Princeton ELE 201, Spring 2014
Laboratory No. 2
Shazam

1 Background

In this lab we will begin to code a Shazam-like program to identify a short clip of music using a database of
songs. The basic procedure is:

1. Construct a database of features for each full-length song;

2. When a clip (hopefully part of one of the songs in the database) is to be identified, calculate the
corresponding features of the clip;

3. Search the database for a match with the features of the clip.

Like Shazam, the features for each song (and clip) will be characterized by the location of local peaks
in the magnitude of the spectrogram. The frequencies and timing of the peaks will be stored as features.
These should be fairly robust to many possible forms of distortion, such as magnitude and phase error in the
frequency domain due to the recording process or additive noise. A clip is matched to a song by considering
all possible shifts in time and comparing the features.

Matching a clip to a song this way can lead to computational challenges. To mitigate this, the features
are simplified and preprocessed. Pairs of peaks that are close in both time and frequency are identified, as
in Figure 1, resulting in the following table of information, one row for each peak pair:

[t [ 2 [ ] fo] songid |
324 | 328 | 26 | 34 | “songl”

For each song in the Shazam database, these feature pairs are stored in a hash table for easy access. The
hash value is calculated from the vector (f1, fo,t2 — t1), so that peak pairs with the same frequencies and
separation in time are considered a match. The timing ¢; and the songid are stored in the hash table.

When a clip is to be identifies, the list of pairs of peaks is produced, just as it would have been for a
song in the database. Then the hash table is searched for each pair in the clip. This will produce a list
of matches, each with different stored values of ¢; and songid. Some of these matches will be accidental,
either because the same peak pair occurred at another time or in another song, or because the hash table
had a collision. However, we expect the correct song match to have a consistent timing offset from the clip.
That is, the difference between t; for the song and ¢; for the clip should be the same for all correct matches.
The song with the most matches for a single timing offset is declared the winner.



2 Lab Procedure - Part 1

This week you will build the complete training system for Shazam, which extracts the fingerprints from all
MP3 files in a designated folder and creates a database. You can use any MP3 files you want.
The main steps of this procedure are the following:

1. Read in the song using mp3read.
2. Average the two channels, subtract the mean, and downsample.

Compute the spectrogram of the song using spectrogram.
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Find the local peaks of the spectrogram by using circshift in a loop.
5. Threshold the result of step 5 to end up with a specified rate of peaks retained per second of sound.
6. Find pairs of proximal peaks and add load them into a hash table.

These steps are now explained in detail.

2.1 Reading an MP3 file: mp3read

In order to read an .mp3 file into Matlab we will use the function mp3read designed by Professor Dan Ellis,
Columbia University. The necessary files are available on the course website, and they must be in the working
directory or path in order to use them. (On Windows, only the three files mp3read.m, mpgl23.exe, and
mp3info.exe are needed.) The command works like wavread, returning the sound signal and sample
rate.

[y, fs] = mp3read(‘file_name.mp3’);

This opens the file file_name.mp3, decodes the file, and returns the decoded signal in the vector y. The
sampling rate is stored in fs.

2.2 Fingerprint

You have been provided with a template for the function fingerprint .m. This function takes as arguments
a sound signal and its sampling frequency. The function is missing important components of the code, which
you will produce.

2.2.1 Preprocessing

Many sound signals from MP3 or WAV contain more than one channel (left and right for stereo systems). In
Matlab, these channels are stored as separate columns of a matrix. For our purposes it suffices to consider
only the mean of the corresponding samples. Create a new signal that is a vector rather than a matrix by
averaging the channels using mean. Check that the result is a vector. You may wish to play this through
the speakers to see that it sounds like the original. We will work with this new signal.

Also, we wish to remove the DC bias of the sound signal. The DC bias is the average value of the
signal, which is not audible but can affect the spectrogram. Remove this by subtracting the mean from the
signal. Why might this re-centering of our signal be a good idea? You may find it illuminating to view the
spectrogram with and without the mean removed.

The sample rate £s may be very high, such as 44,100 Hz for CD audio, which would be costly to process.
This sample rate allows the music to contain sounds as high as about 20 kHz, but we can successfully
identify songs without the high frequency information. Resample the signal at 8,000 Hz using the command
resample, as follows, where y is the sound vector:



y = resample(y, new_rate, old_rate); % rates must each be integers.
This command performs an interpolation of the signal at the new sampling points and returns the result.

2.2.2 Spectrogram

Now will construct the spectrogram of the signal using the Matlab command spectrogram. Call it as
follows:

[S,F,T] = spectrogram(y, window, noverlap, [], fs);

where window is an integer that indicates the length of the segments for the DFTs, noverlap is the number
of samples that adjacent segments will be overlapped, and fs is the sampling rate of the signal, in our case
8,000 Hz. Other than the sound signal, each of these arguments must be iteger valued. They are measured
in terms of the number of samples.

Matlab will detect that the sound signal is real valued and only return the spectrogram for positive
frequencies in the matrix S, which is exactly what we want. The frequency vector for the vertical axis is
returned in F and the time vector for the horizontal axis is returned in T.

