Chapter 3

Basics of Systems

3.1 What are Systems?

As previously mentioned, a signal represents some underlying physical variable
of interest. As an abstraction, we consider a signal as simply a real-valued (or
sometimes complex-valued) function defined on some domain. For example,
we might represent a signal as just a real-valued function of time x(-) where
x(t) represents the value of the signal at time ¢. Similarly, we will consider an
abstraction of the general system of Figure 3.1 from Chapter 1.
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Figure 3.1: A general system immersed in its environment.

In this figure, we think of a system as some part of the physical world that
interacts with its environment and is designed to carry out some task. The box
labeled “information processing” receives input signals from various sensors and
produces output signals for various actuators. Thus, we think of the system as
transforming input signals into output signals. A number of subtasks within
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“information processing” themselves perform operations on a signal to produce
another signal — i.e., they transform one function x(¢) to produce a new function
y(t). The term system is used in this abstract and technical sense to refer to
such mappings that take a signal as input and produce another signal as output.
As we’ll see, by making this abstraction and imposing additional assumptions,
we’ll be able to study special types of systems in a precise way that leads to
useful insights and results.

As with signals, we can have various types of systems such as continuous-
time, discrete-time, analog, digital, etc. We will let z:(¢) or z[n] denote the input
signal for continuous-time and discrete-time systems, respectively, and let y(t)
and y[n] denote the corresponding the output signals. H = H[:] will denote the
system, so that

y(t) = Hlz ()]
and similarly in the discrete-time case with “(¢)” replaced by “[n]”. It is stan-

dard to represent this relationship for the system H with a schematic diagram
as shown in Figure 3.2.
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Figure 3.2: Abstraction of a general system.

The range of possible systems is so wide that it is difficult to say much
that applies to completely general systems. However, by restricting attention
to special classes of systems a set of tools can be developed that helps in the
modeling, analysis, and design of systems. Two particularly useful properties
are linearity and time-invariance, which we describe next. A rich theory has
been developed for this class of systems. Although real physical systems are
rarely exactly linear or time-invariant, results for the idealized assumptions still
provide useful models for understanding more complex systems.

3.2 Linearity

One extremely useful class of systems is the class of linear systems. Roughly, a
system is linear if adding or scaling inputs to the system simply results in adding
or scaling the corresponding outputs. More precisely, a system H is linear if the
following two conditions are satisfied:

1.
Hlaz(t)] = aH[z(t)] (3.1)

for all constants a and input signals x(t); and

Hlai(t) + 22(t)] = Hlz1 (1)) + Hlza(2)] (3.2)
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for all input signals x1(t), z2(t).

The first condition implies, for example, that once we know the output of
the system due to z(t), then the output due to 2x(t) will be twice the original
output. The second condition implies that to find the output due to the sum
of two signals x1(t) + z2(t), we can first find the outputs due to each signal
separately and then just sum these outputs. The two conditions (3.1) and (3.2)
can be combined into the single condition

Hlar21(t) + asza(t)] = arHz1 (B)] + aoH[z2(¢)) (3.3)

for all constants aj,as and input signals x1(¢),xz2(t). This property is often
referred to as superposition. The definition of linearity can also be written for
discrete-time systems in the obvious way.

The beauty of linear systems arises from the superposition property, which
lets us analyze outputs due to very complicated inputs by first just considering
some standard set of simple inputs, and then considering additive combinations
of these.

3.3 Time-Invariance

Time-invariance is another useful concept to consider in studying systems. Time-
invariance means that whatever behavior a system has, if the inputs were delayed
by some amount of time, then the behavior of the system would be unchanged
other than just being delayed by that same amount of time. More precisely,
suppose y(t) denotes the output of the system due to z(t), so that as before
y(t) = H[z(t)]. Then H is time-invariant if

Hlz(t —to)] = y(t — to) (3.4)

for all times to and input signals z(t). If a system is not time-invariant then it
is said to be time-varying.

In this condition, ¢y denotes the delay, so that x(t — to) is the signal x(t)
delayed by time to. Note that g is allowed to be negative, so that the condition
also applies to starting the input early as well as delaying it.

The left hand side of (3.4) denotes the output of the system if we apply
the delayed input x(t — tg). The right hand side is the output y(t) delayed by
time tg. That is, the left hand side first delays the input to get z(t — to) and
then applies this to the system, while the right hand side first puts z(t) into the
system and then delays the resulting output. Time-invariance requires these to
give the same final result.

The notion of time-invariance can be defined in a similar way for discrete-
time systems. Of course, in this case, since the time variable n only takes
on integer values, we only need to consider integer shifts in the equation for
time-invariance.

