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Size dependence of the ferroelectric transition of small BaTiO, particles: Effect of depolarization
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A theory has been developed to examine the depolarization effect on the ferroelectric transition of
small BaTiOj; particles. To reduce the depolarization energy, a crystal would break up into domains of
different polarization. In this study, we consider cubic particles with alternating domains separated by
180° domain walls. The depolarization energy and the domain-wall energy were incorporated into the
Landau-Ginzburg free-energy density. Assuming a hyperbolic tangent polarization profile across the
domain wall, the domain-wall energy ¥ and the domain-wall half thickness £ can be obtained by minim-
izing ¥ with respect to £&. To account for BaTiO; not being a perfect insulator, a Schottky space charge
layer beneath the particle surface that shields the interior of the crystal from the depolarization field was
considered. The equilibrium polarization P and domain width D can be obtained by minimizing the to-
tal free-energy density with respect to both P and D. The results of the calculations show that the fer-
roelectric transition temperature of small particles can be substantially lower than that of the bulk tran-
sition temperature as a result of the depolarization effect. Consequently, at a temperature below the bulk
transition temperature, the dielectric constant € can peak at a certain cube size L. These results agree
with the existing experimental observations. Finally, the theory can also be applied to other ferroelectric
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materials such as KH,PO, or PbTiO;.

I. INTRODUCTION

The effect of particle size on the ferroelectric phase
transition and the dielectric properties of small BaTiO,
particles has long been an interest of research. Experi-
ments with submicrometer size BaTiO; and PbTiO; par-
ticles have revealed that particle size plays an important
role on the paraelectric-to-ferroelectric transition and on
the dielectric properties of small particles.!™” For exam-
ple, early x-ray-diffraction (XRD) experiments on BaTiO,
powders at room temperature showed a reduced ¢ /a ra-
tio of the tetragonal ferroelectric phase as the particle
size was decreased below 1 um.? More recent experi-
ments on powder samples clearly showed that the
paraelectric-to-ferroelectric transition temperature T, de-
creases with a decreasing particle size. Ishikawa, Yoshi-
kawa, and Okada® showed that the transition tempera-
ture T, of PbTiO; particles decreases with a decreasing
particle size as the particle size reaches about 500 A by
probing the softening of the transverse optical mode with
Raman spectroscopy. Later, Uchino, Sadanaga, and
Hirose* used x-ray diffractometry to show that the transi-
tion temperature T, of BaTiO; particles also decreases
with a decreasing particle size when the particle size is
below 0.2 pm. Other researchers’~’ have also reported
similar observations that small BaTiO; particles are cubic
at room temperature. Flowever, the critical size below
which BaTiO; particles become cubic seems to vary with
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the preparation methods. %7

Meanwhile, the size dependence of the dielectric con-
stant has also been observed in both PbTiO; composites®
and in BaTiO; ceramics®™!° and composites.!! The dielec-
tric constant of a composite of small PbTiO; particles in
a conductive matrix (polymer with carbon) was shown to
decrease with a decreasing particle size.® The authors
suggested that the decrease in the dielectric constant with
smaller PbTiO; particles is due to the lack of domain for-
mation in the small particles.® The size dependence of
the dielectric constant of BaTiO; ceramics is an intri-
guing one. It was shown that the dielectric constant ex-
hibited a peak with respect to the grain size and the peak
value of the dielectric constant was higher than the
dielectric constant of a BaTiO; single crystal in either the
¢ or a direction.”!® Moreover, with transmission elec-
tron microscopy (TEM), Arlt, Hennings, and de With®
showed that the 90° domain width of the BaTiO; ceram-
ics decreases with a decreasing grain size. When a
BaTiO; crystal transforms from the cubic nonpolar phase
to the tetragonal ferroelectric phase, it undergoes expan-
sion in the ¢ direction and contraction in the a direction.
Overall, the crystal undergoes a volume expansion as it
transforms to the ferroelectric phase. Therefore, a grain
within a BaTiO; ceramic would experience a pressure ex-
erted by the surrounding grains as the ceramic trans-
forms from the nonpolar phase to the polar phase. Arlt,
Hennings, and de With’ suggested that the decrease in
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the 90° domain width with a decreasing grain size is a re-
sult of minimizing the stress energy associated with the
cubic-to-tetragonal phase transformation. They further
attributed the increased dielectric constant with a de-
creasing grain size as a result of the increased volume
fraction of the domain walls as the grain size becomes
smaller. However, the theory of Arlt, Hennings, and de
With® cannot explain why the dielectric constant of a
ceramic sample decreased again as the grain size was fur-
ther decreased; nor can they explain the decrease of T, in
the powder samples. )

It is conceivable that stresses can develop in a ceramic
sample since grains cannot expand freely as the ceramic
transforms from the nonpolar phase to the polar phase
and stresses may affect the dielectric behavior. However,
unlike ceramic samples, powder samples in the polar
phase should be stress free since particles can undergo a
free expansion at the transition. It is unclear what causes
the change in the transition temperature of powders as
the particle size decreases. One possible explanation for
the decrease in the transition temperature is the pressure
effect. It is well known that the ferroelectric transition
temperature of BaTiO; decreases with an increasing pres-
sure.'2 Uchino, Sadanaga, and Hirose* suggested that
the decrease of the transition temperature of small Ba-
TiO; particles is a result of the higher pressure due to the
decreased radius of curvature of the small particles.
However, to produce the observed change in 7', it would
require the polar crystals to have a surface tension two
orders of magnitude higher than that of a typical ceramic
crystal.

