, and the speed used a priori to refine the grid at the
projected location of the infiltrating front at the new time
step. The frontal location is defined by examining the
gradient of saturation. In regions where the grid has been
refined but the gradient of the solution is no longer large, the
mesh refinement is removed.

The characteristic equation (egn (23)) is solved by back-
tracking along characteristics from the new time level to

and bg,) is defined in the appropriate manner. Note that find the characteristic solutioB™’. Because the velocity

the above splitting is based on the assumption thés is
concave forS, = S,.

The simulations presented in this paper are all one-
Splitting in the higher-dimensional case is through the interpolation of the saturation to grid

dimensional.
including gravity has been considered by Harf$eand
Hansen et af® The functionF(S,) for oil and water, as
used by Dahlé® is shown in Fig. 1b, as the concave
envelope of the fractional flow function.

While the shock is never fully developed for problems
with non-zero capillary diffusion, the algorithm is designed
to assume that the infiltrating front is fully developed, so
that the Buckley—Leverett saturation is used & The

Buckley—Leverett saturation is found using the tangent

law of Welgé'® which solves the equation

A& dRw_
S dS

for the Buckley—Leverett saturatid®, . If the maximum

(26)

of the front is a function of the saturation, an iterative
scheme must be employed to find the correct solution.
Note that a major source of error in the numerical solution

locations inbetween nodes.

The material derivative in the diffusion correction
equation is then approximated using the characteristic
solution and the diffusion correction equation is written as

S-S

d 1 1
A CCAREIS
P Lot ~
a—Z<D(S?ﬁ S )—

The diffusion correction is discretized using quadratic
Petrov—Galerkin finite elements, and linearized using a
standard Picard iteration scheme. The Picard iteration
scheme lags the nonlinear coefficients in the diffusion cor-

©

(27)

saturation in the domain is less than the Buckley—Leverett rection equation (eqn (27)) by one iteration, thus linearizing

saturation therf}, is reduced to this lower value.

the equation. The Petrov—Galerkin method divides the
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domain intoE elementsQ, = [z,z.,,]. Piecewise linear  variable). Boundary conditions may also be specified in
basis functionsf;, and spatially ‘optimal’ test functions, terms of the total fluxg; (or gradients ofP). The total-

¥; are used, with sufficient upstream weighting added to flux-type boundary condition is often used in simulations
provide enough artificial diffusion at the solution front so of petroleum reservoirs. In petroleum reservoirs the total
that non-unique solutions do not fortfiThe test functions  flux can conveniently be specified as zero, as the domain
are weighted ‘upstream’ in relation to théj*+™) term, of simulation is often enclosed by no-flow boundaries (for
which is an advection term in the opposite direction to the example in a five-spot problem).

flow. Fig. 4 shows a fully upstream weighted test function  In hydrology, complex boundary conditions involving
for a front that is moving from left to right (since is an combinations of individual fluid fluxes or pressures often
advection term that sharpens the front it is in the opposite must be specified. These types of boundary conditions at
direction to the frontal movement). Within the Petrov— the land surface are difficult to implement using the
Galerkin procedure, the temporal derivatives are lumped fractional flow form of the equations, because of the non-
using theLl scheme of Milly>* and the grouped term  physical nature of the global pressure. For example, for
b(SS is expanded using the finite element representation. infiltration problems, the boundary conditions at the land
The resultant algebraic system is tridiagonal in structure, surface are typically specified as a given air pressure and
and is solved using the Thomas algorithm. See Birting a water flux. From these two values, neitRemor S, can be

for details. calculated.
In one-dimensional problems it is possible to derive
3.3 Solution of pressure equation analytically an expression for total fllxBecause we wish

to develop algorithms that are applicable to higher-
Compared to the saturation equation the pressure equation islimensional problems, where analytical expressions are
very well behaved. The pressure equation is a highly non- not available, we will not employ the analytical expressions
linear elliptic equation. The pressure, however, is relatively in the one-dimensional problem. Rather, a more general
smooth and the numerical approximation is straightforward. technique will be developed.
Since all simulations presented here are for a homogeneous An iterative technique is required for implementation of
medium, a simple Galerkin finite element method with general boundary conditions. Consider the case where the
piecewise linear basis functions is used instead of the flux of wetting phasey, and pressure of the non-wetting

