

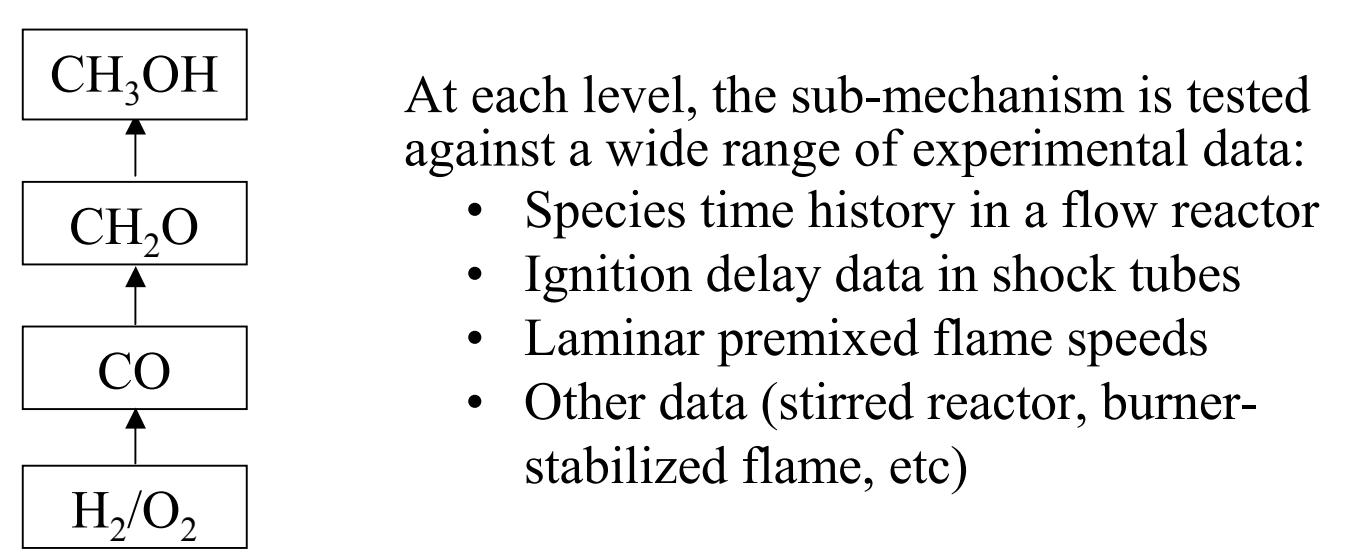
30th International
Symposium on Combustion,
Chicago, IL,
July 25-30, 2004

