Adsorption of Sodium Dodecyl Sulfate on Functionalized Graphene Measured by Conductometric Titration

Andrew G. Hsieh, † Christian Punckt, †‡ Sibel Korkut, †‡ and Ilhan A. Aksay* †‡

†Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
‡Vorbeck Princeton Research Center, Vorbeck Materials Corp., 11 Deerpark Drive, Monmouth Junction, New Jersey 08852, United States

ABSTRACT: We report on the adsorption of sodium dodecyl sulfate (SDS) onto functionalized graphene sheets (FGSs) in an aqueous system, measured at broad SDS and FGS concentration ranges by conductometric surfactant titration. At dilute SDS concentrations (<12 μM in bulk solution), there is evidence of a counterion exchange between hydronium ions (from the dissociation of acidic chemical functionalities on FGS) and sodium ions coadsorbing with dodecyl sulfate monomers onto FGSs. We find that, for FGS with a carbon-to-oxygen ratio of ∼18, monolayer adsorption of SDS on FGS reaches full surface coverage by ∼12 μM SDS. Additionally, the critical surface aggregation concentration (csac) for surface micelle formation on FGS is measured to be ∼1.5 mM SDS. The transition from monolayer adsorption to surface micelle formation appears to occur at a similar SDS concentration on FGSs as on graphite, suggesting there is little difference in the surfactant adsorption behavior on both materials. We estimate that the FGS surface area available for SDS adsorption is ∼600 m²/g, which is significantly less than expected for FGSs in suspension and indicates the presence of regions on FGS on which SDS adsorption does not occur.

INTRODUCTION

Functionalized graphene sheets (FGSs), which can be produced in large quantities by thermal exfoliation and reduction of graphite oxide (GO)1,2 or by chemical reduction of graphene oxide,3 have been used to improve performance in many applications, including graphene-metal oxide nanocomposites for Li-ion battery electrodes,4,5 graphene-polymer composites,6-8 and high surface area tapes.9 While surfactant adsorption plays a key role in these applications, e.g., as a dispersant to obtain aqueous FGS suspensions10,11 or as a template for the growth of metal oxide films,12,13 the adsorption behavior of surfactants on functionalized graphene has not been studied in detail.

On the other hand, surfactant adsorption onto graphitic carbons has been investigated extensively: Evidence from molecular dynamics simulations14-16 and calorimetry17-19 indicates that surfactant molecules initially, i.e., at small concentrations, adsorb with their alkyl chains oriented parallel to the basal plane of graphite, eventually forming a monolayer via a coexistence between surfactant-rich and surfactant-lean regions.14,18,19 At the critical surface aggregation concentration (csac), a transition to the formation of hemicylindrical micelles on the substrate occurs.20,21 As the surfactant concentration is increased beyond the csac, the surface micelles increase in number density and are aggregated, as seen with direct imaging of micelles adsorbed on highly oriented pyrolytic graphite (HOPG) using liquid-cell atomic force microscopy (AFM).22-24 The orientation of surface micelles is influenced mainly by the underlying crystal structure25,26 as well as by topographical steps and ledges on the substrate.26 Upon further increase of the surfactant concentration, the spacing between surface micelles decreases until the surface is saturated.27 Adsorption isotherms for ionic alkyl surfactants on graphitic carbons therefore typically display a two-step adsorption behavior,21,28,29 reflecting an initial period of monolayer formation at low surfactant concentrations (below the csac), followed by the formation and subsequent “densification” of surface micelles.

Compared to the basal plane of graphite (i.e., pristine graphene), in which carbon atoms are predominantly sp² hybridized and exhibit a high degree of hexagonal order, the structure of FGS is highly disordered due to the presence of lattice defects (topological defects and vacancies)30,31 as well as oxygen-containing chemical functionalities (Figure 1).1,31,32 As such, surfactants may not exhibit the same adsorption behavior on functionalized graphene as they do on pristine graphene. However, to date, very little information about surfactant adsorption on FGSs is available in the literature. In a recent experimental study, Glover et al. used liquid-cell AFM to directly image graphene oxide and FGS (produced via thermal...
metric surfactant titration is unique in its ability to sample a broad range of concentrations with high resolution. In this technique, the conductivity of a sample suspension or solution is measured while it is titrated with a surfactant solution. The conductivity λ of deionized (DI) water as a function of SDS concentration is well documented.$^{30-32}$ Following Kohlrausch’s law of independent ion migration,33,34 λ of an SDS solution can be written as a function of the concentrations of the ionic species in the system

