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1. Introduction

In this laboratory the Quanser SRV02 rotary plant and a pendulum module are used. The objective of 
this laboratory is to design and implement a complete control system that will swing the pendulum up 
from its vertical downward position and balance it in the vertical upward position. In implementing 
such a control system the following topics will be covered:

● Modeling the dynamics of the single inverted pendulum using Euler-Lagrange equations.
● Obtaining a linear state-space representation of the system.
● Designing an energy based swing up controller.
● Designing a state-feedback control system that balances the pendulum at its vertical upward 

position using LQR.
● Implementing the controllers on the Quanser SRV02 + SIP (Single Inverted Pendulum) plant 

and evaluating its performance.

Regarding Gray Boxes:

Gray boxes present in the instructor manual are not intended for the students as they provide 
solutions to the pre-lab assignments and contain typical experimental results from the laboratory 
procedure.

2. Prerequisites

In order to successfully carry out this laboratory, the user should be familiar with the following:
● Data-acquisition, amplifier, and the main components of the SRV02 (e.g. actuator, sensors), as 

described in References [1], [4], and [5], respectively.
● Wiring and operating procedure of the SRV02 + SIP plant with the  amplifier discussed in 

Reference [9].
● Laboratory described in Reference [6] in order to be familiar using QUARC with the SRV02.
● Designing a PV position control for the SRV02 as dictated in Reference [8].

3. Overview of Files

Table 1 below lists and describes the various files supplied with the SRV02 + SIP Control laboratory.
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File Name Description
18 – Rotary Pendulum User 

Manual.pdf
This manual describes the hardware of the Rotary Pendulum and 
explains how to setup and wire the system for the experiments.

19 – Inverted Pendulum Control 
– Student Manual.pdf

This  laboratory  guide  contains  pre-lab  and  in-lab  exercises 
demonstrating how to design and implement  a  controller  on the 
Quanser SRV02 + SIP plant using QUARC.

setup_srv02_exp08_sip.m The main MATLAB script that sets the SRV02 motor and sensor 
parameters, the SRV02 configuration-dependent model parameters, 
and the SIP sensor parameters. Run this file only to setup the 
laboratory.

config_srv02.m Returns the configuration-based SRV02 model specifications Rm, 
kt, km, Kg, eta_g, Beq, Jeq, and eta_m, the sensor calibration 
constants K_POT, K_ENC, and K_TACH, and the amplifier limits 
VMAX_AMP and IMAX_AMP.

config_sp.m Sets the model parameters of the Quanser single inverted pendulum 
module depending on the pendulum length and type specified. The 
pendulum length and type are set in setup_srv02_exp08_sip.m file.

d_model_param.m Calculates the SRV02 model parameters K and tau based on the 
device specifications Rm, kt, km, Kg, eta_g, Beq, Jeq, and eta_m.

calc_conversion_constants.m Returns various conversions factors.

q_sip.mdl Simulink  file  that  implements  the  balance  controller  only.  The 
swing up has to be done manually and this controller only kicks in 
when the pendulum is at its vertical upward position and balances 
it.

q_sesip.mdl Simulink file that implements the complete energy based swing up 
and state-feedback balance controller and the switching algorithm. 

19 – Inverted Pendulum Control 
– Instructor Manual.pdf

Same as the student version except the gray boxes are no longer 
shaded to reveal the solution to the pre-lab and in-lab exercises.

calculate_qr.m This file sets the Q and R weighting matrices in addition to the 
reference energy for swing up control when CONTROL_TYPE has 
been set to AUTO in setup_srv02_exp08_sip.m. 

SRV02 Energy-Based Swing-
Up.mws

Maple worksheet used to develop the energy based swing up 
controller. Waterloo Maple 9, or a later release, is required to open, 
modify, and execute this file.

SRV02 Energy-Based Swing-
Up.html

HTML presentation of the above Maple Worksheet. It allows users 
to view the content of the Maple file without having Maple 9 
installed. No modifications to the equations can be performed when 
in this format.
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File Name Description
SRV02+SIP Equations.mws Maple worksheet used to develop the equations of motion for an 

inverted pendulum mounted on a rotary plant. Waterloo Maple 9, 
or a later release, is required to open, modify, and execute this file.

SRV02+SIP Equations.html HTML presentation of the above Maple Worksheet. It allows users 
to view the content of the Maple file without having Maple 9 
installed. No modifications to the equations can be performed when 
in this format.

Table 1: Files supplied with the SRV02 + SIP Control experiment.

4. Pre-Lab Assignments

4.1. Modeling the Rotary Single 
Inverted Pendulum

The kinematics of the rotary single inverted pendulum system is depicted in Figure 1. The various 
lengths, masses, and moments of inertia associated with the rotary arm and the pendulum link of the 
system are shown as well as the coordinate systems used to derive the kinematics of the system when 
using classical mechanics to derive the dynamics of the system.
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Figure 1: Kinematics of a single inverted pendulum 
system 

4.1.1. Introduction to Euler-Lagrange
Instead of using the classical mechanics, the Lagrangian method will be used to find the equations of 
motion of the system. The classical method is often used for more complicated systems such as robot 
manipulators with multiple joints.

