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ELE 301, Fall 2010

Laboratory No. 6

Frequency Response of Continuous Time Systems

1 Background

1.1 Circuits in the Frequency Domain

For LTI continuous-time, bibo-stable systems, if the input is the sinusoid eiωt, then the
output is the sinusoid ĥ(ω)eiωt. The complex valued function of the (real valued) frequency
variable ω is called the frequency response function, or just frequency response for short.

In the course notes, the frequency response of the RC circuit shown in Figure 1 was calculated
to be

ĥ(ω) =
1

1 + iωRC
.

This was obtained using the formula for the frequency response in terms of the impulse
response:

ĥ(ω) =
∫ ∞
∞

h(t)e−iωtdt

We now describe another method to get to this result. First, remember that we model
resistors, capacitors and inductors as linear time-invariant components. To obtain the fre-
quency response of a circuit made up of these components, we first look at each individual
component’s frequency response.

The current voltage relationship for a capacitance C is I(t) = C(dV (t)/dt). So when
V (t) = V eiωt, where V = V0e

iφ, we have

I(t) = C(iω)V eiωt =
V eiωt

1/iωC
=

V (t)
1/iωC

.

So I(t) = V (t)/ZC , where ZC = 1/iωC.

If we want to do this for real valued sinusoids we would set V (t) = V0 cos(ωt+φ), and obtain
I(t) = −Cω sin(ωt+φ). So the amplitude is scaled by Cω and there is a phase shift of π/2.
Generally, it is much more convenient to use the complex sinusoids, because amplitude and
phase can be represented by a single complex number multiplying the sinusoid.

Now let us look at an inductance L. The relationship between voltage and current is
V (t) = L(dI(t)/dt). As above consider V (t) = V eiωt where V = V0e

iφ is a complex number
giving the amplitude and phase. Then

I(t) = L(iω)V eiωt =
V eiωt

iωL
=
V (t)
iωL

So I(t) = V (t)/ZL, where ZL = iωL.

You can apply the same analysis to a resistance R, and you will see that for V (t) = V eiωt,
the current is I(t) = V (t)/R.

So for inputs that are complex exponentials, our circuit components have voltage-current
relationships that look like Ohm’s law, except that the impedances are now complex and in
the case of capacitors and inductors are frequency dependent:

ZR = R ZC = 1/(iω) ZL = iωL

All the rules of resistor combination in series and in parallel apply to impedances, so si-
nusoidal circuit analysis becomes very easy. We can also drop the eiωt term in the input
during circuit calculation and then reinsert it at the end.

As an example, we analyze the RC circuit in Figure 1. Let vin(t) = V eiωt. We know
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Figure 1: Left: An RC filter. Right: The RC filter in the frequency domain.

that vout(t) = ĥ(ω)eiωt. Hence we drop the term eiωt and do all our calculations assuming
vin = V = Voe

iφ. We redraw our circuit components as impedances, as show on the right
of Figure 1, and use basic circuit laws to calculate vout = ĥ(ω). The impedance circuit is a
voltage divider, so

vout = vin
1/iωC

R+ 1/iωC
= vin

1
1 + iωRC

Reinserting the sinusoidal signal we obtain

vout(t) =
1

1 + iωRC
V eiωt

and
ĥ(ω) =

1
1 + iωRC

1.2 Second Order Low Pass Filters

Figure 2: Active low pass filter: Sallen-Key circuit.

The circuit shown in Figure 2 is called a Sallen-Key circuit. The circuit contains two
capacitors and gives rise to a second order differential equation. For this reason, it is called
a second order filter. The frequency response of the circuit is:

ĥ(ω) =
1

R1R2C1C2(iω)2 + C2(R1 +R2)(iω) + 1
(1)

We can parameterize the frequency response of any second order low pass filter (e.g. the
Sallen-Key circuit) as follows:

ĥ(ω) =
ω2
n

(iω)2 + 2ζωniω + ω2
n

(2)

The two parameters ζ (zeta) and ωn are called the damping factor and the natural frequency
of the system, respectively. The fact that the numerator is a constant while the denominator
is a quadratic in iω indicates that the frequency response is low pass. The gain at ω = 0 is
1 and as ω increases to infinity the gain asymptotically approaches zero. The constant in
the numerator has been specifically chosen to normalize the gain to 1 at ω = 0.
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To find the maximum value of |ĥ(ω)| we minimize (ω2
n − ω2)2 + 4ζ2ω2 with respect to ω.

This requires a simple exercise in differential calculus and yields:

• |ĥ(ω)| has a local maximum at ω = 0; and

• if ζ < 1/
√

2 ≈ 0.7, there is a second local maximum at ωr = ωn
√

1− 2ζ2.

Thus for small ζ the filter has a resonance at ωr < ωn. The gain Gr at the resonant
frequency is obtained by substituting the expression for ωr into the formula for |ĥ(ω)|. This
yields

Gr = (2ζ
√

1− ζ2)−1.

The gain of the filter in dB is
G = 20 log(ω2

n)− 10 log((ω2
n − ω2)2 + 4ζ2ω2)

= 20 log(ω2
n)− 10 log(ω4 − 2ω2(ω2

n − 4ζ2) + ω4
n) (3)

For ω � ωn the ω4 term dominates and the gain is approximately
G ≈ 40 log(ωn)− 40 log(ω)

So on the logarithmic frequency scale the Bode gain plot will be asymptotically linear with
a slope of −40 dB per decade and the asymptote will intersect the 0dB line when ω equals
the natural frequency ωn.