$$\lambda = \lambda_0 + \Lambda_0^{\text{Na}^+}[\text{Na}^+]_{\text{bulk}} + \Lambda_0^{\text{DS}^-}[\text{DS}^-]_{\text{bulk}} + \left(\Lambda_\text{mic}^{\text{Na}^+} + \frac{\Lambda_0^{\text{mic}}}{N}\right)[\text{DS}^-]_{\text{mic}}$$

where λ_0 is the initial solvent conductivity, $[\text{DS}^-]_{\text{bulk}}$ and $[\text{Na}^+]_{\text{bulk}}$ are the concentrations of free dodecyl sulfate (DS) monomers and sodium (Na) counterions in bulk solution, and $[\text{DS}^-]_{\text{mic}}$ represents the DS that are part of ionic micelles, expressed as the equivalent concentration that would be obtained if the DS were monomers in solution. $\Lambda_0^{\text{Na}^+}$, $\Lambda_0^{\text{DS}^-}$, and $\Lambda_\text{mic}^{\text{mic}}$ are the molar conductivities of Na, DS, and micelles, respectively. N is the aggregation number (average number of DS per micelle) and β is the degree of dissociation of micelles (fraction of SDS within micelles that is dissociated). In good agreement with experiments, eq 1 predicts a linear increase in λ with SDS concentration, with a decrease in the slope when micelle formation begins to dominate at the cmc.34,35

When particles are introduced to the surfactant solution, a fraction of the surfactant molecules may adsorb onto the particles. This changes the concentration of ionic species in the bulk solution, which in turn influences the overall conductivity of the system. The surfactant adsorption behavior can then be determined by analyzing the differences in conductivity between titrations of DI water and the particle suspension. In this study, we use conductometric titration to determine the adsorption behavior of SDS onto FGSs in a wide range of surfactant concentrations. We observe a counterion exchange during the initial stages of monolayer adsorption and identify the bulk SDS concentration by which the adsorbed SDS monolayer reaches full surface coverage. In addition, we measure the csc for SDS surface micelle formation on FGSs, and we contend that the transition from monolayer adsorption to surface micelle formation occurs at a similar SDS concentration on FGSs as on graphitic carbon. This suggests that there is little difference in the apparent surfactant adsorption behavior on both materials. Furthermore, our estimation of the FGS surface area available for SDS adsorption is significantly less than expected for functionalyzed graphene in suspension, which indicates that there are regions on FGS on which SDS adsorption does not occur.

METHODS

Production of FGSs. GO was prepared according to the Staudenmaier method,36 and as further detailed in more recent publications.1,2 The GO was placed at the bottom of a fused silica tube (Technical Glass Products) and dried overnight under a flow of nitrogen. The tube was then evacuated and purged with ultrahigh purity argon (Air Products), and the simultaneous thermal reduction and exfoliation of GO was carried out at 1100 °C under vacuum in a three-zone tube furnace (Lindberg/Blue M, SPX Thermal Product Solutions). The as-produced dry FGS powder had a surface area of...
~690 m²/g, determined from nitrogen adsorption data (Gemini V, Micrometrics Instruments Corporation) by the Brunauer, Emmett, and Teller (BET) method. The molar carbon-to-oxygen ratio (C/O) of the as-produced FGS powder was ~18, measured by energy dispersive X-ray spectroscopy (INCA x-act, Oxford Instruments, attached to a Vega 1 scanning electron microscope from Tescan).