Like linearity, the power of time-invariance lies in the nice behavioral prop-
erties this condition imposes on the system. It allows us to use knowledge of
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the system behavior on certain inputs to determine what the system would do
on other (namely shifted) inputs. The two conditions together (linearity and
time-invariance) are particularly powerful, as we’ll see in the next few sections.
In fact, with these two conditions the behavior of a system to any input can be
determined once we know the behavior due to just one special input — namely
the delta function.

3.4 Impulse Response and Output of LTI Sys-
tems

We now focus on the class of linear time-invariant systems (also known as LTI
systems). With these two properties (i.e., linearity and time-invariance) a rich
theory can be developed. Here we will touch on just some of the basic tools for
describing and analyzing such systems, but these tools form the basis for much
of the field of signals and systems.

We will first consider the case of discrete-time systems. Suppose we apply
the discrete-time delta function as the input to the system, namely we let z[n] =
d[n]. The output will be some signal which we will denote as h[n], so that

The function h[n] is called the impulse response of the system. It is the output
(response) of the system when the input is a delta function (impulse).

For the moment, let’s not be concerned with what particular values we ob-
serve for the impulse response, but only that we observe some output that we
will record and manipulate in various ways. Our focus is on seeing whether we
can use our knowledge that the output is h[n] when the input is §[n] to predict
what output we will get for some other inputs.

Without some restrictions or assumptions on the system, we have no hope
of predicting the output on some new inputs. However, recall that we have
assumed that the system is LTI, which are very powerful conditions indeed, as
we shall now see.

First, since the system is time-invariant, we can easily determine the input
to the shifted delta function §[n — ng]. This input is just a delayed version of
the delta function d[n] that takes the value 1 at time n = ng and is 0 elsewhere.
Time-invariance tells us that the output due to this delayed delta function is just
hln — ng), namely the output due to §[n] but just shifted by the same amount.
In equation form,

H[[n — nol] = h[n — ng]

Now, we can use linearity to determine the output due to many other inputs.
For example, what is the output due to applying 26[n]? Well, we already know
that the output h[n] results from the input §[n]. So by the scaling property of
linearity, we must get the output 2h[n] when we apply 24[n].

What about the output due to §[n—1]? Time-invariance tells us that the the
output must be the same as the output due to §[n] but just shifted by one unit.
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Le., the output is h[n — 1]. Likewise, if we apply d[n] + §[n — 1], the additive
property of linearity together with time-invariance tells us that the output must
be h[n] + h[n —1].

Now, we can use both the scaling and additive properties of linearity together
with time-invariance, to determine that if we apply the input 2§[n] 4+ 36[n — 1],
the output will be 2h[n] 4+ 3h[n — 1]. Thus, by just knowing the output due to
d[n] and using linearity and time-invariance, we can determine the output due
to some pretty complicated inputs by just “building up” these inputs in terms
of shifted and scaled delta functions, and then combining the correspondingly
shifted and scaled versions of the impulse response.

In fact, by carrying this idea further, we see that by appropriate combina-
tions of scaled and shifted delta functions, we can in fact synthesize any desired
input function. Suppose we want to create an arbitrary input z[n]. We can
start by making sure we create the proper value at time 0, namely z[0]. To do
this we include d[n] scaled by z[0], i.e., £[0]d[n]. Next, to get the desired value
at time 1, z[1], we simply add z[1]d[n — 1], which is §[n — 1] scaled by z[1]. Then
to get the desired value at time —1, we add z[—1]d[n 4+ 1]. Notice that each
shifted delta function is non-zero only at one time, so that adding new terms
won’t ruin the values we’ve already created. Thus, continuing in this manner,
we can write the input signal z[n] as

zln] = -4 x[=2]0[n+ 2] + z[-1]d[n + 1] + z[0]6[n]
+z[1)6[n + 1] + 2[2)0[n — 2] + - - -

or using summation notation

zln] = > alildn — ] (3.5)

1=—00

This is actually just a version of the sifting property of the delta function that
we encountered in Section XX.

Although expressing z[n] in this way might seem degenerate or not partic-
ularly useful, we have actually achieved a great deal. Initially, we had no idea
what output we would get if the input x[n] was applied to the system. But now,
we can use linearity and time-invariance as we did before to see that the output
will just be a combination of a bunch (albeit, potentially an infinite number)
of shifted and scaled versions of the impulse response h[n|. The fact that the
scaling terms are the values of the input signal itself shouldn’t bother or surprise
us. On the contrary, that is exactly what we did above in finding the output due
to 2d[n] + 3d[n — 1], the only difference being that we used specific numbers (2
and 3) for values of the input signal. In fact, the output of the system generally
should depend on the input signal, otherwise it would be a dull system.