A Comprehensive Kinetic Mechanism for C_1 Species Combustion

Juan Li, Zhenwei Zhao, Andrei Kazakov, and Frederick L. Dryer*

* fldryer@princeton.edu

Princeton University

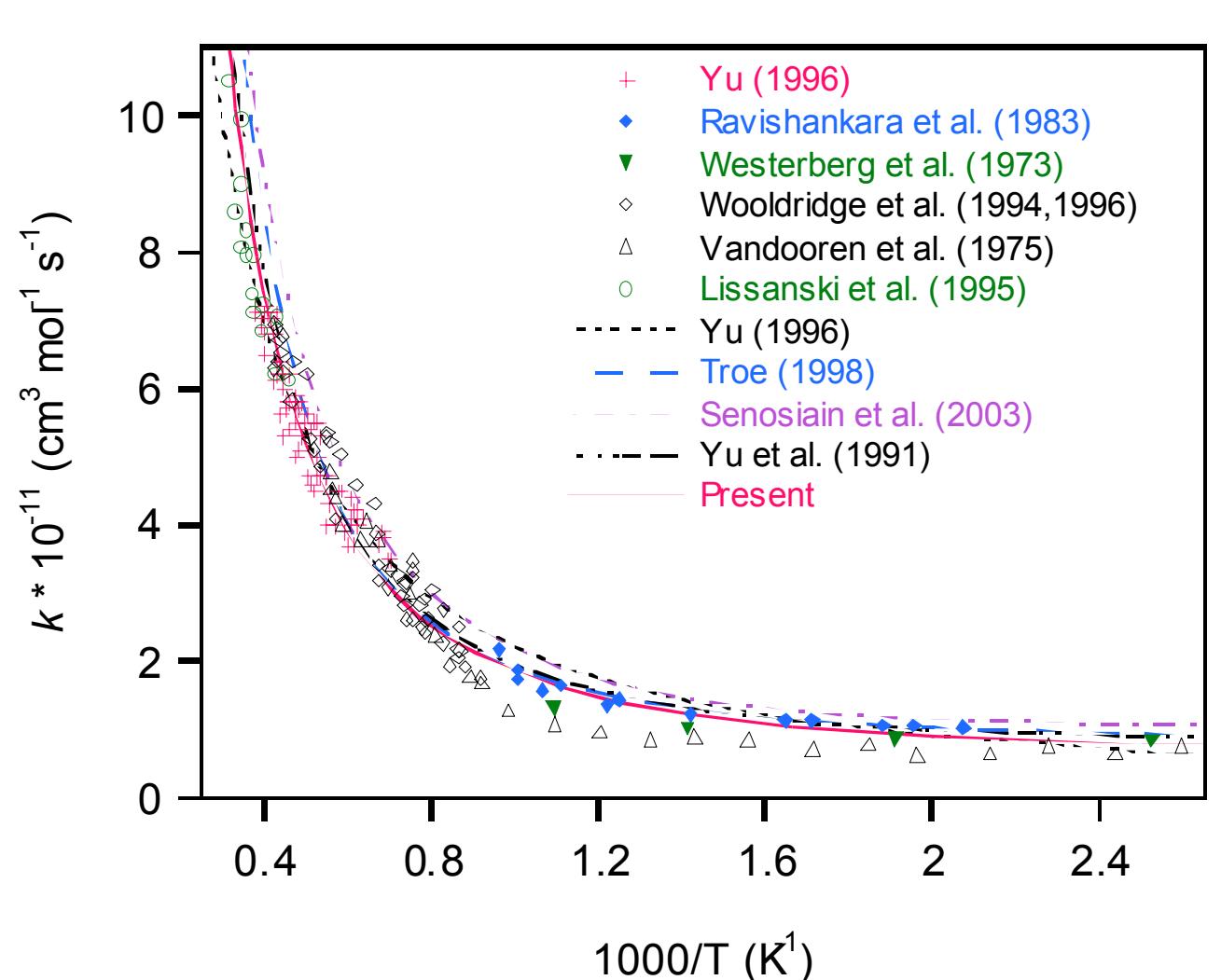

Mechanical & Aerospace
Engineering Department

Motivation

- C_1 species are of practical importance:
 - CO is a primary intermediate of hydrocarbon combustion
 - emission of CH_2O from combustion engines has been a great environmental concern because it is a suspected carcinogen and can contribute to photochemical smog
 - CH_3OH is a widely used oxygenate additive in reformulated gasoline, and is an attractive alternative to traditional transportation fuels
- Chemical kinetics of C_1 species plays a critical role in hydrocarbon combustion chemistry:
 - the conversion of CO to CO_2 is highly exothermic portion of any hydrocarbon oxidation system
 - nearly all carbon atoms in alkyl hydrocarbons and aromatics are converted to CO through CH_2O and HCO
 - study of CH_3OH oxidation mechanism lays a foundation for the study of larger alcohols chemistry, and can provide useful information regarding CH_2O reactions

Outline of the Present C_1 Mechanism

- The mechanism consists of 85 elementary reactions among 21 species, and is based on the CH_3OH/O_2 mechanism of Held and Dryer (1998).
- Revisions encompass recently published kinetic and thermochemical information, while continuing to predict both new experiments and the experimental targets investigated by the original mechanism.
- It is developed in a hierarchical manner:

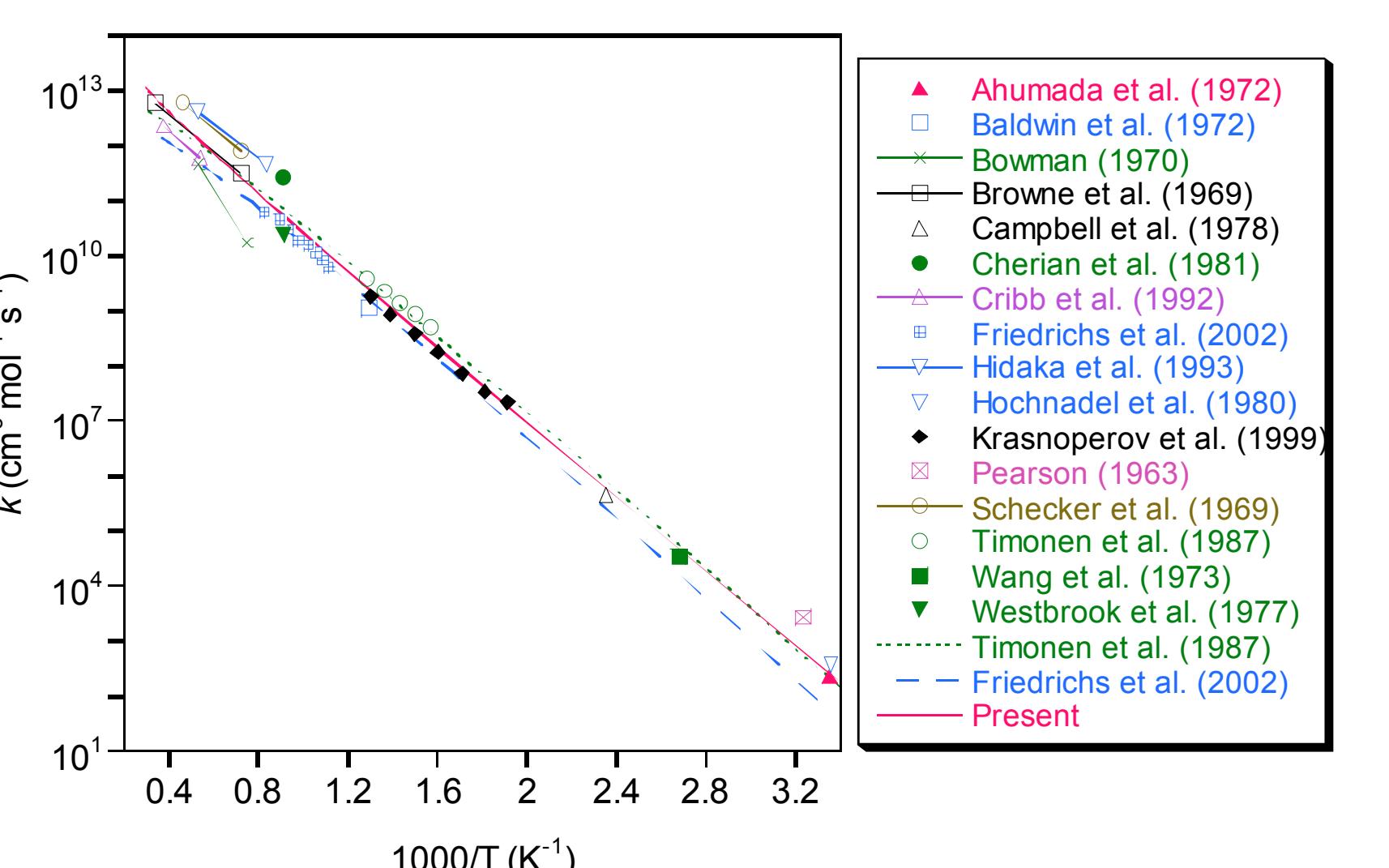


Key Mechanism Refinements

Part I: $CO + OH = CO_2 + H$

- this reaction is the main pathway to convert CO to CO_2 and is responsible for a major fraction of the energy release derived in hydrocarbon oxidation
- recent theoretical calculations predict higher rates than experimental measurements at low to intermediate temperature range
- the temperature-dependent sensitivity analysis of Zhao et al. (this symposium, poster 1F2-13) demonstrates that the laminar flame speed of CO oxidation systems is most sensitive to this reaction at 300-1900 K
- The mechanism uses a new, weighted least squares fit of all of the experimentally measured rate constants available in literature. The expression obtained for the rate constant is:

$$k = 2.23 \times 10^5 T^{1.89} \exp(-\frac{583}{T})$$



Key Mechanism Refinements