Conductometric Surfactant Titration. SDS stock solutions with concentrations of 2, 10, and 100 mM were prepared by dissolving SDS (Sigma Aldrich, ≥99% purity, used as received) in DI water (Pipcopure 2 UV Plus system, Hydro Service and Supplies, Inc.). Aqueous stock suspensions of FGSs were prepared by first sonicating the FGSs in ethanol (VCX 750 ultrasonic processor unit, Sonics & Materials, Inc.) to obtain a dispersion of the as-prepared material. Then, using dialysis membranes (Spectra/Por 7, MWCO 15 kD), a solvent exchange was carried out for one week in a water bath that was refreshed daily in order to remove the ethanol as well as any other water-soluble impurities. The FGS stock suspensions were prepared to remove the ethanol as well as any other water-soluble impurities. The FGS stock suspensions typically had a final FGS concentration of ~1.2–1.4 mg/mL, and were then diluted with DI water to obtain 100 mL samples with FGS concentrations ranging from 0.01 to 1 mg/mL. All the solutions and suspensions were allowed to equilibrate in air for 1 h before the experiments were started in order to eliminate changes in conductivity caused by the uptake of atmospheric CO₂.

Conductometric titration was carried out by adding SDS solution to an FGS suspension at a rate of 6 mL/h using a syringe pump (Harvard Apparatus). To obtain high-resolution data within a wide range of surfactant concentrations (from 0.01 to over 10 mM), separate titrations were carried out using each of the 2, 10, and, 100 mM SDS stock solutions. The FGS suspension was contained in a jacketed beaker to maintain a constant temperature of 25 °C, continuously stirred, and subjected to 5 s ultrasound pulses every 15 s. A conductivity meter (CDM83, Radiometer Copenhagen) with a temperature compensation probe was used to measure the conductivity, and data points were collected in between ultrasound pulses, i.e., in the absence of ultrasonic agitation.

RESULTS AND DISCUSSION

Figure 2a shows the conductivity λ of both DI water and a 0.5 mg/mL aqueous FGS suspension during titrations with SDS, as a function of the amount of SDS added to the system. The amount of added surfactant is expressed as the equivalent concentration [SDS]eq that would be obtained if all the SDS in the system were dissolved in DI water. To better visualize changes in the slope of the conductivity, we plot the effective molar conductivity λ′ = (dλ)/[d[SDS]eq] in Figure 2b. In the insets of Figure 2, we provide higher resolution sections of λ and λ′ in the range up to [SDS]eq = 1 mM. The differences in λ and λ′ between the titration of water and the titration of the FGS suspension are indicative of SDS adsorption onto FGSs. To understand the underlying physical processes, we first analyze the conductivity behavior of the water titration to validate our approach and then analyze the conductivity behavior of the FGS suspension.

Conductometric Titration of Water. The conductivity of aqueous SDS solutions is well documented, and the plots of λ and λ′ in Figure 2 for the titration of water with SDS are in good agreement with the literature.39–42 For DI water, λ is initially ~1 μS·cm⁻¹ and the pH is ~5.7, which is a result of dissolved atmospheric CO₂ forming a small amount of carbonic acid.47 As SDS is added, λ increases monotonically with [SDS]eq up to ~7 mM while λ′ decreases slightly from 70 to 64 mS·cm⁻¹·M⁻¹. Upon further addition of SDS, λ transitions to a lower slope regime, with λ′ dropping from 64 mS·cm⁻¹·M⁻¹ at 7 mM to 26 mS·cm⁻¹·M⁻¹ at 10 mM. This decrease in λ′ is indicative of a micelle aggregation transition for SDS in bulk solution.48 Based on the model developed by Phillips, which assumes that only the surfactant monomer and micelle concentrations influence the property of interest (λ in our case),49 the cmc is taken as the inflection point in λ′, which we observe at ~8 mM. This agrees with literature values of the cmc for SDS in water, which range from 8.0 to 8.4 mM.50,51 Above the aggregation transition, λ′ increases monotonically with [SDS]eq while λ decreases to 25 mS·cm⁻¹·M⁻¹ at 14 mM SDS.