mixed methods of Ewing and Heinemafh. phasep,, are known at the top boundary and the saturation
and global pressure are specified at the lower boundary. In
3.4 Treatment of boundary conditions this case the saturation and global pressure within the

domain, boundary conditions at the top end of the column
If the fractional flow approach is applied to general multi- and the total velocity are unknown. An iterative solution for
dimensional, incompressible fluid flow problems, the P, S, andqgr in the interior and® andS, at the boundary is
appropriate equations are the pressure equation (eqn (11))developed. The procedure can be described as follows:
and the saturation equation (eqn (13)). This set of equations

is solved for the water saturatidg,, and the global pressure, 1. Begin the solution by estimating the total flux by
P. The boundary conditions for these equations can be using the known wetting phase boundary flgx =
specified either in terms of the saturation of water or in Qu-

N

terms of the global pressure (which is a non-physical . Next estimateS,,, the saturation at the top boundary

by dividing the given value ofy, by the saturated

14 ¢ hydraulic conductivity. Use this ratio as a guess for
kw, and determine the value db,, implied by
that value of k.. Mathematically, solve
W— kw(Sop) =0 for the saturationS,, at
the top boundary.

3. Given S, at the boundary solve the saturation
egn (13) using MMOC.

4. Given the solutiorg,, calculate the capillary pressure
at the top boundary, then with the givem at the
boundary, calculatep,. Now with p,, p, and Sg,
known at the boundary, calculate the total pressure,
Puwp at that boundary using eqn (9). The integral in
egn (9) must be evaluated with care, because of the

N et Y SR highly nonlinear nature of the integrand. In particular

z z coordinate Zis1 the derivative of capillary pressure is infinite at both
Sy = SwsandS, = S; = S,,;. The extended midpoint
Fig. 4. Basis and test funtions for the MMOC. rule with Romberg’s method is us&do construct a
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Fig. 5. Integral — JS; (fw — 5) gﬁds,v as a function of saturation in the definition of global pressure using the functional forms of Touma
Su and Vauclif® for the case of air and water phases.

lookup table for the integral in eqn (9). The integral particular for the combination of a known flux in the
from the definition of global pressure is shown in water phase and a known pressure in the air phase. The
Fig. 5. algorithm is not directly applicable to other combinations
5. Given Py, at the boundary, solve the pressure eqn of phase fluxes/pressures at the boundary. Different
(12). algorithms based on similar iterative techniques will need
6. Updateqr from the pressure solution, and then find to be developed for these combinations. The requirement for
gw at the top boundary using eqn (12). different iterative algorithms for each boundary type will
7. Update S, at the top boundary by matching the not add to the computational time required to solve the
calculatedq,, at the top boundary with the known fractional flow equations. However, the complexity of the
boundary flux. The algorithm has the following steps: computer code will be greatly increased in fractional flow
codes that are developed to satisfy generalized boundary
conditions. This contrasts with the two-pressure approach,
where different boundary conditions can be accommodated
relatively easily.

(@) In the first iteration on the boundary conditions
estimateAS,, by employing a discrete version of the
mass balance eqn (1) in the boundary element

Ow2 — Owa g

ASew="17 3.5 Mass-balance

where gy1, Qw2 are the fluxes at the first and second . .
nodes of the domain respectively. These fluxes areAmass—balance calculation provides necessary (but not suf-

estimated using the current saturation solution and ficient) verification of the validity of the numericgl solution.
eqn (12). The r_nass-_balanf:e for th_e t\_No-pressure solution has been

described in Celia and BinnirfgThey showed that mass-
(b) In the first and subsequent iterations, compare the balance errors for this numerical scheme are small. In
calculated fluxqg,,; with the desired boundary flux. If  contrast, a MMOC discretization of the fractional flow
the calculated flux is less than the desired boundary equations is prone to mass-balance errors. These arise
flux, increment the saturation at the top boundary, through a poor treatment of the boundary conditions in the
Siopr DY ASip. Otherwise, decremer&,, by ASq,. In

each iteration decrease the sizens,, by dividing by r*Boundary Conditions (7)
2. This iterative approach is similar to the method of Stop *
bisection and will converge provided the initial esti- Saturation equation (3) Q
mate ofAS,, is large enough. s lu;ldate4

