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Motivation

“* C, species are of practical importance:
e CO 1s a primary intermediate of hydrocarbon combustion
 emission of CH,O from combustion engines has been a great
environmental concern because it 1s a suspected carcinogen and can
contribute to photochemical smog
* CH;OH i1s a widely used oxygenate additive in reformulated gasoline,

and 1s an attractive alternative to traditional transportation fuels

“*Chemical kinetics of C, species plays a critical role in

hydrocarbon combustion chemistry:

» the conversion of CO to CO, is highly exothermic portion of any
hydrocarbon oxidation system

 nearly all carbon atoms in alkyl hydrocarbons and aromatics are
converted to CO through CH,O and HCO

* study of CH,OH oxidation mechanism lays a foundation for the study
of larger alcohols chemistry, and can provide useful information
regarding CH,O reactions

Outline of the Present C, Mechanism

¢+ The mechanism consists of 85 elementary reactions among 21
species, and 1s based on the CH;OH/O, mechanism of Held and
Dryer (1998).

“*Revisions encompass recently published kinetic and
thermochemical information, while continuing to predict both new
experiments and the experimental targets investigated by the
original mechanism.

¢ It 1s developed in a hierarchical manner:

CH,0OH At each level, the sub-mechanism is tested
T against a wide range of experimental data:

CH,0 * Species time history in a flow reactor
f  Ignition delay data in shock tubes
CO * Laminar premixed flame speeds
 Other data (stirred reactor, burner-
1 stabilized flame, etc)

H,/0,

Key Mechanism Refinements
Partl: CO+ OH=CO,+ H

e this reaction is the main pathway to convert CO to CO, and is responsible
for a major fraction of the energy release derived in hydrocarbon oxidation

% recent theoretical calculations predict higher rates than experimental
measurements at low to intermediate temperature range

% the temperature-dependent sensitivity analysis of Zhao et al. (this
symposium, poster 1F2-13) demonstrates that the laminar flame speed of
CO oxidation systems 1s most sensitive to this reaction at 300-1900 K

¢ The mechanism uses a new, weighted least squares fit of all of the
experimentally measured rate constants available in literature. The

expression obtained for the rate constant is:
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Key Mechanism Refinements
PartII: HCO+M=H+CO+M

% this reaction 1s the main pathway generating CO during the high
temperature combustion of hydrocarbons.

+» the temperature-dependent sensitivity analysis of Zhao et al. (this
symposium, poster 1F2-13) demonstrates that the laminar flame speed of
hydrocarbon combustion systems 1s most sensitive to this reaction at
1300-2000 K, which 1s above the temperature range of recent
experimental studies of this reaction (Friedrichs et al., 2002).

» Extrapolation of Friedrichs et al. causes difficulties in reproducing flame
speed and flow reactor results for numerous hydrocarbons

% In the present study, the method of least squares fitting was applied using
experimental data available in literature, and this gives a new expression

of the rate constant of this reaction:
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Full Set of Updated Kinetic Parameters

*» Reaction rate coefficients:

* H,/O, sub-mechanism: Li et al. (Int. J. Chem. Kinet. 2004, in press)

* CO + OH = CO, + H: this study
— weighted least squares fitting of experimental results in literature

« HCO+ M =H + CO + M: this study
— weighted least squares fitting of experimental results in literature

* CH,O decomposition reactions: Friedrichs et al. (Int. J. Chem. Kinet. 2004,
36, 157)

 CH,0+ H =HCO + H,: Irdam et al. (Int. J. Chem. Kinet. 1993, 25, 285)

 CH,O + HO,= HCO + H,0,: Eiteneer et al. (J. Phys. Chem. A 1998, 102,
5196)

* CH,;OH decomposition reactions: GRI-MECH 3.0 (1999)

¢ Thermodynamic data:

e OH: Ruscic et al. (J. Phys. Chem. A 2002, 106, 2727)
* CH;: Ruscic et al. (J. Phys. Chem. A 1999, 103, 8625)
* CH,OH: Johnson and Hudgens (J. Phys. Chem. 1996, 100, 19874)

Literature CO Experiments Used for Validation
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Method Source Mixture T (K) P (atm) )
Shock 82;‘”;111?“ ctal. CO/H,/Oo/Ar | 1400—2500 | 0.15-0.3 0.40
Tube I netal (1978) | COML/O/Ar | 2000-2850 | 12-2.2 | 1.6-6.1

Laminar | McLean et al. .