These observations can be understood by considering that, at concentrations below the cmc, surfactant molecules fully dissociate into DS⁻ monomers and Na⁺ counterions.34,35 Thus, as [Na⁺]bulk = [DS⁻]bulk and [DS⁻]bulk is zero, eq 1 shows that the slope of λ below the cmc is the sum of ΛNa⁺ and ΛDS⁻ (see Appendix A for details). The slight decrease observed in λ′ below the cmc is in agreement with Kohlrausch’s foundational work on the conductivity of strong electro-
lytes. At the limit of infinite dilution, the molar conductivity of an electrolyte is the highest; however, as the electrolyte concentration increases, the ions begin to interact, causing a decrease in their mobility and activity coefficient, which consequently decreases the molar conductivity. During the micelle aggregation transition, the added surfactant molecules begin to form micelles with an average aggregation number of N, which increases in value with SDS concentration. The sharpness of this transition (i.e., the span of the λ′ decrease) is determined by the width of the micelle size distribution, by how rapidly N increases with SDS concentration and by the magnitude of N when it stabilizes in value. Above the transition, further additions of surfactant molecules do not increase N appreciably, but rather increase the overall number density of micelles, resulting in an increase in [DS−]mic and in the concentration of Na+ dissociated from micelles [Na+]mic.

The growing ionic strength causes [DS−]eq can thus be written as

\[[SDS]_{eq} = \left(1 - \beta^* \right) [DS^-]_{ads} \]

onto FGSs and DS when it stabilizes in value. Therefore, a decrease in λ′ may also be associated with a decrease in the degree of dissociation of adsorbed surfactant.

As shown in Figure 2, we observe a significantly different conductivity behavior for the titration of a 0.5 mg/mL aqueous FGS suspension than for the titration of water. During our analysis of the FGS suspension titration, we divide λ′ into four stages (as indicated in Figure 2b). Stage I at the beginning of the titration, where we measure an initial conductivity of 10 μS·cm⁻¹ as well as a suspension pH of 4.5, which is lower than for water in equilibrium with air. We attribute this pH difference to the dissociation of acidic functional groups on the FGS suspension than for the titration of water. During our analysis, we attribute this pH difference to the dissociation of acidic functional groups on the FGS suspension than for the titration of water. It is known that the addition of SDS, λ initially increases at twice the rate of the water titration (λ′ ≈ 140 mS·cm⁻¹ as compared to 70 mS·cm⁻¹). As more SDS is added, λ continues to increase; however, λ′ decreases steadily and reaches a value of 0 mS·cm⁻¹ at [SDS]eq ≈ 18 μM. At this point, λ′ becomes negative and continues to decrease until [SDS]eq ≈ 27 μM, above which λ′ increases and reaches a value of 0 mS·cm⁻¹ at [SDS]eq ≈ 43 μM. The negative values of λ′ reflect the decrease in λ between the local maximum and minimum observed in the inset of Figure 2a. Upon further addition of SDS, λ increases monotonically with [SDS]eq as in the water titration; however, λ′ has a more complex behavior, increasing to ~50 mS·cm⁻¹ at [SDS]eq ≈ 54 μM and then leveling off.

As discussed in the determination of the cmc in the previous subsection, there is a fundamental basis for using inflection points in λ′ to determine transitions in surfactant behavior, as proposed by Phillips. However, in Stage I, the initially high values of λ′ compared to the water titration and the subsequent negative values of λ′ complicate the application of Phillips’ approach. To circumvent this complication, based on the forthcoming physical interpretation, we allow the leveling-off behavior to mark the transition between Stages I and II of the titration, and thus define the boundary between the stages (line A) as the intersection of the linear extrapolations of λ′ before and after leveling off, as indicated in the inset of Figure 2b.

In Stage II of the titration, λ′ increases gradually to ~67 mS·cm⁻¹ at [SDS]eq ≈ 1.3 mM. At this point, λ′ decreases and reaches a value of ~59 mS·cm⁻¹ at [SDS]eq ≈ 3 mM. The inflection point of this decrease (line B) marks the transition to Stage III, in which λ′ gradually increases to ~62 mS·cm⁻¹ at [SDS]eq ≈ 8 mM. This is followed by a decrease in λ′ to ~26 mS·cm⁻¹ at [SDS]eq ≈ 10 mM. The inflection point of this decrease occurs at ~8.5 mM (line C) and marks the transition to Stage IV, in which λ′ maintains a value of ~26 mS·cm⁻¹ as [SDS]eq increases further. This matches, within error, the value of λ′ above the cmc in the titration of water.