Compute the spectrogram with window length 64 ms and an overlap of 32 ms. Note that the number
of samples in a window is simply the window length multiplied by the sampling rate. Do not hard-code
numbers into your code. Instead, calculate them as functions of parameters that you list at the beginning
of the m-file. To force a calculation to be an integer, use round.

Plot the magnitude of the spectrogram of the song with axes appropriately labeled. Also plot the log of
the magnitude of the spectrogram with axes appropriately labeled.

It is common to visually study the log of the magnitude of the spectrogram. Why might this be a good
idea?

After completing these plots, comment of remove them from the code. A visualization for the next task
is provided in the code already (at the end), and can be turned on when needed.

2.2.3 Local peaks

Next, we find the local peaks of the spectrogram and produce a binary matrix (the same size as the spec-
trogram) with a 1 at each location of a peak.

A local peak has magnitude greater than that of its neighbors. One way to find the local peaks is to
iterate through each point in the spectrogram and compare the magnitude to that of each nearby point. You
would probably have four nested for-loops. The first two would be used to index each location in the matrix
as a candidate peak. The next two loops would be used to index the neighborhood around that point to
make comparisons. Only if a location succeeded in being greater than each neighboring point would it be
labeled as a peak. We use the parameter gs to specify how far to look in each time and frequency direction.

Matlab provides a command that will save us coding time and run time, but we have to be a little
bit clever to use it. The command is circshift. This command shifts a matrix by a specified amount
vertically and horizontally. It’s a circular shift because the entries that fall off the edge after the shift are
wrapped around. This wrapping is actually not ideal, but it doesn’t affect the outcome much either, so we
will just ignore it.

Consider the following example to see how to use circshift:

CS = circshift (s, [0,11);
P = (S > CS);

These two lines return a Boolean matrix P with entries 1 for the positions in S that are greater than their
neighbor immediately to the right. This has the effect of comparing each position in the matrix to one of its
neighbors, without having to explicitly loop through the entire matrix.



The provided code loops through all horizontal and vertical shifts within distance gs. Use circshift
to make the comparison to its neighbor, as a single matrix operation. Only locations in the matrix that
survive each round of the comparison should remain as 1 in the peak matrix.

Plot the peaks using imagesc. Change the color-map using the following command:

colormap (l-gray);

which will display the entries where there are peaks as black pixels and the rest of the matrix as white pixels.
Try several values for gs and plot the constellation map. Note the effect of changing gs. Compute the
constellation map for gs=4, i.e. 4 points in each direction. Calculate how many peaks there are and record
your answer. How many peaks are there per second on average?
If time permits, you can try to locate time-frequency troughs instead of peaks. Do you think fingerprinting
the song using peaks provides any inherent advantage over using troughs?

2.2.4 Thresholding

We want to use only the larger peaks. Why? (Hint: Think about the quality of the clip we would like to
identify.)

To get rid of small peaks, we will set a threshold and get rid of peaks that don’t surpass the threshold
in magnitude. The code is already written for this. You simply need to assign a value to threshold. Try
different values to see what happens to your peak constellation.

One reasonable way to determine the appropriate threshold to use is to target a certain number of peaks
per second. That way, the threshold is adaptive. If the recording is louder, the threshold is also louder to
achieve the targeted number of peaks. See how close you can get to 30 peaks per second by adjusting the
threshold. What threshold did you use?

Using the threshold from above, display the constellation of peaks as before. Comment on the distribution
of peaks. Is it uniform? Are they closely packed? If so, is this a good thing?

Code has been provided to find a threshold to achieve 30 peaks per second. Uncomment this code now.

There are perhaps better ways to adaptively threshold. For example, a fixed threshold through the
duration of the song might not be appropriate. Also, high frequencies should maybe have a lower threshold.
Feel free to play with this once you have a complete Shazam system working.

2.2.5 Check results

There is code for an optional plot at the end of the template. Remove or comment all previous plots in
function. To enable this plot, change the variable optional_plot to 1. This shows the spectrogram with
blinking dots where the peaks are. Make sure this looks correct. It will blink a fixed number of times, after
which you can zoom in if necessary.

2.3 Find peak pairs

We have provided the command convert_to_pairs which takes a matrix of peaks and returns a table of
pairs that are close in both time and frequency, as shown in the introduction and illustrated on the next
page. Experiment with the parameters of this function. Enable the plot in this function and show the results
to the TA.

The code finds pairs by considering each peak and looking for other peaks within a designated window
located relative to it. During the search, we limit the number of pairs that we accept by the parameter
fanout. The code is written to scan through the window column by column, accepting the first pairings
that it finds. You might be able to improve performance by changing the window or changing the way it is
scanned. For example, some people like to set a minimum time separation for the scan window.
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2.4 Train database

Two other m-files are provided. The first one, add_to_table.m, edits a global variable called hashtable.
We’ll discuss that more in part 2 of the procedure. The other one, make_database.m, is a script that
searches for all MP3 files in a designated folder and processes them if they are not already in the database.