More specifically, the equations that describe the motions of the rotary arm and the pendulum with 
respect to the servo motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange 
equation:
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[1]

The variables qi are called generalized coordinates. For the gantry, we can define this coordinate as
 =  q [ ],( )θ t ( )α t , [2]

where, as shown in Figure 1, θ(t) is the rotary arm angle and α(t) is the pendulum angle. The 
corresponding velocities are therefore

 =  qd
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With the generalized coordinates now defined, the Euler-Lagrange equation becomes
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[5]

The Lagrangian of the system is described
 =  L  −  T V , [6]

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus 
the Lagrangian is the difference between a system's kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces applied to a system with 
respect to the generalized coordinates. In this case, the generalized force acting on the rotary arm is

 =  Q1  −  τ m Barm






d

d
t

( )θ t [7]

and acting on the pendulum is

 =  Q2 Bp






d

d
t

( )α t
.

[8]

The torque applied at the load gear, τm, is generated by the servo motor as described by the equation

 =  τ m

η g Kg η m Kt






 −  Rm I

m
Kg Km







d

d
t

( )θ t

Rm .

[9]
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See Reference [5] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf 
constant, Km). Our control variable is the input servo motor current, Im. Opposing the applied torque is 
the viscous friction torque, or viscous damping, corresponding to the term Barm. Since the pendulum is 
not actuated, the only force acting on the link is the damping. The viscous damping coefficient of the 
pendulum is denoted by Bp.

Keep in mind that the Euler-Lagrange equations is a systematic method of finding the equations of 
motion, i.e. EOMs, of a system. Once the kinetic and potential energy are obtained and the Lagrangian 
is found, then the task is to compute various derivatives to get the EOMs. For the rotary single inverted 
pendulum system, the nonlinear equations of motions generated by the Euler-Lagrange formula are
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[11]

However in order to find the kinetic and potential energies of the single inverted pendulum, it is 
beneficial to first describe the pendulum center of mass in terms of a three-dimensional Cartesian 
coordinate. The translational kinetic energy and potential energy of the pendulum can then be defined 
using these Cartesian equations.

4.1.2. Forward Kinematics
Forward kinematics involves describing a point on a rigid body in terms of Cartesian coordinate 
system. It does not involve masses or forces. In the case of the single inverted pendulum, we want a set 
of equations that describe the XYZ position of the pendulum center of mass from the rotary arm angle 
and the pendulum angle. Thus the following equations are needed

 =  xp ( )f ,θ α
, [12]

 =  yp ( )g ,θ α
, [13]

and
 =  zp ( )h ,θ α

. [14]

These can be found manually using trigonometry and Figure 1. However, a more systematic procedure 
is to use rotational and translational matrices. This method is favored, for instance, when finding the 
kinematics of robot manipulators with more than one link.
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4.1.2.1. Transformation Matrices

Given the coordinate system O0, the rotational matrices that describe a CCW rotation of angle γ about 
the X0, Y0, and Z0 axes are

 =  R ,X0 γ













1 0 0 0

0 ( )cos γ − ( )sin γ 0

0 ( )sin γ ( )cos γ 0

0 0 0 1 ,

[15]

 =  R ,Y0 γ













( )cos γ 0 ( )sin γ 0

0 1 0 0

− ( )sin γ 0 ( )cos γ 0

0 0 0 1 ,

[16]

and

 =  R ,Z0 γ













( )cos γ − ( )sin γ 0 0

( )sin γ ( )cos γ 0 0

0 0 1 0

0 0 0 1 .

[17]

The matrices that describe a translation along the X0, Y0, and Z0 axes, respectively, by a fixed length of 
L are

 =  T ,X0 L













1 0 0 L

0 1 0 0

0 0 1 0

0 0 0 1 ,

[18]

 =  T ,Y0 L













1 0 0 0

0 1 0 L

0 0 1 0

0 0 0 1 ,

[19]

and

Document Number 773 ♦ Revision 1.0 ♦ Page 8



SRV02 Self Erecting Inverted Pendulum Control  – Instructor Manual

 =  T ,Z0 L













1 0 0 0

0 1 0 0

0 0 1 L

0 0 0 1 .

[20]

Consider the transformation from the coordinate system O0 to O2 shown in Figure 2.

The transformation from O0 to O1 is a rotation about the Z0 axis by angle γ . Then, a translation of 
length of L along the X1 axis is required to go from O1 to O2 system. Thus the full transformation is

 =  T ,0 2 R ,Z0 γ T ,X1 L . [21]

Performing the matrix multiplication

 =  T ,0 2













( )cos γ − ( )sin γ 0 0

( )sin γ ( )cos γ 0 0

0 0 1 0

0 0 0 1













1 0 0 L

0 1 0 0

0 0 1 0

0 0 0 1

[22]

equals
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 =  T ,0 2













( )cos γ − ( )sin γ 0 ( )cos γ L

( )sin γ ( )cos γ 0 ( )sin γ L

0 0 1 0

0 0 0 1 .

[23]

The Cartesian coordinates of the O2 system are taken from the matrix elements T0,2[1,4], T0,2[2,4], and 
T0,2[3,4] to get:

 =  x2 ( )cos γ L
, [24]

 =  y2 ( )sin γ L
, [25]

and
 =  z2 0

. [26]

This set of equations describes the tip of the pendulum in the XYZ space with respect to the base 
coordinate system O0. As the beam rotates CCW from 0 degrees to 90 degrees, the distance along the 
X0 axis decreases from L down 0 while the distance along the Y0 axis increases positively from 0 to L.