Conductometric titration was carried out at a range of FGS concentrations, and λ′ qualitatively exhibited the same behavior, displaying all four stages as described above and shown in Figure 2b, except in the 0.01 and 0.05 mg/mL suspensions at the transitions from Stages I to III and in the 0.1 mg/mL suspension between Stages II and III, as the
The decrease in \(\lambda' \) marked by line B at \([SDS]_{eq} \approx 2.1 \text{ mM} \) (Figure 2b) is indicative of an aggregation transition for SDS surface micelles on FGSs, analogous to the aggregation transition for SDS micelles in bulk solution at the cmc. Therefore, we contend that the extrapolated value of \([DS^-]_{bulk,C} \) corresponds to the csac for SDS surface micelle formation on FGSs. The csac for SDS on graphite has been reported to be \(\sim 3 \text{ mM SDS} \), based on experimental work with two-phase dye extraction \(^{28} \) and liquid-cell AFM imaging \(^{27} \), which is higher than \([DS^-]_{bulk,C} \). This may be a result of the chemical functionalities and lattice defects on FGSs causing the onset of surface micelle formation to occur at a lower \([DS^-]_{bulk,C} \) than on graphite; however, it should also be noted that the techniques used to measure the adsorption of SDS on graphite do not have a high degree of sensitivity for the onset of surface micelle formation. In particular, liquid-cell AFM is not capable of detecting isolated surface micelles (due to their high mobility), and thus we view the previously reported csac values as upper limits. As \([SDS]_{eq} \) increases above the csac, \(\lambda' \) remains lower than in the case of DI water (Stage III in Figure 2b), indicating that SDS molecules continue to adsorb onto the FGSs. This is likely due to SDS surface micelles decreasing their spacing on FGSs, a phenomenon observed by Wanless et al. for SDS surface micelles on graphite. \(^{27} \) With increasing \([SDS]_{eq} \) the surface micelle packing becomes progressively denser, and the growing energetic contribution of electrostatic repulsion between adjacent surface micelles creates an increasing energetic barrier for further SDS adsorption. As a result, the fraction of added SDS that adsorbs decreases, causing \(\lambda' \) to gradually increase. Eventually, the FGS surface area available for SDS adsorption becomes saturated with SDS surface micelles, and \([Na^+]_{ads} \) and \([DS^-]_{ads} \) become constant. The subsequent changes in \(\lambda \) and \(\lambda' \) as SDS is added reflect the titration of DI water, as shown above.
We relate the conductivity behavior observed during Stages I and II to the formation of an SDS monolayer on FGSs. We suggest that during Stage I, surfactant molecules initially adsorb sparsely on FGSs, and the presence of charged DS− molecules helps separate aggregated FGSs, resulting in an increased amount of FGS surface area exposed to bulk solution. Considering that the dissociation of acidic chemical functionalities on FGSs gives rise to the initial pH of 4.5, the newly exposed acidic groups certainly release additional hydronium ions (molar conductivity \(\lambda ' \)) during titration of water, as can be seen in eq 3. However, the maximum at \([\text{SDS}]_\text{eq}\) is increased further in Stage I, the number density of SDS molecules adsorbed on the FGSs increases, resulting in a growing electrostatic repulsion between the negatively charged surfactant head groups. As a consequence, adsorbed surfactant molecules likely dissociate to a lesser degree to allow for denser packing, similar to the decreased dissociation in bulk micelles at concentrations above the cmc.55 and form patches of DS− molecules that are aligned due to attractive hydrophobic and van der Waals forces between the alkyl chains.15,415

The adsorption of DS− and decrease in dissociation can certainly result in \(\lambda ' \) decreasing to values below those observed during titration of water, as can be seen in eq 3. However, the strong decrease in \(\lambda ' \) to negative values, i.e., after \(\lambda ' \) reaches a maximum at \([\text{SDS}]_\text{eq}\) \(\approx 20 \mu M \) (inset of Figure 2a), is most likely dominated by a different effect which we have not yet accounted for, namely, a counterion exchange between Na+ and H+: A fraction of the nondissociated SDS on FGSs substitutes the Na+ counterion with H+, thereby increasing the suspension pH and leaving Na+ cations, with a smaller molar conductivity (~50 mS cm\(^{-1}\) M\(^{-1}\)), in solution. A similar phenomenon was reported by Bunton et al. for the titration of hydrochloric acid (HCl) solutions with SDS, during which a decrease in conductivity and concurrent increase in pH was observed above the cmc due to a counterion exchange between Na+ and H+ associating with DS− bulk micelles.84

