ELE539A: Optimization of Communication Systems Lecture 13: Network Utility Maximization

Professor M. Chiang Electrical Engineering Department, Princeton University

February 28, 2005

Lecture Outline

- Resource allocation problems
- Network utility maximization
- Dual decomposition and canonical distributed algorithm
- Kelly's decomposition and primal algorithm

Well-Known: Network Flow Problem

Minimize a linear cost subject to linear flow constraints

Classical linear programming based methods

Includes many special cases:

- Multicommodity flow problems (max flow, min cut...)
- Transportation and assignment problems
- Shortest path and spanning tree problems

Limitations in modelling nonlinearity in Internet and wireless networks

Rate Allocation Problem

Elastic traffic: applications modify their data transfer rates according to available bandwidth in communication networks

- TCP traffic over Internet TCP/IP suite
- ABR traffic over ATM networks

Q: How to share available bandwidth among competing flows of elastic traffic?

Mathematical model of rate control and distributed algorithms to understand

- Equilibrium properties: efficiency and fairness
- Dynamic properties: local and global stability

Resource Allocation Problem

Application-level view: what's user utility?

Utility as function of QoS parameters: throughput, latency, jittering, distortion, energy efficiency...

Objective: maximize sum of user utilities

Network constraints:

- Link capacity, total power...
- Medium access possibilities
- Routing possibilities

Constrained nonlinear optimization problem formulations

Basic Model

Communication networks with L links, each with capacity c_l

Sources (end user): S of them, each emitting a flow with transmission rate x_s

Fixed single-path routing: source s uses links $l \in L(s)$

Routing matrix \mathbf{R} : 0-1 matrix with $R_{ls}=1$ iff $l\in L(s)$

Linear flow constraint on rates: $\mathbf{R}\mathbf{x} \leq \mathbf{c}$

Each source has utility $U_s(x_s)$, an increasing, strictly concave, twice differentiable function of $x_s \ge 0$

Objective: maximize network utility (sum of source utilities)

Economics interpretation: Dual variables as feedback congestion price

NUM Framework

Basic version (A monotropic program):

maximize
$$\sum_s U_s(x_s)$$
 subject to $\sum_{s:l\in L(s)} x_s \leq c_l, \ \forall l,$ $\mathbf{x}\succ 0$

Current applications:

- Reverse engineering: TCP congestion control and Internet rate allocation
- Forward engineering: Network resource allocation, e.g., power control
- Layering as optimization decomposition: TCP/IP/MAC/PHY interactions

Major approaches:

- Optimization-theoretic: distributed optimal solution algorithm
- Game-theoretic: Nash equilibrium characterization

Fairness

Family of utility functions parameterized by $\alpha \geq 0$:

$$U^{\alpha}(x) = \begin{cases} (1-\alpha)x^{1-\alpha}, & \text{if } \alpha \neq 1, \\ \log x, & \text{otherwise} \end{cases}$$

 $\alpha=1$: proportional fair

 $\alpha=2$: harmonic-mean fair

 $\alpha = \infty$: maxmin fair

Feasible ${\bf x}$ is proportionally fair (per unit charge) if for any other feasible ${\bf x}'$,

$$\sum_{s} w_s \frac{x_s' - x_s}{x_s} \le 0$$

Lecture 15: TCP Congestion Control Solving NUM

Different source algorithms update primal variables (source rates) for different utilities:

• TCP Vegas: log utilities

• TCP Tahoe: arctan utilities

Different queue management update dual variables (link prices):

- FIFO
- RED

Rigorous and significant implications to equilibrium properties of efficiency, fairness, stability, delay of rate allocation

NUM Extensions

Utility function:

- Nonconcave
- Coupled
- Not a function of rate
- Nonsmooth

Constraint:

- Nonlinear constraints
- Integer constraints

Pricing:

• Per-user differential pricing

G.NUM

Generalized NUM:

Minimizing additive objective over additive constraints

- Compared to NFP: nonlinear objectives
- Compared to MP (Basic NUM): nonlinear constraints
- Compared to separable convex optimization: coupling, nonconvexity
- Compared to general market equilibrium theory: new questions on distributed solution and dynamic behavior

A special case of Generalized NUM: Geometric Programming

Lecture 16: Layering as Optimization Decomposition

- Network
- Generalized NUM
- Layers
- Decomposed subproblems
- Interfaces
- Functions of primal or dual variables
- Layering
- Decompositions

Lecture 16: Layering as Optimization Decomposition

- How to layer? How not to layer?
- Separation theorem?
- Both reverse engineering and forward engineering
- Systematic study of architectural principles and tradeoffs of layering
- Vertical and horizontal decomposition

How many different ways to decompose?

- Infinite!
- How you write down the problem constraints decomposition possibilities!

Lecture 19: Wireless NUM

Rate allocation constraint set depends on

- Time-varying channel condition
- Adaptive resource allocation, e.g., power control

Joint rate allocation and power control in:

- Cellular: single cell downlink
- Cellular: single cell uplink
- Cellular: multiple cells
- Ad hoc wireless multi-hop networks
- End-to-end hybrid networks

Many other variations: scheduling, beamforming, base station assignment...