When ω = 0 the phase shift introduced by the filter is 0 degrees. This decreases as ω
increases. At the resonant frequency ωr the phase shift is tan−1(

√
1− 2ζ2/ζ) degrees and

at the natural frequency ωn it is exactly −90 degrees. As ω goes to infinity the phase shift
asymptotically approaches −180 degrees.

Suppose we want to select the values of R1, R2, C1 and C2 to give a low pass filter with a
−3dB bandwidth of 100 rad/sec. Typically in a LP design you want to avoid any resonance.
We can achieve this by seeting ζ2 = 1/2. Then ωr = 0 and the −3dB point is easily
computed to occur at ω = ωn. Now ωn and ζ are known so there are now two constraint
equations in three unknowns.

Typically you first fix a convenient value for C1 and C2, then solve the equations for appro-
priate values of R1 and R2. In practice we then have to do one additional step of selecting
the nearest available values of the resistors from the standard resistor values, or use variable
resistors and “tweak” them to get the desired values.

1.3 Bode Plots

It is common to display a frequency response function ĥ(ω), as a Bode diagram. As discussed
in the notes, this consists of two plots, one of gain in dB vs. frequency and and one of phase
vs. frequency, with the frequency axis in a logarithmic scale.

To do this, we first choose our lower and upper frequencies, for example 10−1 and 102

rad/sec. Then the code to create a bode plot would look something like this:

w=logspace(-1,2,200); %from 10^-1 to 10^2 with 200 points log spaced
mag=20*log10(abs(hh(w)));
phase=angle(hh(w))*180/pi;
figure;
subplot(2,1,1);semilogx(w,mag);set(gca,’xgrid’,’on’,’ygrid’,’on’);
subplot(2,1,2);semilogx(w,phase);set(gca,’xgrid’,’on’,’ygrid’,’on’) ;

where hh(w) is ĥ(ω). Obviously, for each subplot you will have to label the axes appropri-
ately.

1.4 Filtering in MATLAB with lsim

Our filters operate on continuous time signals. To simulate the filter on a discrete time sig-
nals in MATLAB we use the function lsim. This requires requires expressing the frequency
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response function in terms of s = iω. If the frequency response is a rational function of s,
then we can represent the numerator as a vector of coefficients num and the denominator as a
vector of coefficients den. Then use the following line to construct the system in MATLAB:

H=tf(num,den);

Then we pass a signal x, sampled at time vector t, through H via lsim:

y=lsim(H,x,t);

1.5 Questions

1. Derive the frequency response of the circuit in Figure 3:

2. Derive the frequency response (1) of the Sallen-Key circuit (Figure 2):
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2 Lab Procedure

2.1 Bode Plots

1. Plot a Bode plot of an ideal low pass filter with a cutoff frequency B = 1 rad/sec.
Plot the same for an ideal high pass filter with cutoff frequency B = 1 rad/sec.

2. Next, plot the Bode diagram for the RC circuit in Figure 1 with RC = 1. This
should match the Bode plot shown on page 4 of the “Eigenfunctions of LTI Systems”
notes. Make sure all axes are appropriately labeled.

3. Plot the Bode diagram for the RC circuit in Figure 3 with RC = 1. What kind
of filter is this? What is the approximate slope of the magnitude plot in the stop
band in dB per decade?

Figure 3: Another RC filter.

4. Suppose the output of the circuit in Figure 1 is the input of the circuit in Figure 3
(with appropriate isolation so the circuits do not interact). The frequency response
of the combined system is the product of the frequency responses of each of the
individual systems. Plot the Bode diagram of the cascaded system, with RC = .1
for the circuit in Figure 3 and RC = .01 for the low pass circuit. What kind of
filter is this? What is the pass band? Does the ordering of the two circuits matter?
(isolation is assumed.)

5. Plot the Bode diagram for the Sallen-Key circuit in Figure 2, with R1R2C1C2 = 1
and C2(R1 + R2) = .7654. What kind of filter is this? What is the pass band?
What is the approximate slope of the magnitude plot in the stop band in dB per
decade? How does this filter compare to filter in 1?
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2.2 Filtering Speech

We will now use the second order low pass filter to filter an audio file of speech summed
with some high frequency tones. Write an m-file spchfilt.m that does the following:

1. • Choose ωn such that the −3dB frequency is 600Hz and ζ such that there is no
resonance.

• Plot the Bode plot with frequency ranging from 100Hz to 10,000Hz.
• Read the file whkight.wav, and plot the reconstructed signal vs time in a figure

in subplot 1. Then play the signal with the sound command.
• Finally, filter the reconstructed signal using the Sallen-Key circuit. You can do

this with the lsim command. Plot the output vs time on figure 2 subplot 2,
and play it.

2. Now lets add some unwanted noise and see if the filter can attenuate it without
changing he speech too much. Just after you have reconstructed the speech signal
but before you plot and play it, add a few new lines to your program that reads
the sound file sines.wav, reconstructs the signal from its quantized version and
then adds it to the speech. Now see if the filter can attenuate this corrupting
signal without losing the speech in the process. Do the same with the sound file
hfnoise.wav.
In both cases you should note that the currupting signal is attenutated but not
removed (why?). By moving the cut-off frequency of the filter around you can see
the trade-off between getting better rejection of the noise and better preservation
of the quality of the speech.

Demonstrate this program to the TA.

Attach all your plots and code to lab handout prior to handing it in.
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