Part II: $HCO + M = H + CO + M$

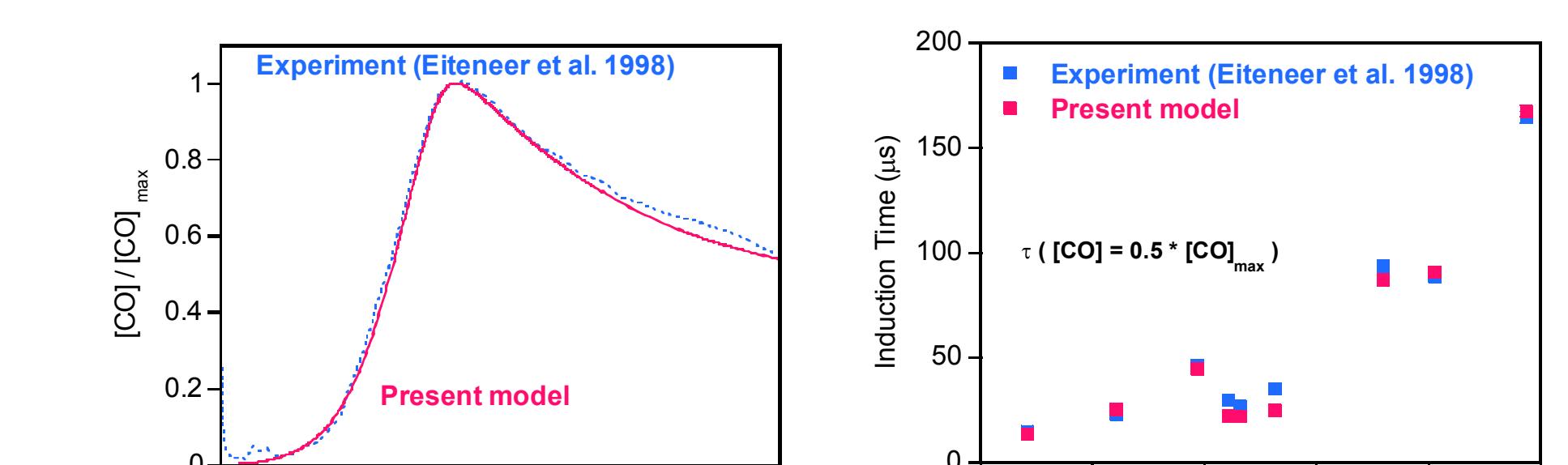
- this reaction is the main pathway generating CO during the high temperature combustion of hydrocarbons.
- the temperature-dependent sensitivity analysis of Zhao et al. (this symposium, poster 1F2-13) demonstrates that the laminar flame speed of hydrocarbon combustion systems is most sensitive to this reaction at 1300-2000 K, which is above the temperature range of recent experimental studies of this reaction (Friedrichs et al., 2002).
- Extrapolation of Friedrichs et al. causes difficulties in reproducing flame speed and flow reactor results for numerous hydrocarbons
- In the present study, the method of least squares fitting was applied using experimental data available in literature, and this gives a new expression of the rate constant of this reaction:

$$k = 4.75 \times 10^{11} T^{0.66} \exp(-\frac{7485}{T})$$

Full Set of Updated Kinetic Parameters

- Reaction rate coefficients:
 - H_2/O_2 sub-mechanism: Li et al. (Int. J. Chem. Kinet. 2004, in press)
 - $CO + OH = CO_2 + H$: this study
 - weighted least squares fitting of experimental results in literature
 - $HCO + M = H + CO + M$: this study
 - weighted least squares fitting of experimental results in literature
 - CH_2O decomposition reactions: Friedrichs et al. (Int. J. Chem. Kinet. 2004, 36, 157)
 - $CH_2O + H = HCO + H_2$: Irdam et al. (Int. J. Chem. Kinet. 1993, 25, 285)
 - $CH_2O + H_2O_2 = HCO + H_2O_2$: Etienne et al. (J. Phys. Chem. A 1998, 102, 5196)
 - CH_3OH decomposition reactions: GRI-MECH 3.0 (1999)
- Thermodynamic data:
 - OH: Ruscic et al. (J. Phys. Chem. A 2002, 106, 2727)
 - CH_3 : Ruscic et al. (J. Phys. Chem. A 1999, 103, 8625)
 - CH_2OH : Johnson and Hudgens (J. Phys. Chem. 1996, 100, 19874)

Literature CO Experiments Used for Validation


Method	Source	Mixture	T (K)	P (atm)	ϕ
Shock Tube	Gardiner et al. (1971)	$CO/H_2O_2/Ar$	1400–2500	0.15–0.3	0.40
	Dean et al. (1978)	$CO/H_2O_2/Ar$	2000–2850	1.2–2.2	1.6–6.1
Laminar Premixed Flame	McLean et al. (1994)	CO/H_2	298	1	0.5–6.0
	Huang et al. (2003)	$CO/H_2N_2/air$	298	1	0.7–1.4
Flow Reactor	Yetter et al. (1991)	$CO/H_2O_2/N_2$	1033	1	0.4–1.4
	Kim et al. (1994)	$CO/H_2O/N_2$	960–1200	1.0–9.6	0.3–2.1
	Mueller et al. (1999)	CO/H_2O	1038	1.0–9.6	1.0

Literature CH_2O Experiments Used for Validation

Method	Source	Mixture	T (K)	P (atm)	ϕ
Shock Tube	Dean et al. (1980)	$CH_2O/O_2/Ar$	1935–2150	1.1–1.3	0.67
	Buxton and Simpson (1986)	CH_2O/Ar	1750–2100	0.6–3.5	pyrolysis
	Hidaka et al. (1993)	$CH_2O/O_2/Ar$	1240–1950	1.5–2.9	4.0
	Etienne et al. (1998)	$CH_2O/O_2/Ar$	1440–2120	0.9–2.3	pyrolysis
	Friedrichs et al. (2002)	CH_2O/Ar	955–975	0.3–1.8	pyrolysis
Burner-Stabilized Flame	Vandooren et al. (1986)	CH_2O/O_2	300	0.03	0.22
	Hochgrob and Dryer (1992)	$CH_2O/O_2/N_2$	945–1095	1	0.013–1.74
Flow Reactor	Scire (2002)	$CH_2O/H_2O/O_2/N_2$	850–950	1.5–6.0	~0.005