8. Re-solve the saturation equation by MMOC and Pressure equfgo(n)(s)
repeat the loop (steps 3-8) until the solution
converges. a7, Gy (6)

Fig. 6 shows a simplified schematic of the algorithm. The _ ) .
Fig. 6. Sequence of computation for solution of the pressure—

. 4
algonthm.follows closgly those proposed by. Chgn et'al. saturation equations with general boundary conditions. The
and Vassilev (A. Vassilev, personal communication, 1996). numbers in the diagram refer to sequence of steps explained in

The boundary condition algorithm described above is the text.



472 P. B. Binning, M. A. Celia

MMOC. The mass-balance errors inherent in the MMOC comparison is made of the two-pressure approach, and the
have been noted by Healy and RusS&Recently, Dahle finite difference and MMOC solutions of the saturation
et al*® have shown how an ELLAM can be used to address equation. A second problem is then solved where general
the mass-balance errors inherent in the MMOC discretiza- hydrologic boundary conditions are applied, so the global
tion of the saturation equation. The ELLAM was devised by pressure equation must also be solved in the fractional flow
Celia et al>* to provide a rigorous framework for character- approach. For both problems, material properties are taken
istic methods and an improved treatment of boundary from the measurements of Touma and Vauéfinas
conditions. presented above.
The finite difference algorithm of Morel-Seytoux and
Billica is based on the conservative form of the governing 4.1 Example 1
saturation equation (eqn (13)), and as with any implicit
centered finite difference approximation of the conservative In petroleum engineering applications it is natural to specify
form of the advection—dispersion equation, it is perfectly boundary conditions in terms of the total flux and the satura-
mass conservative. tion of a single fluid. The first example considers a one-
Mass-balance errors have been calculated for all threedimensional problem in hydrology where it is possible to
methods by comparing the mass change in the domainspecify such boundary conditions. For one-dimensional,
calculated from the saturations with the boundary fluxes, incompressible flow the pressure equation is degenerate
either specified as a boundary condition or calculated and so the total flux is constant in space and determined
from the solution. The results are reported for a number of by the boundary conditions. If the total flux is specified at
simulations below. the boundary then it is not necessary to solve the pressure
equation. The first example considers infiltration of water
into an initially dry soil with a uniform normalized satura-
4 RESULTS tion of 0.1646. The normalized water saturation at the soil
surface is specified to be 0.9159, and at the bottom of the
Several problems relevant to applications in hydrology are soil column itis 0.1646. The bottom of the column is sealed
presented. They consider multi-phase infiltration of water to both the air and water phases, so that the total flux is zero.
into a porous medium initially filled with air and water. First Note that the boundary conditions at the bottom of the
a simulation is presented where saturations are specified agolumn,q, = g, = 0 andS,, = 0.1646, are over-specified
the boundary conditions and the total flux is known, so it (normally the saturation at the bottom of the column would
is only necessary to solve the saturation equation. A not be given) to avoid the need for an iterative procedure to
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Fig. 7. Solution of a problem with constant saturation boundary conditions using three different numerical methods. The MMOC is shown

with nodes marked. The finite difference solution and the two-pressure solution are shown as solid lines and are indistinguishable from eac!