A plausible explanation for BaTiO; and PbTiO; parti-
cles to have the observed decrease in T, with a decreasing
particle size is the depolarization effect. Batra, Wurfel,
and Silverman'® have shown that the ferroelectric transi-
tion of thin films can be strongly affected by the depolari-
zation field. Depolarization has also been demonstrated
to affect the transition temperature of small KH,PO,
(KDP) particles. 4 Experiments on KDP particles em-
bedded in an insulating medium showed that particles
smaller than 150 nm exhibited no ferroelectric transition
at 123 K, in contrast to particles larger than 400 nm. By
replacing the insulating medium with a conductive one,
the transition of small KDP particles at 123 K was re-
stored, demonstrating that the absence of the transition
of small KDP particles in an insulating medium was due
to the depolarization effect. Even though BaTiO; and
PbTiO; are not perfect insulators, it is possible that the
reduction of T, in the small BaTiO; and PbTiO, particles
is also due to the depolarization effect.

The reason that the depolarization effect suppresses the
ferroelectric transition of small XDP particles is that it
increases the energy of the polar phase. The depolariza-
tion energy can be reduced by domain formation or con-
duction. While the experiment on KDP particles qualita-
tively demonstrated the depolarization effect on the fer-
roelectric transition temperature of small particles, de-
tailed knowledge about how the depolarization effect
influences the ferroelectric transition of small particles is
lacking. For example, how is the formation of domains
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within a particle affected by the size and conductivity of
the particle? How does this in turn affect the transition
temperature of the particle?

The purpose of this paper is to theoretically examine
the depolarization effect on the paraelectric-to-
ferroelectric transition of small particles. The approach
is to include the terms associated with depolarization in
the Ginzburg-Landau free-energy density® %5 of a parti-
cle. The calculations will be carried out for BaTiO;,
since the coefficients of the Ginzburg-Landau free energy
for BaTiO; are well known.>!*15 To reduce the electro-
static energy due to the depolarization field, the crystal
would break up into domains of different polarizations.
Therefore, the energy associated with depolarization
should include (1) the energy due to the depolarization
field and (2) the energy of the domain walls. For simplici-
ty, we only consider cubic particles with planar domains
separated by 180° domain walls in this paper. It should
be noted that for BaTiO; both 90° and 180° domain walls
can occur in the tetragonal phase; the shape of the parti-
cles is not exactly cubic, and the domains may not be pla-
nar. Nonetheless, the present approach is an attempt to
qualitatively give an estimate of the depolarization effect
on the ferroelectric transition of small particles. Con-
siderations of other particle geometries (e.g., spheres) or
other types of domain walls would only modify the quan-
titative results slightly.

For a given cubic particle size at a given temperature,
the equilibrium polarization and the equilibrium domain
width can be obtained by minimizing the total free-
energy density with respect to both the polarization and
domain width. Since the theory involves the energy of
the 180° domain walls, to be self-consistent, we also calcu-
late the domain-wall energy within Ginzburg-Landau
theory. For a given polarization, assuming a hyperbolic
tangent polarization profile with the domain-wall thick-
ness as a variable, the domain-wall energy can be ob-
tained by minimizing the domain-wall energy with
respect to the domain-wall thickness. To take into ac-
count the fact that particles are not perfect insulators, a
Schottky-type space-charge layer near the surface!!7
that shields the interior of the particles from the depolari-
zation field is also considered. The results of the calcula-
tions are compared to the existing experiments. It should
be noted that the depolarization effect has no counterpart
in ferromagnetic crystals, as the magnetostatic self-
energy is about 10 times smaller than the transition ener-
gy and thus cannot suppress the spontaneous magnetiza-
tion.

The rest of the paper is organized as follows. Section
II contains the theory. The results of the calculations
and a discussion are given in Sec. III. Concluding re-
marks are given in Sec. IV.

II. THEORY

For a crystal that undergoes a paraelectric-ferroelectric
transition, the total free-energy density (free energy per
unit volume) F may be separated into two parts:

F=F(P)+F,, (1)
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where P denotes the polarization, F(P) the part of the
free-energy density that arises from a nonzero polariza-
tion, and F,, the part of the free-energy density that is not
related to the polarization. According to the theory of
Ginzburg and Landau,>'»!> F(P) can be expanded in
terms of P. Many ferroelectric materials such as
perovskite ferroelectrics undergo a first-order transition
as temperature is lowered below the transition tempera-
ture T,. Therefore, it is necessary to expand the polar
part of the free-energy density F(P) at least to the sixth
order in P as®!%1
_%p2,  Bpa O 56

F(P) 2P +4P+6P , 2)
where the coefficient a=a (7 — T, ), with a being the in-
verse of the Curie constant and T, the Curie-Weiss
temperature, and the coefficients 8 and o for the fourth-
and sixth-order terms are more or less constant. The
equilibrium P is determined by minimizing Eq. (2) with
respect to P. For BaTiO; crystals, the numerical values
for the coefficients «, B, and o are well known. However,
Eq. (2) only describes the polar part of the bulk free-
energy density of large single-domain crystals and it does
not include the energy contribution associated with depo-
larization. It is the purpose of this paper to incorporate
the depolarization contribution into Eq. (2).