Representative Test Cases

Part II: C_1 Model vs. CH_2O Experiments

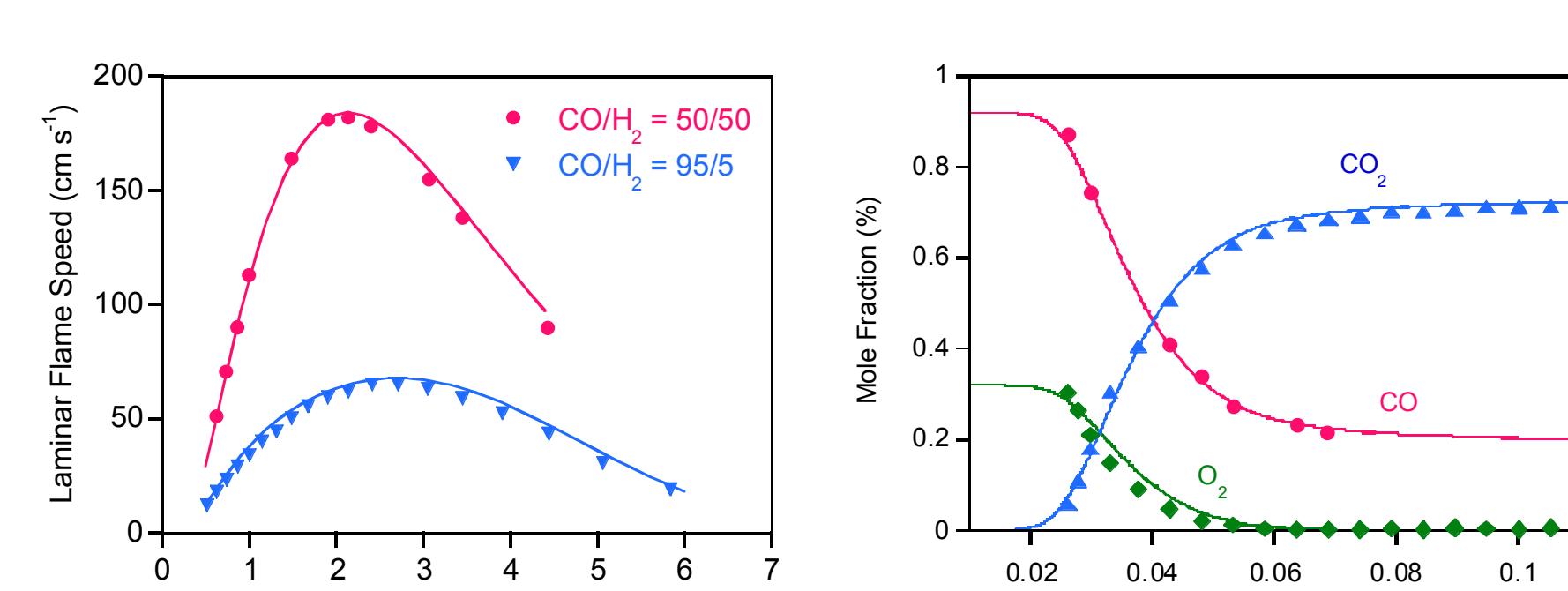
Initial Conditions:
 $CH_2O = 1.5\%$, $O_2 = 1.5\%$ with balance Ar at 1532 K and 1.35 atm, CH_2O/O_2 mixture in a shock tube

Initial Conditions:
0.9–2.3 atm, $CH_2O = 0.5\%$ –2.0%, $\phi = 0.2$ –pyrolysis, $CH_2O/O_2/Ar$ mixture in a shock tube

Initial Conditions:
 $CH_2O = 4.0\%$ with balance Ar at 1805 K and 2.81 atm, CH_2O mixture in a shock tube

Initial Conditions:
 $CH_2O = 0.348\%$, $O_2 = 0.223\%$ with balance N_2 at 945 K and 1 atm

Symbols: flow reactor data of Hochgrob and Dryer (1992)