other. The computational effort involved in the MMOC solution is about one tenth that of the other techniques (see Table 1). There is,
however, some loss of accuracy in the colution.
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determine the bottom boundary conditions. For water to with the MMOC are due to the iteration scheme in the
infiltrate into the column it is necessary for the air to escape solution of the ‘diffusion correction’ equation with a larger
through the soil surface. This is possible since the soil number of iterations required as the strength of the non-
surface is not saturated. linearities increases. The single step integration of the
The problem is solved using three numerical methods. hyperbolic part of the equation will also become more
The first is the two-pressure solution. The others are basedinaccurate with choice of a larger time step size. In contrast,
on the fractional flow approach, and use the MMOC and a the time step choices for the finite difference and two-
finite difference approximation to solve the saturation pressure solutions are restricted by a Courant number
equation. The two-pressure solution employs a spatial criterion, which for explicit schemes can be givertby
discretization with elements of sizz= 1 cm and variable-
sized time steps. The total simulated time is 100 min, and ~ ~ _ 1<FW(3N) - Fw($)> Aty
the initial time step size iat = 2 s. Initially it is necessary @ S,-< AX
to employ a small time step as the pressure changes are steep
at the infiltrating front and so the nonlinearities are strong. For the implicit schemes employed here the Courant
However, as the water infiltrates into the column the infil- number criterion is less striéf;°® but is still a good
trating front smooths, so the nonlinearities weaken and guide for choice of time step.
larger time steps can be taken. In this case the time step
can be increased from its initial size of 2 s, up to 116 s at 4.2 Example 2
the end of the simulation. In each iteration the error
tolerance on the residual (See eqgns (18) and (19)) is set toln hydrology, boundary conditions are frequently specified
be 1x 107>, in each phase separately. A common problem specifies a
The finite difference solution employs the same spatial flux in the water phase and a pressure in the air phase. In
grid as the two-pressure solution, and constant sized timethis case the coupled pressure and saturation equations must
steps of size\t = 200.0 s. The time step size is chosen to be be solved simultaneously. For the present example, a
as large as possible, and is constrained by the need to ensureolumn of soil is considered with a normalized initial
that the nonlinear iteration scheme is convergent. The errorsaturation of 0.1655. The boundary conditions for the
tolerance in the nonlinear iteration scheme on saturation isproblem are that the water flux is fixed at 8.3 cit land
0.001. the air pressure equal to 0 cm water at the soil surface. The
The MMOC solution employs a coarse spatial grid with air pressure is set to be 0.1204 cm and the water pressure
Az = 10.0 cm and localized grid refinement with the same —99.8796 cm at the bottom of the soil column. The air
grid size as used in the two-pressure solution. The grid is boundary conditions are chosen to be those for a static
refined whenever the saturation change between neigh-equilibrium in the air phase and the bottom boundary con-
boring nodes exceeds 0.05 (see the solution in Fig. 7 for adition on the water phase is chosen to match the initial water
typical grid). A constant sized time step of 600 s is used and content of the column. The column is filled with a coarse
the error tolerance on the nonlinear iteration schemes is setsand, having the properties given in Fig. 3. The problem was
to be 0.001 on the saturation. modeled by Celia and Binnifigusing the two-pressure
A comparison of the solutions obtained by the three approach. The problem is solved here using both the
methods is given in Fig. 7. Table 1 gives a comparison of fractional flow approach and the two-pressure solution and
the computational effort required by the three methods. The comparisons are made between the methods.
results from the three simulations suggest a significant The fractional flow approach employs the MMOC to
difference in computational efficiency. The two-pressure solve the saturation equation and the finite element method
solution was the most inefficient scheme, the finite to solve the pressure equation. The iterative methodology
difference solution of the saturation equation marginally described previously is used to determine the boundary con-
better, and the MMOC solution of the saturation equation ditions. A coarse grid of 11 nodes with a spacing of 10 cm is
the most efficient solution technique. used. The grid is locally refined, with each element being
The efficiency of the MMOC is due to the lack of restric- broken into 10 smaller elements whenever the normalized
tion on time step size. The only restrictions of time step size saturation change between neighboring nodes exceeds 0.05.