Make the appropriate changes to make_database so that it properly processes the music files. It should
call each of the three other functions discussed so far.
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Figure 1: Peak pair identification



3 Lab Procedure - Part 2

This week we will build the part of Shazam that identifies a segment of music, using the database that we
trained in the previous part. The main steps of the algorithm are the following:

1. Load HASHTABLE and SONGID that were created by make_database.m in part 1.
2. Prepare a clip of music for identification.
Extract the list of frequency pairs from the clip.

Look up matches in the hash table, calculate time offsets, and sort them by song.

A

Identify the song with the most matches for a single consistent timing offset.

We now discuss in more detail.

3.1 Match clip to song

The song matching will be accomplished in a function called match_segment.m. A template has been
provided. This function accepts a sound segment and a sampling frequency as arguments, and outputs the
song that best matches as well as a confidence level. The variables hashtable and songid must exist as
global variables for this function to work properly.

You will need a 5-10 second segment of one of the songs in the training set in order to test your code for
the following subsections.

3.1.1 Extract fingerprint

Begin by using the fingerprint function created in the previous part and the convert_to_pairs com-
mand to form a list of the peak pairs from the sound clip.

3.1.2 Recover matches from hash table

For each peak pair from the clip, we will find a list of potential matches in the hash table. A potential match
is any peak pair from the training process where the two frequencies are the same and the time difference
between the frequencies is the same. Notice that simple_hash was provided and was used previously in
add-to-table.m. Use the frequencies and the time difference of the peak pair (f1, fo,t2 — t1) as inputs to
the hash function, exactly as was done in add_to_table.m. Then extract the two lists from the hash table
saved at the location provided by the hash function. These lists are stored as vectors. Some of this code is
provided for you.

The two lists that have been extracted contain potential matches for the peak pair. The first list contains
the song ID numbers for each potential match, and the second list expresses the times t1 where the matches
occurred in the training data. Recall that the same song may contain the same peak pair at different times
t1, so the same song ID number may appear multiple times in the extracted list.

Now convert the timing list to a list of timing offsets by subtracting the time t1 that the peak pair
occurred in the clip. This list of offsets is what we will save. Why do we care about the offsets rather than
the timing vector itself?

We need to collect the lists of potential matches from each peak pair in the clip. These potential matches
also need to be separated into different lists for each song in the database. The array called matches
is defined for this purpose. You can separate the lists using the find command, which returns a list of
indices for the non-zero entries of a vector. Usually this is used in conjunction with a Boolean expression
For example, find (x==3) returns the list of indices where x = 3. Notice that y (find (x==3) ) returns a
list of the values of y at the locations where x = 3.

Enable the optional plot in the code to see a graphical display of the extracted data, and show this to
the TA. This shows one plot for each song in the database. This graphic is a histogram of the offset vector.



A histogram counts the number of occurrences of each value in a list, ignoring the order of the list. The
heights of this bar graph indicate the number of occurrences of a particular value. Do you see what you
expected? How can this be used to identify the correct song in the database?

3.1.3 Identify song

Find the song that has the most occurrences of any single timing offset. This is most easily done by looping
through each song and using the mode command. The mode command returns two values: The first is the
most common number in the vector; and the second is the count of the occurrences of that number.

Declare the winner to be the song with the most matches at a single time offset, and have match_segment
return the index of the song as the variable bestMatchID.

3.1.4 Confidence

The function match_segment returns a second variable that indicates the confidence level of the song
matching decision. Discuss at least one idea for measuring the confidence. Implement this in code if you’d
like. Otherwise, just set the variable confidence to 1.

3.2 Test Shazam

We’ve provided the file myshazam.m for testing and using your Shazam system. It first loads the hashtable
and songid variables that were saved during the training process, if they are not already in the workspace.
Then this function provides two options. It will either select a random segment of a song from the training
set, or it will record sound from the microphone. Insert the appropriate code toward the end to use your
match_segment function to match the song. Demonstrate to the TA that everything is working.

What is the accuracy of your program using the following tests? Use at least ten random clips of length
10 seconds. Repeat for length 5 seconds. Notice that the code allows you to add artificial noise to the clip.
Set the signal-to-noise-ratio (SNR) to 0dB and repeat the above experiments. The meaning of SNR is the
following:

Psi na
SNRdB = 10 loglo P £ 17

noise

where Pg;gnai is the power of the signal and Pyoise is the power of the noise.

3.3 Possible improvements

This Shazam algorithm can be optimized in a variety of ways. To begin with, all of the parameters in the
code can be adjusted (including even the sample rate). Keep in mind that some of these adjustments may
affect the run-time of the program.

Additionally, more significant changes can be made. For example, the matching process could be based
on triples of peaks or single peaks rather than pairs. Another idea is worth thinking about, though it may
not be crucial: In match_segment, choosing the song match by only comparing the mode for each song
may not be the optimal way. Some songs may have a longer list of potential matches, perhaps from being
a longer song. The mode could be compared somehow to the length of the list. A third idea would be to
replace our homemade hash function with an industry hash function. Matlab code for these can be found
online. In our setting, the goal of the hash function is to evenly distributed the potential matches across our
allocated table size.