4.1.2.2. Kinematics of the Inverted Pendulum
Go through these exercises to find the (xp, yp, zp) equations:

1. Find the matrix T0,2 that describes the transformation from the base coordinate system O0, which 
is on the rotary servo load gear, to the coordinate system O2, which is at the tip of the rotary 
arm. Make sure the Cartesian coordinates (x2,y2,z2) makes sense before going on to the next 
exercise.
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Solution:
The transformation matrix

 =  T ,0 2 R ,Z0 θ T ,X1 r [s1]
expresses the (x2, y2, z2) coordinates in terms of the base O0 system. The rotational matrix 
describing a CCW rotation of θ about the Z0 axis is

 =  R ,Z0 θ













( )cos ( )θ t − ( )sin ( )θ t 0 0

( )sin ( )θ t ( )cos ( )θ t 0 0

0 0 1 0

0 0 0 1 .

[s2]

and the translation of r along the rotary arm, coordinate system X1, is described

 =  T ,X1 r













1 0 0 r

0 1 0 0

0 0 1 0

0 0 0 1 .

[s3]

After performing the matrix multiplication in [s1], the resulting transformation matrix is

 =  T ,0 2













( )cos ( )θ t − ( )sin ( )θ t 0 ( )cos ( )θ t r

( )sin ( )θ t ( )cos ( )θ t 0 ( )sin ( )θ t r

0 0 1 0

0 0 0 1 .

[s4]

2. Find the transformation matrix T2,4 that describes the transition from the rotary arm tip down to 
the pendulum center of mass, i.e. from the O2, to the O4 system.
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Solution:
The transformation matrix

 =  T ,2 4 R ,X2 α T ,Z3 lp [s5]
expresses the (xp, yp, zp) coordinates with respect to arm tip, i.e. the O2 system. The rotational 
matrix describing a CCW rotation of α about the pendulum pivot is

 =  R ,X2 α













1 0 0 0

0 ( )cos ( )α t − ( )sin ( )α t 0

0 ( )sin ( )α t ( )cos ( )α t 0

0 0 0 1 .

[s6]

From that point, the transformation from the pendulum pivot to its center of mass is a 
translation along Z3  by a distance of lp in the negative direction,

 =  T ,Z3 lp













1 0 0 0

0 1 0 0

0 0 1 − lp

0 0 0 1 .

[s7]

The resulting transformation matrix is

 =  T ,2 4













1 0 0 0

0 ( )cos ( )α t − ( )sin ( )α t ( )sin ( )α t lp

0 ( )sin ( )α t ( )cos ( )α t − ( )cos ( )α t lp

0 0 0 1 ..

[s8]

3. Finally, perform the calculation
 =  T ,0 4 T ,0 2 T ,2 4 [27]

and list the resulting (xp, yp, zp) equations. 
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Solution:
The final transformation matrix is defined

[s9]

and the resulting equations describing the pendulum center of mass point (xp, yp, zp) relative to 
the base O0 system are

 =  xp −  +  ( )sin ( )θ t ( )sin ( )α t lp ( )cos ( )θ t r [s10]

 =  yp  +  ( )cos ( )θ t ( )sin ( )α t lp ( )sin ( )θ t r [s11]
and

 =  zp − ( )cos ( )α t lp . [s12]

4. Take the time derivative to find the translational velocity of the pendulum CM. 
Solution:
Using the chain-rule and taking the time-derivative of equations [s10], [s11], and [s12] gives

 =  xdp −  −   −  ( )cos ( )θ t






d

d
t

( )θ t ( )sin ( )α t lp ( )sin ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )sin ( )θ t






d

d
t

( )θ t r [s13]

 =  ydp −  +   +  ( )sin ( )θ t






d

d
t

( )θ t ( )sin ( )α t lp ( )cos ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )cos ( )θ t






d

d
t

( )θ t r [s14]

and

 =  zdp ( )sin ( )α t






d

d
t

( )α t lp
.

[s15]

4.1.3. Finding the Lagrangian of the System
In this section, the Lagrangian of the inverted pendulum system is derived. As discussed, the Lagrange 
is the difference between a system's kinetic and potential energy. Thus the kinetic and potential energy 
of the SIP are first computed in sections 4.1.3.1 and 4.1.3.2, respectively. Then, in Section 4.1.3.3, the 
Lagrange is found.
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 =  T ,0 4













( )cos ( )θ t − ( )sin ( )θ t ( )cos ( )α t ( )sin ( )θ t ( )sin ( )α t −  +  ( )sin ( )θ t ( )sin ( )α t lp ( )cos ( )θ t r

( )sin ( )θ t ( )cos ( )θ t ( )cos ( )α t − ( )cos ( )θ t ( )sin ( )α t  +  ( )cos ( )θ t ( )sin ( )α t lp ( )sin ( )θ t r

0 ( )sin ( )α t ( )cos ( )α t − ( )cos ( )α t lp

0 0 0 1
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4.1.3.1. Kinetic Energy
Generally speaking, there are two types of kinetic energies in a mechanical structure: rotational and 
translational. The rotational kinetic energy of an object with a moment of inertia of J spinning about an 
axis at an angular rate of ω, is

 =  Tr
J ω

2

2
[28]

and the translational kinetic energy of an object of mass m moving at a linear velocity of v is

 =  Tt
m v 2

2 .
[29]

The two rotary objects – the arm and the pendulum link – each contribute to rotational kinetic energy of 
the SIP while the translational energy is caused by the pendulum only. Go through these exercises to 
find the total kinetic energy of the SIP:

1. Find the total rotational energy of the SIP, Tr.
Solution:
Using the same nomenclature for the moment of inertia parameters as given in Figure 1 (and 
the user manual), the rotational energy of the arm is

 =  T ,r arm
1
2

Jarm






d

d
t

( )θ t
2

[s16]

and the rotational energy of the pendulum is

 =  T ,r p
1
2

Jp






d

d
t

( )α t
2

.
[s17]

The total rotational energy of the SIP is therefore:

 =  Tr  +  
1
2

Jarm






d

d
t

( )θ t
2

1
2

Jp






d

d
t

( )α t
2

.
[s18]

2. Find the translational energy of the SIP, Tl.
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Solution:
The linear velocity of the pendulum CM is the magnitude of the translational velocity vector

 =  v  +   +  xdp2 ydp2 zdp2
. [s19]

Substituting this into the kinetic energy formula in [29] we obtain the equation

 =  Tt
1
2

mp ( ) +   +  xdp2 ydp2 zdp2
.

[s20]

Evaluating the expression with the velocity elements, we obtain the translational SIP kinetic 
energy

Tt
1
2

mp






−  −   −  ( )cos ( )θ t







d

d
t

( )θ t ( )sin ( )α t lp ( )sin ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )sin ( )θ t






d

d
t

( )θ t r
2



 =  







−  +   +  ( )sin ( )θ t







d

d
t

( )θ t ( )sin ( )α t lp ( )cos ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )cos ( )θ t






d

d
t

( )θ t r
2

 +  

( )sin ( )α t 2 





d

d
t

( )α t
2

lp2 +  






[s21]

3. Give the total kinetic energy, T.
Solution:
The total kinetic energy is the sum of the rotational and translational kinetic energies,

 =  T  +  Tr Tt . [s22]

Substituting the total rotational and translational energies found above gives the total SIP 
kinetic energy

T
1
2

Jarm






d

d
t

( )θ t
2

1
2

Jp






d

d
t

( )α t
2

1
2

mp





 +   +   =  







−  −   −  ( )cos ( )θ t







d

d
t

( )θ t ( )sin ( )α t lp ( )sin ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )sin ( )θ t






d

d
t

( )θ t r
2







−  +   +  ( )sin ( )θ t







d

d
t

( )θ t ( )sin ( )α t lp ( )cos ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )cos ( )θ t






d

d
t

( )θ t r
2

 +  

( )sin ( )α t 2 





d

d
t

( )α t
2

lp2 +  







[s23]
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4.1.3.2. Potential Energy
In the section, the potential energy of the SIP is to be found. The basic formula to compute the 
gravitational potential energy of an object with mass m is

 =  V m g dh , [30]
where g is the gravitational acceleration constant and dh is the change in the object height, e.g. if it's 
moved from h1 to h2 then dh = h2 – h1.

1. Using kinematics derived, find the gravitational potential energy of the rotary SIP system. Make 
sure the energy is in terms of the pendulum angle.
Solution:
The potential energy of the SIP based on the kinematics is

 =  V mp g zp . [s24]

Substituting the zp coordinate from [s12] into the above equation
 =  V − mp g ( )cos ( )α t lp . [s25]

4.1.3.3. Lagrangian
Now the Lagrangian of the SIP system can be found using Equation [6].

1. Compute the Lagrangian, L, of the single inverted pendulum system.
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Solution:
To get the Lagrange, substitute the total kinetic energy found in [s23] and the total potential 
energy in [s25] into Equation [6]

L
1
2

Jarm






d

d
t

( )θ t
2

1
2

Jp






d

d
t

( )α t
2

1
2

mp





 +   +   =  







−  −   −  ( )cos ( )θ t







d

d
t

( )θ t ( )sin ( )α t lp ( )sin ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )sin ( )θ t






d

d
t

( )θ t r
2







−  +   +  ( )sin ( )θ t







d

d
t

( )θ t ( )sin ( )α t lp ( )cos ( )θ t ( )cos ( )α t






d

d
t

( )α t lp ( )cos ( )θ t






d

d
t

( )θ t r
2

 +  

( )sin ( )α t 2 





d

d
t

( )α t
2

lp2 +  





 mp g ( )cos ( )α t lp +  

[s26]

4.1.4. Nonlinear Equations of Motion
Using the Euler-Lagrange formula in [1], the equations representing the motions of the rotary arm and 
the pendulum of the SIP system can be obtained.

4.1.4.1. Obtaining the Nonlinear Equations of Motion
Go through these exercises to find the original SIP EOMs:

1. Show how to obtain the nonlinear EOM given in [10] using the Euler-Lagrange equation. Make 
sure the derivative calculations are shown.
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Solution:
Substituting the Lagrange obtained in [s26] and the generalized forced coordinate in [7] into 
the Euler-Lagrange Equation [4] will setup the equation. Then, the derivatives must be 
computed. The derivative of the Lagrangian with respect to the rotary arm angle is 

∂
∂
θ

L
1
2

mp 2 ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r ( ) −  ( )sin θ ( )sin α lp ( )cos θ r( =  

2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r +  )






d

d
t

( )θ t
2

1
2

mp +  

( )−  −  2 ( )sin θ ( )cos α lp ( ) −  ( )sin θ ( )sin α lp ( )cos θ r 2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r ( )sin θ ( )cos α lp






d

d
t

( )α t






d

d
t

( )θ t

[s27]