Formally carrying out the manipulations, we get that the output y[n] due
to the input z[n] is given by
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= H[‘Z x[i]é[ni]]
= Z z[i)H[é[n — i]]

= Z x[i]hln — 1]

i=—00

The first equality is the definition of y[n]. The second uses the expression (3.5)
for z[n] obtained above, which is really the sifting property of the delta function.
The third equality follows from linearity, where we have used both the additive
property to bring H inside the sum, and the scaling property to bring z[i] out
of H[]. The fourth equality follows from time-invariance and the definition of
the impulse response h[n].

This final result is important enough to repeat as a separate equation.
Namely, if h[n] is the impulse response of a system, and we apply an input
x[n] then the output y[n| is given by

o0
gl = 3 wlilhln —i] (3.6)

1=—00

A few comments on this important result are in order. The somewhat compli-
cated/convoluted operation on the right hand side of Equation (3.6) combining
x[n] and h[n] is appropriately called the convolution of z[n] and hln]. It arises
so often that it is given the special notation (z x h)[n]. This operation will be
discussed in more detail in the next section.

Although the expression for the convolution looks complicated, the remark-
able thing is that this result implies that once we know the impulse response
of a system (i.e., the output due to the single input d[n]), then we can find the
output due to any input! In fact, the output is obtained by just convolving
the input with the impulse response. We see that linearity and time-invariance
impose so much structure on the system that knowing how the system behaves
for just the one special input §[n] determines the behavior of the system for all
inputs. Thus, as far as just the input/output behavior of a system is concerned,
the system is completely described by its impulse response. In principle, if we
have a black box and know nothing about its operation except that it happens
to be linear and time-invariant, we can find out everything about its behavior
by doing one simple experiment. We apply the delta function §[n] to the input
and measure the output signal that results. We then know exactly how the
black box will work under other inputs. Of course, in reality things aren’t quite
so simple for a variety of reasons, including the fact that most real systems are
neither exactly linear nor time-invariant. Nevertheless, the result is extremely
useful as we’ll see on many occasions.

Finally, we should mention that a result analogous to the discrete-time case
can also be obtained for continuous-time systems, as long as the continuous-
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time system satisfies certain mild continuity conditions that in practical cases
are always satisfied. In particular, we let h(t) denote the impulse response of
the system. That is, h(t) is the output of the system due to the input §(¢), so
that
h(t) = H[6(1)]
Then (under suitable continuity conditions) the output y(t) due to any input
x(t) is given by
oo
y(t) = / z(t)h(t —7)dr (3.7)
— 00
A rough derivation of this result follows very similar lines as in the discrete-
time case. First, by the sifting property of 4(t), we can write

x(t) = /OO x(r)é(t —7)dr

—00

Then, using linearity and time-invariance we get

y(t) = Hlz(t)]

The third equality uses linearity, and this is where the continuity conditions are
needed in a rigorous derivation. The last equality uses time-invariance.

As in the discrete-time case, the right-hand-side of Equation (3.7) is called
the (continuous-time) convolution of x(t) and h(t), and denoted (x * h)(t). The
result again implies that once we know the impulse response, we can determine
the output of the system due to any input via a convolution. As a practical
matter, finding the impulse response of a continuous-time black-box is more
challenging since we are we generally unable to produce a continuous-time delta
function. However, approximations to the delta function can be produced and
are useful, and in any case the result is extremely useful as a modeling and
analysis tool.

3.5 Convolution

In the previous section, we introduced the notion of the convolution of two
signals. We repeat the definition here for convenience. In discrete-time, the
convolution of z[n| and h[n] is defined by

o0

1=—00
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In continuous-time, the convolution z(t) and h(t) is defined by

oo
(zxh)(t) = / z(T)h(t — 7) dT.
— 00
We have seen that the convolution of two signals arose naturally as a way
to understand the behavior of LTI systems. Specifically, the output of an LTI
system is simply the input convolved with the impulse response. However,
in addition to this interpretation, the convolution operation can be motivated
by simply thinking of it as a rather general and useful way to transform one
signal into another signal. If y(t) = (z % h)(t), we think of z(¢) as the original
signal, y(t) as the new signal, and h(t) as representing the particular type of
transformation we wish to perform. With this perspective, it is immaterial that
the convolution operation can be viewed as the output of an LTI system. In
any case, regardless of the particular view or motivation of convolution, it is an
operation that occurs so frequently in both the theory and practice of signals
and systems that it well worth spending time to understand the convolution
operation.
Let’s consider the discrete-time case first. Let
o0
yln] = (@xh)[n) = Y afilhn .

1=—00

First notice that the convolution of two signals results in another signal, not just
a single number. Thus to understand what the convolution does, we need to
understand what it does at each time. Notice that for any fixed n, the expression
on the right hand side is the sum of a bunch of (infinitely many) terms. Each
term is the value of x[-] at some time and the value of h[-] at some other time.
Thus the value of y[n] at some time n is really just a weighted sum of the signal
x[-] where the weights depend on the signal h[-]. At some different time, the
convolution is still just a weighted sum where again the weights depend on Al
but now different weights are assigned to values of x[-].