Dual Decomposition

Basic NUM:

Convex optimization with zero duality gap

Lagrangian decomposition:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{s} U_{s}(x_{s}) + \sum_{l} \lambda_{l} \left(c_{l} - \sum_{s:l \in L(s)} x_{s} \right)$$

$$= \sum_{s} \left[U_{s}(x_{s}) - \left(\sum_{l \in L(s)} \lambda_{l} \right) x_{s} \right] + \sum_{l} c_{l} \lambda_{l}$$

$$= \sum_{s} L_{s}(x_{s}, \lambda^{s}) + \sum_{l} c_{l} \lambda_{l}$$

Dual problem:

minimize
$$g(\lambda) = L(\mathbf{x}^*(\lambda), \lambda)$$
 subject to $\lambda \succ 0$

Canonical Distributed Algorithm

Source algorithm:

$$x_s^*(\lambda^s) = \operatorname{argmax} \left[U_s(x_s) - \lambda^s x_s \right], \ \forall s$$

Selfish net utility maximization locally at source s

Link algorithm (gradient or subgradient based):

$$\lambda_l(t+1) = \left[\lambda_l(t) - \alpha(t) \left(c_l - \sum_{s:l \in L(s)} x_s(\lambda^s(t))\right)\right]^+, \ \forall l$$

• Balancing supply and demand through pricing

Certain choices of step sizes of distributed algorithm guarantee convergence to globally optimal $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$

Kelly's Decomposition

Problem $USER_s(U_s; \lambda_s)$ with variables w_s , one for each source s:

maximize
$$U_s\left(\frac{w_s}{\lambda_s}\right) - w_s$$
 subject to $w_s > 0$

Source s chooses to pay w_s to maximize profit, where λ_s is charge per unit flow for source s

Problem $NETWORK(\mathbf{R}, \mathbf{c}; \mathbf{w})$ with variables \mathbf{x} :

maximize
$$\sum_s w_s \log x_s$$
 subject to $\mathbf{R}\mathbf{x} \preceq \mathbf{c}$ $\mathbf{x} \succeq 0$

Network knows payments w_s from all sources r and chooses rate allocation to maximize log utility over linear flow constraints

Network does not need to know $\{U_s\}$, but still needs to be distributively solved

Kelly's Decomposition

Theorem: there exist λ , w and x satisfying $w_s = \lambda_s x_s$ such that

- 1. w_s solves $USER_s(U_s; \lambda_s)$
- 2. \mathbf{x} solves $NETWORK(\mathbf{R}, \mathbf{c}; \mathbf{w})$
- 3. x is the unique solution to basic NUM

Proof: by Lagrange duality and complementary slackness

Economic interpretation:

- ullet User's choice of charges and network's choice of allocated rates and price per unit share reaches equilibrium \Rightarrow System optimum
- ullet Demand w_s equals price λ_s times quantity x_s

Dual NETWORK Problem

Primal problem $NETWORK(\mathbf{R}, \mathbf{c}; \mathbf{w})$ with variables \mathbf{x} :

maximize
$$\sum_s w_s \log x_s$$
 subject to $\mathbf{R}\mathbf{x} \preceq \mathbf{c}$ $\mathbf{x} \succeq 0$

Lagrange dual problem $DUAL(\mathbf{R}, \mathbf{c}; \mathbf{w})$ with variables $\boldsymbol{\mu}$:

maximize
$$\sum_s w_s \log(\sum_{l \in L(s)} \mu_l) - \sum_l \mu_l c_l$$
 subject to
$$\pmb{\mu} \succeq 0$$

Recover optimal primal variables from optimal dual variables:

$$x_s = \frac{w_s}{\sum_{l \in L(s)} \mu_l}$$

Primal Algorithm

$$\frac{dx_s(t)}{dt} = \kappa \left(w_s - x_s \sum_{l \in L(s)} \mu_l(t) \right)$$

$$\mu_l(t) = p_l \left(\sum_{s:l \in L(s)} x_s(t) \right)$$

- ullet Link l charge $p_l(y_l)$ per unit flow, when total flow on link l is $y_l = \sum_{s:l \in L(s)} x_s$. Each source tries to equalize the total cost with target value w_s
- Link l generates feedback signal $p_l(y_l)$ when total flow on link l is y_l . Each source linearly increase its rate (proportional to w_s) and multiplicatively decrease its rate (proportional to total feedback)

Assume $p_l(y_l)$ is nonnegative, continuous, and increasing function not identically zero

Global Stability

Theorem: The following function is a Lyapunov function for the primal algorithm. The unique ${\bf x}$ maximizing network utility is a stable point to which all trajectories converge

$$U(\mathbf{x}) = \sum_{s} w_s \log x_s - \sum_{l} \int_{0}^{\sum_{s:l \in L(s)} x_s} p_l(y) dy$$

Rates ${f x}$ vary gradually as shadow prices ${m \mu}$ change as functions of ${f x}$ Let

$$p_l(y) = (y - c_l + \epsilon)^+/\epsilon^2$$

As $\epsilon \to 0$, maximization of Lyapunov function approximates arbitrarily closely the primal problem $NETWORK(\mathbf{R},\mathbf{c};\mathbf{w})$

Barrier function interpretation

Lecture Summary

Network Utility Maximization

- An emerging, unifying framework for analysis and design of communication systems
- Substantial theoretical advances in recent years
- Significant practical motivations and applications

Readings: F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, "Rate control for communication networks: shadow prices, proportional fairness and stability," *J. Operations Research Society*, vol. 49, no. 3, pp. 237-252, March 1998.

F. P. Kelly, "Charging and rate control for elastic traffic," *Eur. Trans.* on *Telecomm.*, vol. 8, pp. 33-37, 1997.