The derivative of L with respect to the rate of the arm angle is






Diff ,L

d
d
t

( )θ t Jarm






d

d
t

( )θ t
1
2

mp 2


 +   =  







−  −   −  ( )cos θ







d

d
t

( )θ t ( )sin α lp ( )sin θ ( )cos α






d

d
t

( )α t lp ( )sin θ






d

d
t

( )θ t r

( )−  −  ( )cos θ ( )sin α lp ( )sin θ r 2 +  







−  +   +  ( )sin θ







d

d
t

( )θ t ( )sin α lp ( )cos θ ( )cos α






d

d
t

( )α t lp ( )cos θ






d

d
t

( )θ t r

( )−  +  ( )sin θ ( )sin α lp ( )cos θ r




[s28]

Then, taking the time derivative of this gives

∂
∂
t







Diff ,L

d
d
t

( )θ t  =  







 +  Jarm

1
2

mp ( ) +  2 ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r 2 2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r 2










d

d2

t2
( )θ t

1
2

mp +  

( )−  +  2 ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r ( )sin θ ( )cos α lp 2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r ( )cos θ ( )cos α lp










d

d2

t2
( )α t

[s29]

Inserting [s27] and [s29] into Equation [4] and doing the computation results in the nonlinear 
EOM shown in [10].

2. Show how to get the nonlinear EOM given in [11] using the Euler-Lagrange equation.
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Solution:
The derivative of the Lagrangian with respect to the pendulum angle is 

∂
∂
α

L
1
2

mp =  

( )−  −  2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r ( )sin θ ( )cos α lp 2 ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r ( )cos θ ( )cos α lp







d

d
t

( )θ t
2

1
2

mp +  

( ) −  2 ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r ( )sin θ ( )sin α lp 2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r ( )cos θ ( )sin α lp






d

d
t

( )α t






d

d
t

( )θ t

1
2

mp ( )−  +   −  2 ( )sin θ 2 ( )cos α lp2 ( )sin α 2 ( )sin α lp2 ( )cos α 2 ( )cos θ 2 ( )cos α lp2 ( )sin α






d

d
t

( )α t
2

 +  

mp g ( )sin α lp −  

[s30]

The derivative of L with respect to the pendulum angle velocity equals






Diff ,L

d
d
t

( )α t Jp






d

d
t

( )α t
1
2

mp


 +   =  

2






−  −   −  ( )cos θ







d

d
t

( )θ t ( )sin α lp ( )sin θ ( )cos α






d

d
t

( )α t lp ( )sin θ






d

d
t

( )θ t r ( )sin θ ( )cos α lp−

2






−  +   +  ( )sin θ







d

d
t

( )θ t ( )sin α lp ( )cos θ ( )cos α






d

d
t

( )α t lp ( )cos θ






d

d
t

( )θ t r ( )cos θ ( )cos α lp +  

2 ( )sin α 2 





d

d
t

( )α t lp2 +  




[s31]

Which results in 

∂
∂
t







Diff ,L

d
d
t

( )α t
1
2

mp =  

( )−  +  2 ( )−  −  ( )cos θ ( )sin α lp ( )sin θ r ( )sin θ ( )cos α lp 2 ( )−  +  ( )sin θ ( )sin α lp ( )cos θ r ( )cos θ ( )cos α lp










d

d2

t2
( )θ t







 +  Jp

1
2

mp ( ) +   +  2 ( )sin θ 2 ( )cos α 2 lp2 2 ( )cos θ 2 ( )cos α 2 lp2 2 ( )sin α 2 lp2










d

d2

t2
( )α t +  

[s32]

after taking the time derivative. 

Substituting the computed derivatives [s30] and [s32] into Equation [5] and performing the 
computation gives the EOM shown in [11].

4.1.4.2. Euler-Lagrange Matrix Form
The Euler-Lagrange equations can also be written in matrix form as

 =   +   +  ( )D ( )q t










d

d2

t2
( )q t







C ,( )q t

d
d
t

( )q t






d

d
t

( )q t ( )g ( )q t τ

.
[31]
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For a system with two coordinates such as the SIP, the mass or inertia matrix can be written as

 =  ( )D ( )q t












d11 d12

d12 d22
[32]

and the damping matrix as

 =  






C ,( )q t

d
d
t

( )q t












c11 c12

c12 c22 .
[33]

The vector

 =  ( )g ( )q t












g1

g2
[34]

includes gravitational forces and

 =  τ












 −  τ m Barm qd1

Bp qd2
[35]

is called the generalized force vector, which for the SIP consists of the load gear torque and the 
nonconservative damping torques Barmqd1 and Bpqd2. Recall the generalized coordinates q and qd 
defined in [2] and [3].

Go through these exercises to determine all Euler-Lagrange matrix elements for the SIP:
1. From the nonlinear EOMs, enter the inertial matrix elements of the SIP in the following table. 

Express the elements in terms of the generalized coordinate defined earlier in [2].
Inertial Parameter Expression
d11(q)

 =  ( )d11 q2 −  +   +   +  mp lp2 ( )cos q2 2 Jarm mp r2 mp lp2

d12(q)  =  ( )d12 q2 mp ( )cos q2 lp r

d21(q)  =  ( )d21 q2 mp ( )cos q2 lp r

d22(q)  =  d22  +  Jp mp lp2

Table 2: Euler-Lagrange nonlinear inertial parameters.