A, Depolarization energy

For simplicity, let us consider a cubic crystal. If the
crystal is a perfect insulator and has only one single
domain with polarization P, the polarization would lead
to surface charges on the top and bottom surfaces as il-
lustrated in Fig. 1(a), resulting in a depolarization field
E,=—4xwP whose direction is opposite to that of P.
Therefore, the depolarization energy per unit volume is

P
E,=— | E,dP'=27P?, 3
d f 0 1 T 3)
and for a single-domain crystal, the total polar part of the
free-energy density should then be
F,(P)=F(P)+27P?. 4)

The depolarization energy E; is negligible when P is
small. However, ferroelectrics generally have high polar-
ization. The polarization of perovskite ferroelectric crys-
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FIG. 1. (a) A cubic crystal of size L with one single domain
of polarization P. (b) A crystal of size L with domains of alter-
nating polarization separated by 180° domain walls. The

domain width is D.
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tals is on the order of 10° esu/cm?. To reduce the depo-
larization energy in the ferroelectric state, the crystals
tend to break up into domains of different polarization.
It was shown that when a cube of side L breaks up into
domains of alternating slices of up polarization and down
polarization with a domain width D as illustrated in Fig.
l(ll)g, the depolarization energy per unit volume is reduced
to

.D
E' = ‘IPZ_
d 1- . (5)

By breaking up into domains, the depolarization energy
of a crystal is reduced by a factor of D /L in addition to a
constant numerical factor. Meanwhile, the breakup
creates domain walls. Let ¥ denote the domain-wall en-
ergy. Including the domain-wall contribution, the total
depolarization-energy density of a multiple-domain cube
is then ‘ '

L

=1
D

L - ©)

D
= 22
E,=17P* +y T

Equations (5) and (6) are valid if the domain-wall thick-
ness is negligible compared to the domain width D. 18

B. Space-charge layer

Note that Eqgs. (3)—(6) are good for perfect insulators.
If the crystal is not a perfect insulator, a space-charge
layer at the surface can affect the ferroelectric properties
of the crystal. The existence of a space-charge layer near
the surface of BaTiO; has been studied by many investi-
gators using various techniques. These experiments can
be found in many reviews.*!7 Space-charge layers can
be due to surface ionic vacancies as suggested by
Kinzig>!? or to Schottky exhaustion barriers®® as sug-
gested by Triebwasser.?! In this paper, we will consider
the Schottky space-charge layer that effectively shields
the interior of the crystal from the depolarization field.
The width of the Schottky barrier depends on the
charge-carrier concentration. Generally, it was estimated
that for BaTiO; the thickness of the space-charge layer
ranges from 10 to 10* A, depending on the mobile
charge-carrier concentration. #~17 In general, the charge
distribution within the layer is nonuniform.!*>?? In the
present paper, for simplicity, we will assume a Schottky
type of space-charge layer. The charge density within the
layer is uniform as illustrated in Fig. 2. Let ¢ denote the
thickness of the space-charge layer, and let us first con-
sider a single-domain crystal for the convenience of dis-

tI | -—--==- >

FIG. 2. Space-charge layers of thickness ¢ with uniform
charge distribution.
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cussion. Assuming that the surface-charge density due to
the polarization is totally balanced by the opposite
charges within the layer, the charge density p in the
space-charge layer would then be

—P

= ;- 7
[ M
The electric field E in the layer is then
E="%P_2) for0<z<t, ®)

and E=0 outside of the layer. Therefore, for a single-
domain crystal, the depolarization-energy density is
modified as

E,=—2 f f 4"P —2)dz dP'/L =271'P2% . 9)

where the factor 2 takes into account that there are two
space-charge layers, one at the top and the other at the
bottom. The consideration of a Schottky space-charge
layer of thickness ¢ modifies the depolarization-energy
density by a factor ¢t /L. Applying the same analysis for
multiple-domain crystals, the total depolarization energy
depicted in Eq. (6) becomes

L4

Dt
=1, 24 —
E;=17P v |5

LI (10)

1
-

C. 180° domain walls

There have been quite a number of theoretical calcula-
tions for both 90° and 180° domain-wall energies of
BaTiO3.23 ~2 In the present paper, we are only con-
cerned with the 180° domain walls. To be consistent with
the Ginzburg-Landau theory we used for this study, we
will calculate the energies of the 180° domain walls within
Ginzburg-Landau theory. If the polarization is nonuni-
form, the polar part of the free-energy density at position
r becomes a functional of P(r) as

F(P(r)=ZP(r)*+ gp(r>4+ L B(r)+c| VR

(11)

If a domain wall is located at x=0, assuming that P is a
function of x only and is independent of y and z, one can
define the domain-wall energy ¥ as

= [ AF(P(x))dx , (12)

where AF(P(x))=F(P(x))—F(P), where P and F(P)
denote the bulk polarization and the bulk free-energy
density, respectively. The equilibrium polarization
profile P(x) across the wall can be obtained by requiring

» JAF(P(x))
—c0 aP(X)

We will assume that the polarization profile P(x) is a hy-
perbolic tangent function of x, i.e.,

P(x)=P tanh(x /£) , (14)

dx =0, (13)
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where P denotes the bulk polarization and £ the half
width of the wall. A schematic of a 180° domain wall is
shown in Fig. 3. With Eq. (14), the domain-wall energy
minimization requirement shown in Eq. (13) becomes