Thus, we argue that if the hydronium and Na+ ion concentrations are similar in magnitude, then the exchange of highly conducting hydronium ions with less-conducting Na+ ions can certainly explain the appearance of a maximum in \(\lambda ' \) and subsequent negative values of \(\lambda ' \) during Stage I. As \([\text{SDS}]_\text{eq}\) continues to increase beyond the concentration of hydronium ions in the system, the influence of the counterion exchange diminishes, causing \(\lambda ' \) to increase after reaching a minimum at \([\text{SDS}]_\text{eq}\) \(\approx 40 \mu M \) (inset of Figure 2a) and \(\lambda ' \) to achieve positive values.

As \([\text{SDS}]_\text{eq}\) increases beyond the range in which negative values of \(\lambda ' \) are observed, SDS molecules continue to adsorb onto the FGSs and the surface coverage increases further. The increasing electrostatic repulsion between the more densely packing adsorbate creates a growing energetic barrier for further SDS adsorption, which leads to an increase in \(\lambda ' \), since an increasing fraction of the added SDS no longer adsorbs but rather remains in the bulk solution where it is fully dissociated. This causes the conductivity to increase at a rate that approaches the value observed during the titration in the absence of FGSs. We interpret the leveling-off behavior of \(\lambda ' \) marked by line A to be a consequence of the adsorbed monolayer having achieved full surface coverage, likely forming with surfactant molecules oriented in a head-to-head configuration and only dissociated to a small degree.15 As \([\text{SDS}]_\text{eq}\) increases beyond \([\text{DS}^-]_\text{bulk, A}\) \(\lambda ' \) gradually increases but remains lower than in the case of DI water (black curve, Stage II). Analogous to \(\lambda ' \) above the csac, this behavior is indicative of surfactant molecules in the adsorbed monolayer becoming more and more densely packed. Therefore, we hypothesize that \([\text{DS}^-]_\text{bulk, A}\) corresponds to the bulk SDS concentration at which the adsorbed monolayer reaches full surface coverage on the FGSs but is not yet densely packed. Based on calorimetric evidence from Király et al. on the adsorption of similar surfactants on graphitic carbon,16,19 the transition from sparsely adsorbed surfactant molecules to a densely packed monolayer (i.e., from Stage I to Stage II of the titration) most likely occurs via the coexistence of surfactant-rich and surfactant-lean regions.

The FGS surface area that is available for SDS adsorption is estimated using the slope of line C in Figure 3, which is 0.98 mmol SDS/g FGS. As discussed above, line C represents the cmc of SDS in water. At this surfactant concentration, FGSs are fully covered with SDS surface micelles. Assuming the surface micelles are hemicylindrical, and that each cross section has an aggregation number of 7 and occupies an area of \(\sim 7 \text{nm}^2 \), the average area per adsorbed surfactant molecule is \(\sim 1 \text{nm}^2 \). If we multiply this value by the slope of line C and by Avogadro’s number, then an overall FGS area of \(\sim 600 \text{m}^2/\text{g} \) is obtained, which is significantly less than the surface area reported from methylene blue adsorption onto FGSs in suspension.2 This disparity in surface area is corroborated by a recent study showing strong evidence that SDS only adsorbs onto sp² hybridized regions of FGSs and not onto regions containing chemical functionalities.33 Although the adsorption of SDS onto FGSs appears to be energetically similar to the adsorption of SDS onto graphite (as indicated by the occurrence of the csac at similar concentrations), there are most likely regions on FGSs on which SDS adsorption does not occur. Hence, the terms “full” or “dense” SDS coverage more precisely refer only to FGS regions where SDS adsorption is feasible, and the actual surface area of FGS must be higher than the 600 m²/g value obtained assuming full coverage on pristine graphite.