2. Enter the damping terms of the SIP in  Table 2, above. These expressions can be functions of 
the generalized coordinates and their corresponding time-derivatives. Make sure the expressions 
are given in terms of the generalized coordinates defined in [2] and [3].
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Inertial Parameter Expression
c11(q,qd)  =  ( )c11 ,q2 qd2 2 mp ( )cos q2 qd2 lp2 ( )sin q2

c12(q,qd)  =  ( )c12 ,q2 qd1 − mp ( )sin q2 qd2 lp r

c21(q,qd)  =  ( )c21 ,q2 qd1 − mp ( )cos q2 lp2 qd1 ( )sin q2

c22(q,qd)  =  c22 0

Table 3: Euler-Lagrange damping parameters.

3. Complete  Table 3, above, with the torques that are generated by gravity.
Inertial Parameter Expression
g1(q)  =  g1 0

g2(q)  =  ( )g2 q2 mp g ( )sin q2 lp

Table 4: Euler-Lagrange gravitational torque parameters.

4.1.5. Linear State-Space Model
The linear state-space representation of the SIP system is to be found. The nonlinear equations of the 
system must be first be linearized and then solved for the acceleration terms. This is done in Section 
4.1.5.1. Thus the Euler-Lagrange matrix elements found above must be linearized to obtain the 
equation

 =   +   +  ( )Dl ( )q t










d

d2

t2
( )q t







Cl ,( )q t

d
d
t

( )q t






d

d
t

( )q t ( )gl ( )q t τ [36]

where Dl(q) is the linear inertia matrix, Cl(q,qd) is the linear damping matrix, and gl(q) is the linearized 
gravitational torque vector. The applied torque is generated by a DC motor, therefore the generalized 
force vector, τ, is already linear.

Solving for the angular accelerations, the equation becomes

 =  
d

d2

t2
( )q t − ( )Dl ( )q t

[ ]-1 





 +   −  







Cl ,( )q t

d
d
t

( )q t






d

d
t

( )q t ( )gl ( )q t τ

,
[37]

where Dl(q)-1 is the matrix inverse of D(q). This results in the linear EOMs in terms of the generalized 
coordinates.

State x is defined and introduced in Section 4.1.5.2 in order to get the state equations and thereafter, in 

Document Number 773 ♦ Revision 1.0 ♦ Page 21

0 1 2

0 1 2



SRV02 Self Erecting Inverted Pendulum Control  – Instructor Manual

Section  4.1.5.3, the state-space matrices are derived.

4.1.5.1. Linear Equations of Motion
Consider a nonlinear function f(z) that maps the two-element vector 

 =  z












z1

z2
[38]

to a scalar value, f(z): z ∈ ℜ2 → ℜ1. The linear approximation of f(z) when linearized about the 
operating point

 =  z0










a

b .
[39]

is

 =  ( )flin z  +   +  ( )f z0








∂

∂
z1

( )f z
 =  z z0

( ) −  z1 a








∂

∂
z2

( )f z
 =  z z0

( ) −  z2 b
.

[40]

Obtain the linear EOMs by linearizing all the parameter in the Euler-Lagrange matrices:
1. Linearize the inertial terms in the D(q) matrix in  Table 2 above and enter them in the table 

below.
Inertial Parameter Expression
d11,l(q)

 =  d ,11 l  +  Jarm mp r2

d12,l(q)  =  d ,12 l mp lp r

d21,l(q)  =  d ,21 l mp lp r

d22,l(q)  =  d ,22 l  +  Jp mp lp2

Table 5: Linearized Euler-Lagrange nonlinear inertial parameters.

2. Linearize the damping terms found in  Table 3 and enter the expressions below.
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Inertial Parameter Expression
c11,l(q,qd)  =  c ,11 l 0

c12,l(q,qd)  =  c ,12 l 0

c21,l(q,qd)  =  c ,21 l 0

c22,l(q,qd)  =  c ,22 l 0

Table 6: Linearized Euler-Lagrange damping parameters.

3. Fill the table below with the linearized gravitational forces found in  Table 4, above.
Inertial Parameter Expression
g1,l(q,qd)  =  g ,1 l 0

g2,l(q,qd)  =  g ,2 l mp g lp q2

Table 7: Linearized Euler-Lagrange gravitational torque parameters.

4. The linear Euler-Lagrange equation in [36] can now be solved for the acceleration terms, as 
described in [37]. First, find the inverse linearized inertial matrix Dl(q)-1 and leave it in terms of 
the linear inertial parameters dij,l. 
Solution:
The linearized inertial matrix is

.

 =  ( )Dl ( )q t












d ,11 l d ,12 l

d ,21 l d ,22 l
[s33]

When inverted, the matrix becomes 

 =  ( )Dl ( )q t
[ ]-1













d ,22 l
 −  d ,11 l d ,22 l d ,12 l d ,21 l

−
d ,12 l

 −  d ,11 l d ,22 l d ,12 l d ,21 l

−
d ,21 l

 −  d ,11 l d ,22 l d ,12 l d ,21 l

d ,11 l
 −  d ,11 l d ,22 l d ,12 l d ,21 l

[s34]

For the SIP system, it is easier to first linearize the equation and then solve for the acceleration 
terms. This makes the matrix inverse computation less tedious. 