Sy _
3 =0 . (15)
Therefore, given a bulk polarization P, the equilibrium
domain-wall polarization profile P(x) and the domain-
wall energy can be obtained by minimizing ¥ with respect
to £. Note that the hyperbolic tangent domain-wall po-
larization profile of Eq. (14) is a reasonable approxima-
tion considering that (i) the equilibrium domain-wall po-
larization profile is hyperbolic tangent if the free-energy
density is a fourth-order function of the polarization, i.e.,

F(P(x))=%P(x)2+§P(x)4+cIVP(x)[2 i

and (ii) experimental domain-wall profiles obtained by
electron holograms® agreed fairly well with a hyperbolic
tangent one. With P(x)=P tanh(x /£), the domain-wall
energy ¥ between two semi-infinite domains can be writ-
ten as

goper 3 tep2. (e

3¢

The half thickness of a wall between two semi-infinite
domains can be obtained analytically by minimizing ¥
with respect to &:

y=—agp’—2gppi— 22

E=[4c(—a—2BP*—Bgp" 1172, (17

Once the domain-wall half thickness is known, the
domain-wall energy may simply be rewritten as

=-—P%. (18)
§

For multiple-domain crystals with a domain width D and
the polarization at the center of a domain P, the domain-
wall energy becomes

v=["" (PG ~F(P)ldx (19)

and can be written analytically as

-

FIG. 3. Schematic of a hyperbolic tangent polarization
profile across a 180° domain wall. The domain-wall thickness is
2£, where £ is as defined in the text.
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y=—a,EaP?)—a,t %BP"' —aE %apﬁ
+a, 2??2 ) (20)

where

a;=tanh~ (D /2£) ,
a,=tanh~3(D /2£)[1+ ltanh*(D /28)] ,

az=tanh (D /2£)[ 1+ Ltanh*(D /2§) 2D
+ Ltanh*(D /28)],
a,=tanh™ XD /2£)[1—Ltanh*(D /2£)] .
In the limit D >>2§,
a1=1+2e"D/4§ ,
ay=4+Be DM,
22)

— 23 1 186 , —D/4E
a;=x+ige ;

=21 4,—D/4
(14""-3-+-§-e g .

Therefore, for a finite domain width D, the domain-wall
energy not only depends on the domain-wall half thick-
ness &, but also the domain width D. However, as we will
show below, it turns out that £ is much smaller than D.
Therefore, the modification of ¥ and £ due to a finite D is
rather limited as can be seen from Egs. (20)—(22).

D. Free-energy density of a multiple-domain crystal

Combining Egs. (2) and (10), the polar part of the free-
energy density of a multiple-domain crystal of size L can
be written as

F(P,D,L)=2P"+ Bpay 2 pe

4

Dt L 1
+1.7p22 L 4 || L —

LL '|D L’ 23)

with ¥ being depicted in Eqgs. (20)~(22). Thus, for a given
crystal size L, the equilibrium polarization P and the
domain width D can be determined by minimizing the
free-energy density F{P,D,L) with respect to P and D,
ie.,

8F(P,D,L) _

aP (24)
and

F(P,D,L) _
3D '

Once the equilibrium polarization P is obtained, the
dielectric constant can be obtained by

e=4ry+1, (26)

(25)
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where Y is the dielectric susceptibility defined as
-1 O*F(P,D,L)
ap?

The minimization of F with respect to D, i.e., Eq. (25),
gives

27)

172 172

172 _IL

t

Y

D=
1.7pP?

28)

From Eq. (28), one can see that for a given polarization
the domain width D is roughly proportional to the parti-
cle size L. Note that if there is no consideration for the
space-charge layer, D would be proportional to L!/2
The consideration of a Schottky-type space-charge layer
that totally balances the surface charge changes the
dependence of D from L!/? to L. If we consider a more
realistic charge distribution, D may not be exactly linear
in L. However, it is fair to say that if we assume D ~L",
the exponent v must be larger than 1. In the TEM exper-
iment of Arlt, Hennings, and de With,’ the domain width
as a function of the grain size in a double-logarithmic
plot indeed appeared to have a slope larger than ;.

Finally, the effect of the depolarization energy and the
domain-wall energy on the transition temperature of
small cubic crystals of size L can be qualitatively under-
stood as follows. With the depolarization energy
1.7PAD/L)t/L) and the domain-wall energy
y(L /D —1)/L, the coefficient of the P? term in the free-
energy density is no longer a=a(T —T,, ) but a'. For
simplicity, let us assume & <<D, so that tanh(D /2£)=1,
which is indeed the case as we will show in the following
section. Using Eq. (16) for ¥, one finds

, Dt 2& 8 ¢

a =a+3.4—L2 + |— D a+—3 _é' . (29)

Rewriting a'=a'(T — T), one obtains
2

a —a[ (30)

and
-y _ 1| ,Dt 8¢
To=Tow =5 |L772F 3% (31)

Equation (31) shows that as the crystal size L is reduced,
the Curie-Weiss temperature and hence the transition
temperature 7', are lowered.

III. RESULTS AND DISCUSSION

The coefficients «, 8, and o in the Landau-Ginzburg
free energy can be obtained from the literature. The
coefficient a for the P? term is related to the Curie con-
stant and the Curie-Weiss temperature as
a=a(T —T,, ), where Ty, is the bulk Curie-Weiss tem-
perature and @ the inverse of the bulk Curie constant.
For BaTiO,, above and near the bulk transition tempera-

ture T, the coefficient 3 of the P* term has a mild tem-
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TABLE 1. Coefficients of the Landau-Ginzburg free energy
of BaTiO;.