Table 1. Comparison of the numerical efficiency of techniques for solving the two-phase flow problem in a case with fixed saturation

boundaries
Two-pressure solution MMOC Finite difference
Computational time (s) (Sun SPARCstation 5) 43.1 60.0 34.0
Number of time steps 96 10 30
Courant number 0.055-1.06 5.562 1.84
Iterations/time step 3-10 14-2 6-13

Mass balance error 0% 3.5% 0%
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This value was chosen as it provides a good balance Fig. 8 shows that the infiltrating water has a fairly
between computational efficiency and accuracy. Ten time uniform frontal speed and a constant shape. The uniform
steps of size 10 min are employed in the solution. Error frontal speed is given by the Buckley—Leverett equation.
tolerances on each of the iterative processes in the codeThe infiltrating front retains its shape as the capillary diffu-
must also be specified. These are the iterative characteristicsion is exactly balanced by the self-sharpening character of
solver and the iterative ‘diffusion correction’ in the solution the hyperbolic part of the equation. These observations are
of the saturation equation, and the iteration criteria for con- the key to the computational efficiency of the MMOC solu-
vergence of the boundary conditions. In all three cases antion. Note also that Fig. 3c shows that the capillary diffusion
error tolerance of X 10~ was specified on the normalized acts only over high ranges of saturation, as observed in
saturation. Fig. 8. Analysis of the fractional flow function and the
The two-pressure solver uses a grid with the same resolu-capillary diffusion function give a good a priori idea of
tion as the refined grid of the fractional flow solver, i.e. 101 the form of the solution to the equations.
nodes of spacing 1 cm. A time step size of 6 s is initially Fig. 9 shows the global pressure corresponding to the
applied, and the time step is increased by a factor of 1.05 atsaturation solution shown in Fig. 8. The global pressure is
later times when the number of nonlinear iterations falls a mathematical convenience and so no physical interpreta-
below 10. Using this time step acceleration scheme thetion can be made of this figure. The figure does show one
time step size could be increased from the initial 6 s to problem with the fractional flow approach. The localized
101 s at the end of the simulation. The convergence criteriagrid refinement is based on gradients of the normalized
on the solution is 2X 1072 on the residual. saturation and not on the global pressure. As can be seen
The two solutions are compared in Figs 8 and 9, and the from Fig. 9 the global pressure gradient is quite large in
computational cost of each solution is shown in Table 2. regions remote from the saturation front. In particular, the
Fig. 8 shows saturation as a function of depth at various time global pressure variation at the boundary is quite large.
intervals. The distribution of nodes used in the fractional However, the coarse grid is used at the boundary after the
flow solution is also shown in the figure. As can be seen infiltration front has moved into deeper parts of the column.
from the figure, the fractional flow solver has used a refined This leads to quite large errors in the determination of the
grid in the neighborhood of the steep infiltration front. The boundary conditions. A modified grid refinement algorithm
two-pressure solution is perfectly mass conservative. In could be employed where both the pressure and saturation
contrast the fractional flow solution shows a 4% mass gradients are used to determine the degree of refinement.
balance error, with the infiltrating front lagging behind the However, such an approach would lead to large portions of
correct location. the grid requiring refinement, reducing the computational
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Fig. 8. Saturation at various times in an initially uniform dry soil with a fixed water flux at the oil surface (geptbm). The figure shows
a comparison between the fractional flow solution and the two-pressure solution.
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Fig. 9. Global pressure obtained using the two-pressure and fractional flow approaches for the problem illustrated in Fig. 8.

advantages of localized grid refinement for the example 5 DISCUSSION
being considered here.