5. Show the linear Euler-Lagrange equations when still in matrix form and with respect to the 
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generalized coordinates, q and qd.
Solution:
Given that the damping terms are all zero, the solved Euler-Lagrange matrix equation becomes

 =  
d

d2

t2
( )q t ( )Dl ( )q t

[ ]-1
( ) −  τ ( )gl ( )q t [s35]

Substituting the inverse linear inertial matrix, the linear gravitational vector, and the 
generalized force vector results in the expression

d

d2

t2
( )q t  −  

d ,22 l ( ) −   −  τ m Barm qd1 g ,1 l
 −  d ,11 l d ,22 l d ,12 l d ,21 l

d ,12 l ( ) −  Bp qd2 g ,2 l
 −  d ,11 l d ,22 l d ,12 l d ,21 l

,




 =  

−  +  
d ,21 l ( ) −   −  τ m Barm qd1 g ,1 l

 −  d ,11 l d ,22 l d ,12 l d ,21 l

d ,11 l ( ) −  Bp qd2 g ,2 l
 −  d ,11 l d ,22 l d ,12 l d ,21 l







[s36]

The inertial parameters can now be added to obtain the linear Euler-Lagrange equations (in 
terms of the generalized coordinates)

d

d2

t2
( )q t  −  

( ) +  Jp mp lp2 ( ) −  τ m Barm qd1

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2

mp lp r ( ) −  Bp qd2 mp g lp q2

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2
,






 =  

−  +  
mp lp r ( ) −  τ m Barm qd1

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2

( ) +  Jarm mp r2 ( ) −  Bp qd2 mp g lp q2

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2







[s37]

6. These equations are relative to the load output torque, τm. However, the input voltage of the 
servo motor is the control variable. Add the actuator dynamics to make these equations in terms 
of the input current Vm.
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Solution:
The relationship between the load torque and the motor input current is given in Equation [9]. 
Placing this in terms of the generalized coordinates, given in [2], and substituting this into the 
above equations gives

d
d
t

( )qd1 t
mp2 lp2 r g q2

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2
 =  

( ) +  Jp mp lp2










−  −  
η g Kg2 η m Kt Km

Rm
Barm qd1

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2

( ) +  Jp mp lp2 η g Kg η m Kt Vm

( ) −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2 Rm

 +   +  

mp lp r Bp qd2

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2
 −  

[s38]

and

d
d
t

( )qd2 t  =  

−  +  

mp lp r










 −  
η g Kg η m Kt ( ) −  Vm Kg Km qd1

Rm
Barm qd1

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2

( ) +  Jarm mp r2 ( ) −  Bp qd2 mp g lp q2

 −  ( ) +  Jarm mp r2 ( ) +  Jp mp lp2 mp2 lp2 r2

[s39]

4.1.5.2. Introducing the State
Given the state vector

 =  x T [ ], , ,x1 x2 x3 x4 [41]

we define the position states as
{ }, =  ( )θ t x1  =  ( )α t x2 [42]

and the velocities as

{ }, =  
d
d
t

( )θ t x3  =  
d
d
t

( )α t x4
.

[43]

The SIP plant which is now modeled and represented with state space matrices A, B, C and D, consists 
of two sensors namely the SRV02 motor shaft encoder and the pendulum encoder. These two sensors 
provide values for the first two states of the system respectively. The last two states are angular 
velocities of the first two and in this lab are estimated using high pass filters which differentiate the first 
two states respectively to obtain a complete 4 element state vector. The controller to be designed will 
be a proportional-derivative gain K, found using LQR. The reference input for the balance controller is 
a value of zero degrees (vertical upward position) giving rise to the reference vector [0 0 0 0]. The state 
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vector which consists of the two encoder readings plus their derivatives is subtracted from the reference 
input vector and fed into the controller.

Follow these exercises to get the state equations:
1. Express the equations of motion obtained in Section 4.1.5.1  in terms of the state.

Solution:
Using the definitions for the angular positions and rates in [42] and [43], we can introduce the 
state using the following relationships for the generalized coordinates

{ }, =  q2 x2  =  q1 x1 [s40]
and 

{ }, =  qd2 x4  =  qd1 x3 . [s41]

Using these, the EOMs become

d
d
t

( )x3 t
( ) +   +   +  Jp η g Kg2 η m Kt Km Jp Barm Rm mp lp2 η g Kg2 η m Kt Km mp lp2 Barm Rm x3

( ) +   +  Jarm Jp Jarm mp lp2 mp r2 Jp Rm

− =  

mp lp r Bp x4

 +   +  Jarm Jp Jarm mp lp2 mp r2 Jp

( )−  −  Jp η g Kg η m Kt mp lp2 η g Kg η m Kt Vm

( ) +   +  Jarm Jp Jarm mp lp2 mp r2 Jp Rm

 −   −  

mp2 lp2 r g x2

 +   +  Jarm Jp Jarm mp lp2 mp r2 Jp

 +  

[s42]

and 

d
d
t

( )x4 t
( ) +  mp lp r η g Kg2 η m Kt Km mp lp r Barm Rm x3

( ) +   +  Jarm Jp Jarm mp lp2 mp r2 Jp Rm

( ) +  Rm Jarm Bp Rm mp r2 Bp x4

( ) +   +  Jarm Jp Jarm mp lp2 mp r2 Jp Rm

 +   =  

mp lp r η g Kg η m Kt Vm

( ) +   +  Jarm Jp Jarm mp lp2 mp r2 Jp Rm

( )−  −  Rm Jarm mp g lp Rm mp2 r2 g lp x2

( ) +   +  Jarm Jp Jarm mp lp2 mp r2 Jp Rm

 −   +  

[s43]

4.1.5.3. Obtaining the Final State-Space Model
The linear state-space equations are

 =  
∂
∂
t

x  +  A x B u [44]

and
 =  y  +  C x D u . [45]
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The (A,B) matrices can be obtained from the EOMs above. As for the output equation, only the 
position measurements of the arm and pendulum angles are available and measurement noise will be 
neglected. Thus the output equation can be written

 =  y












x1

x2 .
[46]

Go through these exercises to obtain the linear state-space representation of the SIP:
1. Enter the first two rows of the state-space matrix A elements in the table below.