T.. 122°C
Tow 112°C
a 7.4 X107
B 1.13x 10712
o 3.34X 1072
c 0.3X 10716

perature dependence and can be written as
B=18X10"1%T,, —T,) with T,=175°C. However, it
is'not clear what value 8 should be at lower temperatures.
In this paper, we use 8=18X1071% (T, —T,) for all
temperatures. This 8 value gives very good quantitative
agreement between the calculated polarization-
temperature curve and the experimental one for bulk
BaTiO;. The quantitative values for a, T, Ty, B, and
o are listed in Table I.

A, 180° domain walls

To calculate the domain-wall polarization profile and
the domain-wall energy, one needs to know the coefficient
¢ for the gradient term in Eq. (11). However, the
coefficient ¢ is not known. Recent electron holographic
experiments®® on BaTiO; showed that at room tempera-
ture a 90° domain wall has a thickness of about 20 A. If
one assumes that the thickness of a 180° domain wall is
roughly the same as that of a 90° one, then Eq. (17) can be
used to estimate the coefficient, i.e.,

c=38(-a=3pP'-BoPY. (32)

Using a polarization P =78 000 esu/cm? and 2£=18 A
at T=25°C and the coefficients «, 8, and o listed in
Table I, ¢ =0.3X 1075, Plugging this ¢ value back into
Eq. (16), we obtain a domain-wall energy y=35.3
ergs/cm® for P=78000 esu/cm? and 2£=18 A at
T =25°C, which is in line with the existing theoretical
calculations,? ™26 which ranges 1-10 ergs/cm? for the
180° domain walls in BaTiO;. Therefore, we feel that
c¢=0.3X10"1 is a fairly good representation for the
coefficient of the gradient term.

B. Multiple-domain crystals

For multiple-domain crystals, the results shown below
were for the space-charge layer thickness 1=75, 100, 167,
and 500 A. The layer thickness is related to the charge-
carrier concentration. A smaller ¢ represents a higher
charge-carrier concentration (i.e., higher electrical con-
ductivity). We will discuss more about the space-charge
layer thickness in Sec. IV. To show the effect of particle
size on the transition temperature T,, Fig. 4 shows the
polarization P as a function of temperature T for L=0.4,
0.5, 0.6, 0.7, 0.8, 2.0, and 1000 um with +=500 A. As L
becomes smaller, the transition temperature T, is de-
creased. Note that although the transition temperature is
lowered, the first-order nature of the transition is un-
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FIG. 4. P vs T for various L (in gm) with r=500 A. Note
that the drop of P at T, is roughly the same for all L.

changed. Furthermore, the polarization P at T, is about
55000 esu/cm? for all L. The reason for the more or less
constant P at T, for all L will be discussed in the next
section. For ferroelectric crystals such as BaTiO,, it is
known that the spontaneous strain (c/a —1) is propor-
tional to the square of the spontaneous polarization. !4
The constant P at T, for all L shown in Fig. 4 suggests
that (¢ /a —1) should also be constant at T, regardless of
the particle size. Indeed, the experiment of Uchino, Sa-
danaga, and Hirose* showed a constant (c/a —1) at T,
for all the particle sizes studied.

Meanwhile, from Fig. 4, one can see that at a given
temperature, e.g., 25 °C, the polarization decreases with a
decreasing L. Since the spontaneous strain (¢/a —1) is
proportional to the square of the spontaneous polariza-
tion, the decreased P with a decreasing L shown in Fig. 4
should also indicate a decrease of (c¢/a —1) with a de-
creasing particle size. In Fig. 5, we plot the room-
temperature (P /P )? as a function of L for ¢t =75, 100,
167, and 500 A where P, is the bulk polarization. P
does not change significantly with L at large L until L is
reduced to a certain size below which P decreases sharp-
ly. Moreover, below a critical size L., the crystal be-
comes nonferroelectric at room temperature. The critical

1.2 T e T T T
0.9 | " e U ¢
\ X t=500A
(P/P Y 0.6 O t=167 A 4
- % O t=100A
0 t=75A
0.3 | A (¢cra-1)t
* (c/a-1)1'2
0 ‘A—; vd 1 2 1L 1 1
0 1 2 3 4 5
L{um)

FIG. 5. (P/P,)* vs L for t=75, 100, 167, and 500 A. Also
plotted are the experimental (¢ /a —1)/(c/a —1),, from Uchi-
no, Sadanaga, and Hirose (Ref. 4) and Kinzig and co-workers
(Refs. 1 and 2), where (¢/a —1),, denotes the bulk (c/a —1)
value.
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size L, depends on the value of #: L, =0.45, 0.26, 0.2,
and 0. 175 pm for =500, 167, 100, and 75 A, respective-
ly. As ¢ becomes smaller, the ferroelectric phase can
remain stable to a smaller particle size. This qualitatively
explains why different authors seem to observe different
size dependence. Also plotted in Fig. 5 are the experi-
mental (c/a —1)/(c/a —1), for comparison: solid tri-
angles from Uchino, Sadanaga, and Hirose* and solid dia-
monds from Anliker, Brugger, and Kanzig, where
(c/a—1), denotes the bulk (¢/a —1) value. One can
see the different size dependence of (¢ /a —1) among the
two experiments.