CONCLUSIONS

Using conductometric surfactant titration, we measured the adsorption of SDS on FGSs with a carbon-to-oxygen ratio of \(\sim 18 \), at broad SDS and FGS concentration ranges. At dilute bulk SDS concentrations (<12 \(\mu M \)), the decrease in \(\lambda ' \) (and the corresponding negative values of \(\lambda ' \)) is evidence of a counterion exchange between hydronium ions (from the dissociation of acidic chemical functionalities on FGSs and sodium ions coadsorbing with dodecyl sulfate monomers onto FGSs. We find that, on the regions of FGS on which SDS adsorption occurs, an adsorbed SDS monolayer reaches full coverage by a bulk SDS concentration of \(\sim 12 \mu M \). Additionally, the csac for surface micelle formation on FGS was measured to be \(\sim 1.5 \text{mM SDS} \), which is slightly lower than the csac for SDS adsorption onto graphitic carbons. This may be due in part to the chemical functionalities and lattice defects on FGSs causing the onset of surface micelle formation to occur at a lower bulk SDS concentration than on graphitic carbons, and in part to the higher sensitivity of our measurement technique. Nevertheless, the transition from monolayer adsorption to surface micelle formation appears to occur at a similar SDS concentration on FGSs as on graphitic carbon, suggesting that there is little difference in the surfactant adsorption behavior on both materials. Interestingly, the presence of FGSs causes the cmc aggregation transition to become sharper (i.e., to span a
narrower concentration range); in fact, the transition becomes even sharper as the concentration of FGSs in suspension increases. Clearly, the adsorption of SDS onto FGSs affects the behavior of SDS in bulk solution during the cmc transition, and the mechanism responsible for this phenomenon is currently under further investigation. Finally, we estimate that the FGS area available for SDS adsorption is \(\sim 600 \text{ m}^2/\text{g} \), which is significantly less than expected for FGSs in suspension and indicates the presence of regions on FGSs on which SDS adsorption does not occur.

APPENDIX A

Validating eq 1 for the Conductivity of SDS Solutions

The textbooks of Israelachvili and Evans both provide rigorous treatments of the thermodynamics and kinetics of micelle formation. Eq 1 describes the conductivity behavior of the SDS solution as a function of the concentrations of the individual ionic species present in the system. To express eq 1 in terms of the SDS equivalent concentration, \([\text{SDS}]_{\text{eq}}\), separate equations are necessary to describe the system below and above the cmc.

Below the cmc, \([\text{DS}^-]_{\text{mic}}\) is effectively zero, and assuming complete monomer dissociation, \([\text{Na}^+]_{\text{bulk}}\) and \([\text{DS}^-]_{\text{bulk}}\) both equal \([\text{SDS}]_{\text{eq}}\). Equation 1 can then be written as

\[
\Lambda = \Lambda_0 + (\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{DS}^-})[\text{SDS}]_{\text{eq}} \tag{A1}
\]

and the corresponding expression for \(\lambda'\)

\[
\lambda' = (\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{DS}^-}) \tag{A2}
\]

\(\lambda\) is a linear function of \([\text{SDS}]_{\text{eq}}\) with a slope of \((\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{DS}^-})\). From Figure 2, \(\lambda\) is initially 69.6 mS·cm\(^{-1}\)·M\(^{-1}\). By taking \(\Lambda_0^{\text{Na}^+}\) to be 50.1 mS·cm\(^{-1}\)·M\(^{-1}\), eq A2 gives a value for \(\Lambda_0^{\text{DS}^-}\) of 19.5 mS·cm\(^{-1}\)·M\(^{-1}\), which matches reported literature values of 18.5 to 21.1 mS·cm\(^{-1}\)·M\(^{-1}\).