—: Present model

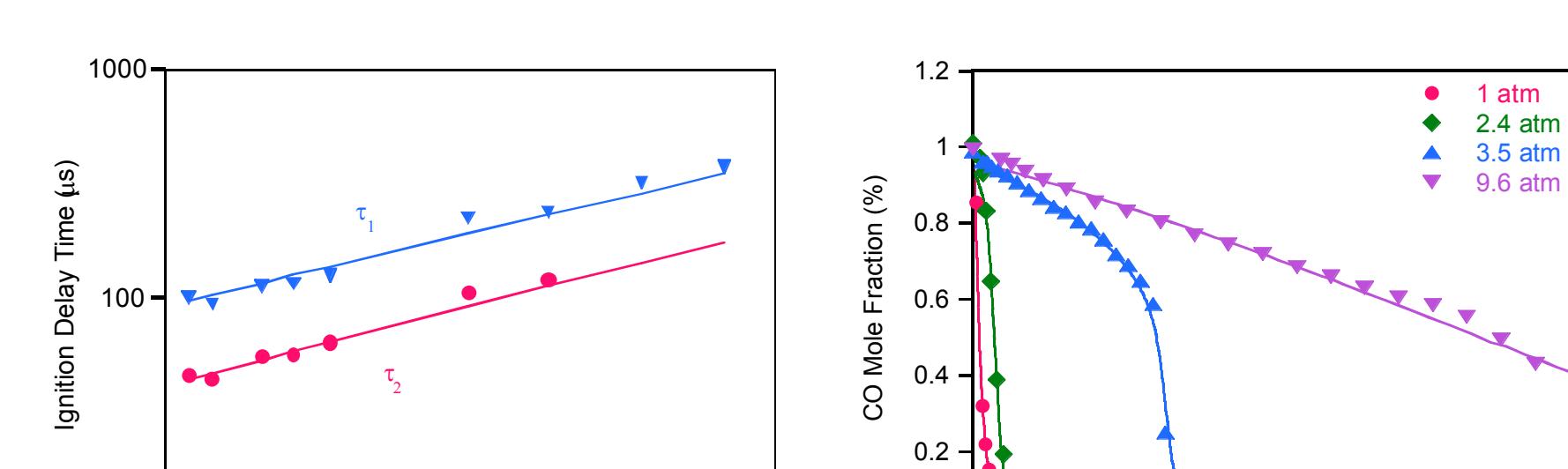
Literature CH_3OH Experiments Used for Validation

Method	Source	Mixture	T (K)	P (atm)	ϕ
Shock Tube	Bowman (1975)	$CH_3OH/O_2/CO/Ar$	1545–2180	1.2–4.7	0.375–6.0
Laminar Premixed Flame	Egolfopoulos et al. (1992)	CH_3OH/air	318–368	1.0	0.5–2.0
	Aronowitz et al. (1979)	$CH_3OH/O_2/N_2$	1000–1010	1.0	0.05–1.6
Flow Reactor	Norton and Dryer (1989)	$CH_3OH/O_2/N_2$	1027–1034	1.0	0.6–1.6
	Held (1993)	$CH_3OH/O_2/N_2$	750–1040	1.5–20.0	0.3–2.6

Representative Test Cases

Part I: C_1 Model vs. CO Experiments

Initial Conditions:
298 K, 1 atm, CO/H_2 air mixture


Symbols: laminar flame speed data of McLean et al. (1994)

—: Present model

Initial Conditions:
 $CO = 0.92\%$, $H_2O = 0.59\%$, $O_2 = 0.32\%$ with balance N_2 at 1034 K and 1 atm

Symbols: flow reactor data of Yetter et al. (1991)

—: Present model

Initial Conditions:
2.9–3.3 atm, $CH_3OH = 1.0\%$, $\phi = 1.5$, $CH_3OH/O_2/Ar$ mixture in a shock tube

The present mechanism has improved predictive capability over Held and Dryer mechanism (1998)

The agreement of the present mechanism with other literature experiments is also very good

Summary

- A detailed chemical kinetic mechanism for C_1 species (CO, CH_2O , and CH_3OH) combustion has been developed hierarchically
- The mechanism has been verified against a wide range of experimental data, and demonstrates very good predictive capabilities for CO, CH_2O , and CH_3OH combustion
- Mechanism is available in Chemkin II format from our Web site or by contacting the authors

Acknowledgements

This study was supported by the U.S. Department of Energy, Office of Basic Sciences through Grant No. DE-FG02-86ER-13503, and by NASA under Grant No. NCC3-735.