In Fig. 6, we plot T, as a function of L for t=500, 167,
100, and 75 A. Agaln, T, does not change much at large
L, but decreases sharply below a certain L, similar to the
behavior of P versus L shown in Fig. 5. Also plotted in
Fig. 6 are the data points from the experiment of Uchino,
Sadanaga, and Hirose.* Note that even though the
(c/a—1})/(c/a—1), curve of Uchino, Sadanaga, and
Hirose appears to coincide with the calculated curve of
(P/P Y for t=175 A as shown in Fig. 5, the change in T,
in the expenmental system of Uchino, Sadanaga, and
Hirose is much more abrupt than the calculated curve of
T, versus L for t=75 A when the particle size is around
0. 1 0.2 pm. One possible explanation for the more
abrupt change of T, in the experiment is that the particle
size in the experimental system has a distribution. Since
larger particles have a higher T, the observed transition
temperature T, of particles that have a size distribution
would be determined by that of the largest particles in
the distribution rather than that of the average-size parti-
cles. Therefore, experimentally, T, would be very sensi-
tive to the particle-size distribution. On the other hand,
the quantity (c¢/a —1) at a certain temperature is an
averaged quantity over all particles and is, therefore, not
as sensitive to the presence of the larger particles. As a
result, experimentally, one may not see the same size
dependence between (¢ /a —1) and T,.

Meanwhile, the shape of the particles also has an effect
on the size dependence. It is known that the depolariza-
tion factor of a single-domain spherical particle is one-
third of that of a single-domain cubic particle. It is not
known what the depolarization factor of a multiple-

150

50
G —{3—t=75A
T.(°C) —O—t =100 A
.50 —O—t =167 A |
—<—1t =500 A
A ppt
150 . 1 . i 2 ! : i L o
0 1 2 3 4 5

L{um)

FIG. 6. T, vs L for t=175, 100, 167, and 500 A. Also plotted
are the experimental values from Uchino, Sadanaga, and Hirose

(Ref. 4).
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domain spherical particle would be. However, it can be
expected that for multiple-domain crystals, spheres
would also have a lower depolarization factor than cubes.
Therefore, the ferroelectric phase can be stable to a
smaller particle size with a sphere than with a cube. If
one assumes that the depolarization of a multiple-domain
sphere is also one-third of that of a multiple-domain
cube, then the effect of t—167 A for a cube would be
equivalent to that of t=500 A for a sphere of the same
size. That is, at room temperature, a cube with t=500 A
would become nonpolar for L <0.45 um, whereas a
sphere. with t=500 A would not become nonpolar until
L 0.26 um (Fig. 5). Similar to an infinitely large sys-
tem, the dielectric constant € of a small crystal also
reaches a very high value at T,. As an example, we plot
the polarization P and the dlelectrlc constant € as a func-
tion of T for L=0.6 um and t=500 Ain Fig. 7. As we
have discussed above, the value of a' is insensitive to L.
Therefore, the dielectric constant € of the L=0.6 um
crystal reaches about the same high value at T, as the
infinitely large system.>!%!> The dielectric Lconstant € as
a function of T for various L with t=500 A is shown in
Fig. 8. Since the dielectric constant peaks at T, and T,
decreases with a decreasing L, the dielectric constant at a
given temperature would also peak at a certain L for
which the transition temperature T, is close to the given

‘temperature. As an example, the d1e1ectrlc constant € as

a function of L for =500 A at T=15, 25, 45, and 65°C is
plotted in Fig. 9. One can see that € indeed peaks at a
certain L value, similar to the experimental observations
in BaTiO; ceramics. %10 In Fig. 10, we plot room-
temperature € versus L for =75, 100, 167, and 500 A.
Again, the value of L at which € peaks is also affected by
the value for ¢. As t is decreased, € peaks at a smaller L
as similar to the change in L, (Fig. 5).

Since most of the domain-wall studies were carried out
at room temperature, the values for the domain-wall en-
ergy v and the domain-wall thickness 2£ in the existing
literature are only suitable for room temperature. It is
worth noting that both ¢ and £ change substantially with
temperature, especially near the bulk transition tempera-
ture T,,. In Fig. 11, we plot £ and y versus 7 for a 180°
domain wall that separates two semi-infinite domains.
One can see that & tends to increase and y tends to de-

“80000° 25000
20000
o 60000
€
g 15000
@ 40000 BN :
- 10000
o
20000 5000
0 ! 0
0 20 40 60 80 100

T(°C)
FIG.7. Pand € vs Tfor L=0.6 um and =500 A.
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FIG. 8. e vs T for various L (in um) with T=500 A.

crease with an increasing temperature, especially near
T, :
The value of the polarization at the transition tempera-
ture T, depends on the values of @', T,—T,, B, and 0.
Both B and o are constant, and @’ and T are given in
Eqgs. (30) and (31). A constant P at T, for all L, requires
that a’(T, —T,) be a constant. We found that for all L,
T,—T, is about 8°C, roughly a constant. Meanwhile,
even though the ratio £/D tends to increase with an in-
creasing T, it generally remains small at T, as can be seen
in Fig. 12, where we plot £/D (T =T,) versus L for
=175, 100, 167, and 500 A. Therefore, ¢’ remains more
or less constant at T.. The constant a' at T, together
with the constant T, — T, gives the constant drop of P at
T, as shown in Fig. 4.