The two-pressure solution is more accurate than the frac- Numerical solutions based on the fractional flow form of the
tional flow solution, with large errors in the fractional flow governing equations appear potentially attractive, because
solution due to discretization errors leading to a poor treat- of the relatively simple form of the pressure equation
ment of the boundary conditions. The computational effort (egn (11)), and the hyperbolic character of the saturation
involved in obtaining these solutions is given in Table 2. equation (egn (13)). Numerical algorithms can be designed
The two-pressure solution requires about twice as muchto take advantage of these properties, with the aim of gain-
computational time as the fractional flow solution. The frac- ing significant improvements in computational efficiency.
tional flow solution required 31.85 s on a Sun workstation.  The results presented here show that for problems in one
Of this time the majority was spent in solving the highly dimension where the saturation equation alone can be
nonlinear saturation solution (29.9 s), with only a small solved, the fractional flow approach is far more efficient
amount of time required to solve the much better behavedthan equivalent solvers employing the two-pressure
pressure equation (1.0 s). approach. However, for generalized boundary conditions,

The simulation shown here has been chosen to illustratesuch as those frequently employed in hydrology, the full
the deficiencies of the fractional flow solution. As the spatial pressure—saturation solution of the fractional flow equations
and temporal discretizations are refined the solutions con-must be coupled with an iterative scheme to find the
verge. To obtain a solution with the fractional flow approach correct boundary conditions. In this case there was little
that is of similar accuracy to the two-pressure solution or no computational advantage gained by the fractional flow
requires a uniform fine grid. Localized grid refinement approach.
based only on the saturation solution does not give satis- The fractional flow approach, while offering some
factory results. If the fractional flow solution is required to computational attractions, is also far more complex to
obtain a high accuracy solution the advantages in computa-understand and to implement in computer codes. The two-
tional efficiency of the method over the two-pressure pressure code requires approximately 690 lines of
approach disappear. generously commented code, whereas the fractional flow

Table 2. Comparison of computational effort for the fractional flow and two-pressure solutions for the problem illustrated in Fig. 8

Two-pressure solution Finite difference
Computational time (s) (Sun SPARCstation 5) 48.9 31.85
Time steps 105 10
Iterations/time step 5-10 5-19 diffusion, 3—11 boundary

Mass balance error 0% 4%
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code requires 2080 lines. The largest portion of the frac- implications for the back-tracking step of the characteristic
tional flow code is the MMOC solution of the saturation solution and the treatment of the ‘anti-diffusion’ correction
equation. Given that no computer code is ever bug free, that is associated with the fractional flow splitting. Because
the significantly larger amount of computer code required numerical solutions are quite sensitive to the treatment of
for the fractional flow approach should be a serious the anti-diffusion, additional study appears to be needed to
consideration when choosing the solution methodology.  incorporate general material heterogeneities. A similar
The results presented here are for one dimension. It issituation arises when multiple infiltration and drainage
possible that in higher dimensions the fractional flow fronts occur, as might be expected for simulation of inter-
approach will become more competitive. For example, it mittent rainfall events. In this case, different fractional flow
was shown in Binnin®® that the time step acceleration splittings are required for the different fronts, even when
that can be used very successfully in one dimension with hysteresis is ignored.
the two-pressure approach, gives little advantage in higher One of the most appealing features of the fractional flow
dimensions. In contrast the fractional flow approach has formulation is the physical insight offered by the form of the
been demonstrated to be equally effective with large time saturation equation, as recognized by pioneers in this area
steps for petroleum problems in both one and higher dimen-including Buckley and Leveréft and Morel-Seytoux.
sions*® Until the time when the higher-dimensional version While numerical methods based on the fractional flow
of the fractional flow approach with general boundary formulation of the governing equations are very attractive
conditions has been completed, no final conclusions onfor simple model problems, their extension to practical
the efficiency of the method can be made. problems remains to be demonstrated. The results presented
There are a number of drawbacks to the fractional flow here for general boundary conditions suggest that potential
formulation. These include the non-physical nature of the gains in numerical performance due to the equation form
total pressure term; the associated complications in imple- may be offset by the additional complications of the
menting boundary conditions whose specification is method. Much work needs to be done before numerical
associated naturally with individual phases instead of methods based on the fractional flow approach will be
combinations of phase information; the complications intro- able to compete with methods having more general applic-
duced by the nature of the gravity terms; the difficulties in ability, such as those of Celia and Binnfrand Forsyth and
dealing with multiple infiltration and drainage fronts; the coworkers3*3°
problem of including compressibility; and the complications
in the characteristic solution when material heterogeneity is
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