Promixed | (1994) CO/H,/air 298 1 0.5 6.0
Flame | Huang et al. (2003) | CO/H,/Ny/air 298 1 0.7-1.4
Yetter etal. (1991) | CO/H,0/0,/N, 1033 1 0414
Flow |[Kimetal (1994) | CO/H,0/05/N; | 960 — 1200 |1.0-9.6 |03 2.1
Reactor | \ rueller et al. (1999) | €9/H20 1038 |[1.0-96 1.0
/0,/N,

Literature CH,O Experiments Used for Validation

Literature CH,OH Experiments Used for Validation
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Laminar Flame Speed

Ignition Delay Time (is)

A Comprehensive Kinetic Mechanism for

Method Source Mixture T (K) P (atm) )
Dean et al. (1980) | CH,0/O»/Ar | 19352150 | 1.1 1.3 gyg;’IYSlS B
Buxton and -
Simpson (1986) CH,O/Ar 1750 —2100 | 0.6 —3.5 | pyrolysis
Shock : pyrolysis —
Tube Hidaka et al. (1993) | CH,O/O,/Ar | 12401950 | 1.5-2.9 40
Eiteneer et al. pyrolysis —
(1998) CH,0/0y/Ar | 1440-2120 | 0.9-2.3 6.0
Friedrichs et al. :
(2002) CH,O/Ar 955 -975 0.3—-1.8 | pyrolysis
Burner-
Stabilized | ¥.andooren et al. CH,0/0, 300 0.03 0.22
(1986)
Flame
Hochgreb and Dryer
Flow (1992) CH,0 /O5/N, | 945 —1095 1 0.013-1.74
Reactor | geire (2002) /%%(/)02 N, | 850-950 |15-60 |~0.005

Method Source Mixture T (K) P (atm) )
Shock | 5 wman (1975) | CHBOHOSCO 545 5180 | 12247 [0375-60
Tube /Ar

Laminar

Premixed | Ceolfopoulos etal. |y oo 318 — 368 1.0 0.5-2.0

(1992)
Flame
31’907“9‘))“2 etal CH;0H/O2/N, | 1000 — 1010 1.0 0.05—1.6
Flow Norton and Dryer
Reactor (1989) y CH;OH/O,/N, | 1027 — 1034 1.0 0.6 1.6
Held (1993) CH;OH/Oo/N, | 750— 1040 | 1.5—20.0 |03 —2.6

Representative Test Cases
Part I: C, Model vs. CO Experiments
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Initial Conditions:
298 K, 1 atm, CO/H,/air mixture

Symbols: laminar flame speed data
of McLean et al. (1994)
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Initial Conditions:
H, =0.049%, O, = 1.01%, CO = 3.28%
with balance Ar
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T, and T, are defined as the time when
[CO,] reaches 2.4x10'¢ and 8 x101°
molecule/cm?, respectively.

Symbols: shock tube data of Dean et

al. (1978)
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Initial Conditions:
CO =0.92%, HzO =0.59%, O2 =

0.32% with balance N, at 1034 K and 1

atm
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Symbols: flow reactor data of
Yetter et al. (1991)
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Initial Conditions:

CO =1.01%, H,0 = 0.65%, O, = 0.52% with

balance N, at 1038 K and 1.0 atm; CO = 1.01%,
H,0 = 0.65%, O, = 0.50% with balance N, at
1038 K and 2.4 atm; CO = 0.99%, H,0 = 0.65%,
O, = 0.49% with balance N, at 1038 K and 3.5
atm; CO = 0.99%, H,0 = 0.65%, O, = 0.49%
with balance N, at 1040 K and 9.6 atm

Symbols:

flow reactor data of Mueller

et al. (1999)
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¢ A detailed chemical kinetic mechanism for C, species (CO, CH,O0,
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Representative Test Cases
Part 1I: C, Model vs. CH,O Experiments

Experiment (Eiteneer et al. 1998)
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Initial Conditions:

CH,O = 1.5% , O, = 1.5% with balance
Ar at 1532 K and 1.35 atm,
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200

S

-
(@)
o

100

Induction Time (us)

(o)
o

0

o
w
!

Mole Fraction (%)
o
N

o
NN

®  Experiment (Eiteneer et al. 1998)
B Present model ]

4 <([CO]=0.5* [CO]max)

I | |
0.45 0.5 0.55 0.6 0.65 0.7

1000/T (K™

Initial Conditions:

0.9 —2.3 atm, CH,0 =0.5-2.0%, @=
0.2 — pyrolysis, CH,0/O,/Ar mixture in
a shock tube

1
0.04 0.08 0.12

Time (s)

Initial Conditions:
CH,O = 0.348%, O, = 0.223% with
balance N, at 945 K and 1 atm

Symbols: flow reactor data of
Hochgreb and Dryer (1992)
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Representative Test Cases
Part 11I: C, Model vs. CH;OH Experiments
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Initial Conditions:
2.9 —3.3 atm, CH;0H = 1.0%, ¢=1.5
CH,OH/O,/Ar mixture in a shock tube
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» The present mechanism has improved predictive capability over Held

and Dryer mechanism (1998)

* The agreement of the present mechanism with other literature

experiments is also very good

Summary

and CH;OH) combustion has been developed hierarchically

¢ The mechanism has been verified against a wide range of

experimental data, and demonstrates very good predictive capabilities

for CO, CH,0, and CH;OH combustion

¢ Mechanism is available in Chemkin II format from our Web site or by

contacting the authors
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