Notice that part of the expression for the convolution sum, namely the z[i]
term, does not depend on n. The summation index ¢ is just a dummy variable
to carry out the weighted sum. So we can think of the convolution as follows
(and as illustrated in Figure 3.3):

1. Draw the signal z[-] where we use the dummy variable i, since we will be
taking a weighted sum.

2. Flip the signal h[i] about the vertical (range) axis to get h[—i] and then
shift by n to get h[n — i].

3. Multiply the corresponding values of z[i] and h[n — i] and add up to find
ylnl.

In continuous-time, the convolution

y(t) = (zxh)(t) = /OO z(T)h(t — 7) dT.
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Figure 3.3: Schematic convolution of x[n] with h[n]
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has a similar interpretation, but with the sum replaced by an integral. Namely,
the convolution at time ¢ is obtained as follows:

1. Consider z(7) where we now use 7 as the dummy variable for the weighted
integral.

2. Flip the signal h(7) about the vertical (range) axis to get h(—7) and then
shift by ¢ to get h(t — 7).

3. Multiply the corresponding values of x(7) and h(t — 7) and integrate to
find y(t).

3.6 Frequency Response of LTI Systems

In this section, we consider the response of an LTI system to a sinusoidal input.
If the input to the system is a sinusoid at a particular frequency, we would like
to know what can be said about the output of the system.

It turns out that the behavior of LTI systems to sinusoids is simple. All
that an LTI system can do to a sinusoidal input is to change its amplitude and
phase. That is, if the input to an LTI system is a sinusoid at some frequency w
then the output is also a sinusoid at frequency w, but possibly with a different
amplitude and phase.

The theory is cleaner if we allow complex sinusoids that were discussed in
Chapter XX. Namely, we consider the input

z(t) = " = coswt + jsinwt

Now, let’s see what happens if we apply this input to an LTI system with impulse
response h(t).
Recall that the output y(t) is just the convolution of x(t) and h(t), i.e.,

y(t) = (zx h)(t)

Since we have seen that convolution is commutative, we can write this as

oo
y(t) = h(t) * z(t) = / h(r)x(t —7)dr
—0o0
So far, this is completely general, i.e., we haven’t yet used the fact that x(t) is
sinusoidal. We’ll now use this fact by substituting x(t) = e/“! into the above
expression to get

o .
/ h(T)eJ“(t_T) dr

— 00

y(t)

/ h(7)e?te™I9T dr

- ej“t/ h(r)e 3T dr

— 00
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Figure 3.6: Convolving with rect functions of different lengths

Notice that on the right hand side we have the original complex sinusoid e/*!
times a term that does not depend on t. Thus, we have shown the desired result.

Of course, the term multiplying e/“* depends on w. In fact, this term is called
the frequency response of the system, since it tells us what the system does to
sinusoidal inputs at each frequency. We will let H(w) denote the frequency
response, so that

H(w) = /_  h(r)ei dr (3.9)

and then we can write
y(t) = H(w)e!!

Once we know the impulse response h(t), then in principle we can compute the
frequency response H(w) by simply carrying out the integral in Equation (3.8).

The fact that the frequency response can be computed from the impulse
response should no longer be surprising to us since we have previously seen
that the impulse response actually determines the output for any input. So, in
particular, it determines the output for a sinususoid at frequency w. What may
be surprising is that the behavior of LTI systems on sinusoids is so simple. What
may be more surprising is that not only does the impulse response determine
the frequency response, but the reverse is also true. That is, if we know the
frequency response for all w then we can determine the impulse response, and
hence we can determine the output due to any input. Thus, once we know
what the system does to sinusoids at each frequency, we know how the system
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responds to all inputs. This result is closely connected to extremely useful
concepts of frequency domain representations of signals and Fourier transforms,
which is the topic we will consider in the next chapter. In fact, as we’ll soon
see, the frequency response H(w) is simply the Fourier transform (i.e., frequency
domain representation) of the impulse response.

We finish this section by showing that similar ideas hold in the case of
discrete-time systems. For the discrete-time case, we consider the discrete-time
complex sinusoid

x[n] = eI
As in the continuous-time case, the output y[n| of an LTI system with im-

pulse response h[n] is given by

yln] = (zxh)n]
= (hxz)n]

oo

= > hlka[n— k]

k=—oc0

Now, substituting the expression for z[n] we get

> hlklerh)

k=—o0

y[n]

I
=
=

&)

<

€
3
)
d
€
>

Thus, in the discrete-time case the frequency response H(w) is given by
H(w)= > h[kle/* (3.9)
k=—oc0
The output can then be written as
yln] = H(w)e"

so that in the case of a discrete-time LTI system we also get a sinusoidal output
at the same frequency as the input.