Note that even though for larger particles £/D at T, is
small and tends to increase with a decreasing L, for
smaller particles, i.e., L =1 um, £/D at T, saturates at a
constant value of about 0.145. It is interesting to note
that the range L =1 pum where £/D at T, is constant is
also the range where T, is substantially lower than the
bulk transition temperature T,,. Therefore, one may
think of this constant £/D ratio at T, as a ferroelectric
analog of the Lindemann criterion for melting, which

states that at the melting temperature the ratio V' Ax2/%
in a solid reaches a constant value where V Ax? is the

12000 . — .

8000

€ 6000 |-

T

3000

0.1 1 10

FIG.9. evs L (in um) at T==15, 25, 45, and 65°C with =500
A. Note that € peaks at a certain L whose T, is close to the

given temperature.

FIG. 10. € vs L at T=25°C for t=75, 100, 167, and 500 A.
Note that at a given T the peak position also changes with ¢.

root-mean-square displacement and X the mean nearest-
neighbor distance. In other words, when the ratio £/D at
T, reaches a critical value, the ferroelectric phase is no
longer stable.

The saturation of the ratio £/D at T, in small particles
sets the limit as to how small the domain width D can get
and helps explain why smaller particles have a lower T,
or why at a given temperature there is a critical size L,
below which the ferroelectric phase is absent. For exam-
ple, the explanation for the latter may be given as follows.
At a given T, the domain width D decreases with a de-
creasing L as shown in Fig. 13, where D at room temper-
ature is plotted versus L for t=75, 100, 167, and 500 A.
Meanwhile, at a given T, £ does not change very much
with a decreasing L as shown in Fig. 14, where § as a
function of L for =75, 100, 167, and 500 A is plotted.
As a result, at a given T, the ratio £/D increases with a
decreasing L as shown in Fig. 15, where the room-
temperature £/D for =75, 100, 167, and 500 Ais plot-
ted as a function of L. On the other hand, the saturation
of £/D at around 0.145 at T, shown in Fig. 12 indicates
that there is a limit on how small D can be. The inter-
cepts of the extrapolated curves of £/D with the dashed

6
4 =2
©
< f%'
up
2 3
0 : 1 : ! A 0
.20 60 100 140

T(°C)

FIG. 11. Half domain-wall thickness £ and domain-wall en-
ergy v as a function of temperature. Note that both & and y
change substantially near T, where T, is the bulk transition
temperature.
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FIG. 12. £/D (T=T,) vs L. Note that for small L, £/D at
T, reaches a constant value of about 0.145, which may be
thought of as an analog of the Lindemann rule.

line at £/D=0.145 gives the critical sizes L, at room
temperature, which are 0.43»5, 0.26, 0.2, and 0.175 um for
t=500, 167, 100, and 75 A. Below L_, the extrapolated
D would give a £/D ratio larger than 0.145. Therefore,
the ferroelectric phase becomes unstable for L <L, at
room temperature. Similarly, the £/D ratio of the small-
er particles reaches the constant value 0.145 at a lower
temperature, giving rise to the lower T, of the smaller
particles.

Finally, for the present calculations, in the bracket on
the right-hand side of Eq. (31) can be neglected and Eq.
(31) can be reduced as

1
TO=T0°° _7 (33)

Dt
1.72-2*'

Equation (33) describes how the Curie-Weiss tempera-
ture of small particles changes with the particle size L.
Since a’ is independent of L as we have discussed above,
for a constant ¢, it follows from Eq. (33) that
ATy=T,—T,, is proportional to D /L% Meanwhile,
since T,—Ty=8 for all L, it follows that AT, <D /L%
In Figs. 16 and 17, we plot AT, and D (T=T,) as a
function of L, respectively, where AT, =T,—T,,, with

1500 7 T T T
—O—t=500A
——t = 167 A 5
1000 - —O—t=100A
—_ ——t=75A
= t A
)
500 | ]
0 -
0 5

2 3
L (um)
FIG. 13. D(T=25°C) vs L for t=500, 167, 100, and 75 A.

T, denoting the transition temperature of an infinitely
large crystal. D (T =T,_) as a function of L can be fitted
as D (T=T,)<L"%7, and AT, is indeed proportional to
D (T=T,)/L? as L™'3. Note that at room tempera-
ture D increases linearly with L as shown in Fig. 13 in-
stead of D (T=T,)«L% as shown in Fig. 17. The
difference is that D (T =T,) is taken at the transition
temperature of each L, whereas the room-temperature D
shown in Fig. 13 is taken at a fixed temperature for all L.
The linear dependence of the room-temperature D with
respect to L is a result of using the Schottky type of
space-charge layer as discussed above.

IV. CONCLUDING REMARKS

We have examined the effect of depolarization on the
ferroelectric transition of small BaTiO; particles. To
reduce the depolarization energy, particles break up into
domains of different polarization. The depolarization en-
ergy, which includes both the energy due to the depolari-
zation field and the domain-wall energy, was incorporat-
ed into the Landau-Ginzburg free energy. Furthermore,
to take into account that BaTiOj; is not perfectly insulat-
ing, a Schottky-type space-charge layer about a few hun-
dred A thick as estimated by many researchers was con-
sidered. The domain-wall energy is calculated within
Landau-Ginzburg theory by assuming a hyperbolic

0.16 : ,

042 —O0—t=75A ..
—o— t=167A

0.08 —— t=500A

£/D (T=25°C)

L(um)
FIG. 15. £/D (T =25°C) vs L for =500, 167, 100, and 75 A.
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FIG. 16. AT, vs L for =500, 167, 100, and 75 A.

tangent polarization profile and by minimizing the
domain-wall energy with the domain-wall thickness.