Above the cmc, \([\text{Na}^+]_{\text{bulk}}\) and \([\text{DS}^-]_{\text{bulk}}\) are effectively constant and equal to the cmc, as the formation of micelles dominates. To mitigate electrostatic repulsion between the DS head groups, a fraction of the Na\(^+\) counterions remain associated, leaving micelles with a degree of dissociation \(\beta\). [DS\(^-\)]\(_{\text{mic}}\) can be written as \(([\text{SDS}]_{\text{eq}} - \text{cmc})\), and \(\lambda\) becomes

\[
\lambda = \lambda_0 + (\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{DS}^-})\text{cmc} + \left(\frac{\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{mic}}}{N}\right)([\text{SDS}]_{\text{eq}} - \text{cmc}) \tag{A3}
\]

and \(\lambda'\) can be written as

\[
\lambda' = \frac{\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{mic}}}{N} \tag{A4}
\]

\(\lambda\) is a linear function of \([\text{SDS}]_{\text{eq}}\) now with a slope of \((\Lambda_0^{\text{Na}^+} + \Lambda_0^{\text{mic}}/N)\). The first term in \(\lambda'\) accounts for the contribution of micelle-dissociated Na\(^+\). Here we assume that the molar conductivity (i.e., the mobility) of sodium ions screening the micelle charge is the same as the molar conductivity of sodium ions in bulk solution. This is not necessarily accurate, but a detailed assessment of the exact contribution of Na\(^+\) located within the electrochemical double layer of micelles lies beyond the scope of this work. The second term in \(\lambda'\) accounts for the contribution of the ionic micelles themselves. If SDS micelles are treated as large spherical ions, the mobility of a micelle can be calculated by combining Stokes’ law with the force experienced by an ion in an electrical field

\[
\Lambda_0^{\text{mic}} = zuF = \frac{z^2eF}{6\pi\eta r} \tag{A5}
\]

where \(z\) is the formal charge, \(e\) is the elementary charge, \(F\) is Faraday’s constant, \(r\) is the hydrodynamic radius of the ion, and \(\eta\) is viscosity. By taking \(\beta\) to be 0.22 and \(N\) to be 64, \(\Lambda_0^{\text{mic}}\) is predicted to be \(\sim 910\) mS·cm\(^{-1}\)·M\(^{-1}\) from eq A3. \(\lambda'\) above the cmc in Figure 2 was \(\sim 24.7\) mS·cm\(^{-1}\)·M\(^{-1}\), and from eq A4 a value of \(\sim 875\) mS·cm\(^{-1}\)·M\(^{-1}\) is calculated for \(\Lambda_0^{\text{mic}}\). This agrees within error with the prediction and validates the conductometric titration technique.

APPENDIX B

Estimating the Contribution of SDS-Adsorbed FGSs to Conductivity

If we assume that the average FGS has an area, \(A\), of dimensions of 500 nm by 500 nm and a thickness, \(d\), of 1 nm, then the molar conductivity of FGSs, \(\Lambda_0^{\text{FGS}}\), can be calculated by combining the drag force on a flat plate with the force experienced by an ion in an electrical field

\[
\Lambda_0^{\text{FGS}} = zuF = \frac{z^2eFd}{24\pi\eta A} \tag{A6}
\]

To obtain an upper estimate for \(\Lambda_0^{\text{FGS}}\), we also assume that SDS is adsorbed as hemicylindrical surface micelles with a width of 5.5 nm and an cross-sectional aggregation number of 79, and a degree of dissociation of 1 (i.e., fully dissociated, though this is unlikely to be due to the electrostatic repulsion that would occur). With these assumptions, \(\Lambda_0^{\text{FGS}}\) is calculated from eq A6 to be \(\sim 10^3\) mS·cm\(^{-1}\)·M\(^{-1}\). Assuming a density of 2.2 g/cm\(^3\) and the same spatial dimensions as above, an FGS concentration of 1 mg/mL corresponds to \(\sim 3\) nM FGS. The upper-limit contribution of FGSs to \(\lambda\) can be estimated by multiplying \(\Lambda_0^{\text{FGS}}\) by the concentration of FGSs, and thus has a value of \(\sim 10^{-1}\) \(\mu\)S·cm\(^{-1}\).

AUTHOR INFORMATION

Corresponding Author

E-mail: iaksay@princeton.edu. Phone: 609-258-4393.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Pacific Northwest National Laboratory (operated for the United States Department of Energy by Battelle) under grant number DE-AC05-76RL01830.

REFERENCES