We showed that with a Schottky space-charge layer
75-500 A thick the polar phase becomes unstable for cu-
bic particles smaller than 0.2-0.5 um at room tempera-
ture, depending on the space-charge layer thickness, in
line with many experimental observations.*%’ In addi-
tion, the polarization of small particles at a constant tem-
perature decreases with a decreasing particle size, in
agreement with the experimental result that the tetra-
gonality (¢ /a —1) of small particles decreases with a de-
creasing particle size."* Meanwhile, we also showed that
the polarization at T, is constant regardless of the cubic
particle size, which is in line with the experimental obser-
vation of a constant value of ¢ /a at T, for various parti-
cle sizes.* It was also shown that the domain width D de-
creases with the cubic particle size, which agrees with the
TEM observation of the 90° domain walls in BaTiO,
ceramics,’ although 180° domain walls were considered
in this study. Because of the size dependence of T, at a
given temperature, the dielectric constant peaks at a cer-
tain cubic particle size at which the transition tempera-
ture T, is closest to that temperature. This result agrees
with the observation in BaTiO; ceramic samples. ’

1000 ¢ T

L3 sy

100 |
—1—1t =500 A
—O—t = 167 A
—O—1t =100 A
——t=75A
10 ) e
0.1 1 10
L(am)

FIG. 17. D(T=T.,) vs L for t=500, 167, 100, and 75 A.
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“In principle, for a given bulk charge-carrier concentra-
tion, one can calculate the Schottky-layer thickness by
solving the Poisson (or Poisson-Boltzmann) equation for
the actual charge-carrier distribution in the particle, !>%
which was not done in the present paper. However, we
can estimate the charge-carrier concentration within the
layer, which is related to the charge-carrier concentration
within the particle. Assuming a Schottky-type layer, the
carrier concentration within the layer can be estimated
by n =p/e, where p is the charge density in the layer as
depicted in Eq. (7) and e the electronic charge. With
P =78 000 esu/cm? at room temperature, n =3 X 10!° and
2X10%° cm™3 for t=500 and 75 A, respectively. The
space-charge layer thickness ¢ decreases with an increas-
ing charge-carrier concentration in the layer. The
charge-carrier concentration within the layer should in-
crease with an increasing charge-carrier concentration in
the particle. Therefore, a smaller ¢ represents a higher
charge-carrier concentration (i.e., higher conductivity) in
the particle.

Generally, the theory works for semiconductors down
to insulators. As the conductivity of the material is
parametrized by the Schottky-layer thickness ¢, a smaller
t represents a higher bulk charge-carrier concentration in
the particle. For particles with a Schottky-layer thick-
ness ¢ <L, the depolarization energy is reduced by a fac-
tor of t/L as discussed in the text. In the case of insula-
tors, one may think that ¢ is so large that ¢ > L for all L.
Therefore, the depolarization field exists in the entire par-
ticle and there is no reduction in the depolarization ener-
gy; i.e., the t /L factor is replaced by L /L.

In addition, the present theory should be applicable to
all small ferroelectric particles regardless of the mecha-
nism of the ferroelectric transition. The reason is that
the depolarization effect which is the focus of the present
theory is independent of the transition mechanism. As
long as there is polarization, there is a depolarization
field regardless of how the polarization comes about.
Meanwhile, Landau-Ginzburg theory, which is the foun-
dation of the present theory, does not address the transi-
tion mechanism either. It only describes the ferroelectric
transitions by expanding the free energy in terms of the
polarization. With different values for the coefficients in
the free-energy expansion, Landau-Ginzburg theory is
applicable not only to perovskite ferroelectrics, but also

-to KDP whose transition mechanism is different from

that of the perovskite ferroelectrics. Thus the present
theory can be readily applied to other ferroelectric ma-
terials such as KDP or PbTiO, provided that the
coefficients in the Landau-Ginzburg free energy for these
materials are known.

- It should be noted that some ferroelectric materials
may have more than one ferroelectric phase. For exam-
ple, BaTiO; can transform from the tetragonal phase to
another ferroelectric phase (i.e., the orthorhombic phase)
at a lower temperature. The present theory only deals

-with the effect of particle size on the paraelectric-to-

ferroelectric transition. We did not consider the transi-
tion among different ferroelectric phases at the moment,
although the effect of particle size on the transition
among different ferroelectric phases is also an interesting
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problem.

Experimentally, the depolarization effect on small
BaTiO; particles can be examined by embedding the
small BaTiO; particles in both an insulating medium and
a conducting medium as has been done for small KDP
particles.'* The difference in the XRD and dielectric
constant measurements on the two types of composites
would be the result of the depolarization effect.

Besides the depolarization effect examined in this pa-
per, the contribution of the stress development is also im-
portant in ceramic samples and thin films.** The present
theory is more applicable to powders since stress develop-
ment is less likely in powders than in ceramic samples or
thin films. To take into account the stress effect or the
presence of 90° domain walls, a Devonshire type of
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theory®’ will be needed.

Finally, it is worth mentioning again that the depolari-
zation effect on the ferroelectric tramsition of small fer-
roelectric particles has no counterpart in ferromagnetic
crystals, as the magnetostatic self-energy is about 10°
times smaller than the transition energy and thus cannot
suppress the spontaneous magnetization. **
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