Matrix A Element Expression
A[1,1] 0

A[1,2] 0

A[1,3] 1

A[1,4] 0

A[2,1] 0

A[2,2] 0

A[2,3] 0

A[2,4] 1

Table 8: State-space matrix A: first and second row elements.

2. Complete  Table 9 with the third row state-space matrix A elements.
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Matrix A Element Expression
A[3,1] 0

A[3,2] mp2 lp2 r g

 +   +  Jarm mp lp2 Jarm Jp mp r2 Jp

A[3,3]
−

 +   +   +  mp lp2 η g Kg2 η m Kt Km mp lp2 Barm Rm Jp Barm Rm Jp η g Kg2 η m Kt Km

( ) +   +  Jarm mp lp2 Jarm Jp mp r2 Jp Rm

A[3,4]
−

mp lp r Bp

 +   +  Jarm mp lp2 Jarm Jp mp r2 Jp

Table 9: State-space matrix A: third row elements.

3. Enter the fourth row elements of matrix A in  Table 10.
Matrix A Element Expression
A[4,1] 0

A[4,2]

−
mp g lp ( ) +  Jarm mp r2

 +   +  Jarm mp lp2 Jarm Jp mp r2 Jp

A[4,3] mp lp r ( ) +  Barm Rm η g Kg2 η m Kt Km

( ) +   +  Jarm mp lp2 Jarm Jp mp r2 Jp Rm

A[4,4] Bp ( ) +  Jarm mp r2

 +   +  Jarm mp lp2 Jarm Jp mp r2 Jp

Table 10: State-space matrix A: fourth row elements.

4. Enter matrix B in  Table 11.
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Matrix B Element Expression
B[1] 0

B[2] 0

B[3] η g Kg η m Kt ( ) +  mp lp2 Jp

( ) +   +  Jarm mp lp2 Jarm Jp mp r2 Jp Rm

B[4]
−

mp lp r η g Kg η m Kt

( ) +   +  Jarm mp lp2 Jarm Jp mp r2 Jp Rm

Table 11: State-space matrix B.

5. Fill the table below with the C matrix values.
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Matrix B Element Expression
C[1,1] 1

C[1,2] 0

C[1,3] 0

C[1,4] 0

C[2,1] 0

C[2,2] 1

C[2,3] 0

C[2,4] 0

Table 12: State-space matrix C.

6. Fill  Table 13 with the matrix D elements.

Matrix B Element Expression
D[1] 0

D[2] 0

D[3] 0

D[4] 0

Table 13: State-space matrix D.
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4.2. Inverted Pendulum Balance 
Control Design
As mentioned at the beginning of this document, this laboratory consists of two separate controller 
design steps. One controller will be developed for swinging the pendulum up from the vertical 
downward position, and another will be designed to balance the pendulum in the vertical upward 
position. The first controller is an energy based swing up controller while the second is a state-feedback 
PD controller obtained using LQR. This section is dedicated to designing the balance controller.

The state-feedback controller enters the servo motor and is expressed as
 =  ( )I

m
t K ( ) −  ( )xd t ( )x t [47]

where
 =  K [ ], , ,k ,p θ k ,p α k ,d θ k ,d α  [48]

is the control gain and
 =  ( )xd t T [ ], , ,( )θ d t 0 0 0 [49]

is the desired state as stated above. Remark that this is a proportional-derivative controller with servo 
and pendulum proportional gains kp,θ and kp,α and servo and pendulum derivative gains kd,θ and kd,α. 
Instead the compensator can be expressed in terms of the actual angles, by substituting the states 
defined in [42] and [43], to get 

 =  ( )I
m

t  −   −   −  k ,p θ ( ) −  ( )θ d t ( )θ l t k ,p α ( )α t k ,d θ






d

d
t

( )θ l t k ,d α






d

d
t

( )α t [50]

In terms of the control design, it is assumed that all the states are measured. That is, the position and 
velocity of the servo and the pendulum are measured using sensors. However as mentioned in section 
4.1.5.2 in the actual plant there are only sensors measuring the positions of the servo and pendulum. 
The velocities  are  computed  digitally using  high-gain  observers  and their  result  is  taken  as  being 
"measured" for the purposes of the control design. The velocity is computed by taking the derivative of 
the position  and filtering the result  using a  second-order low-pass  filter  (LPF).  In effect,  the state 
velocities are obtained using a high-pass filter of the form

 =  ( )H s
ω f s

 +   +  s2 2 ζ f ω f ω f2
[51]

where ωf is the natural frequency of the filter and ζf is the damping ratio of the filter.
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4.2.1. LQR
A system is deemed as being controllable if its poles can be placed at any desired location via state-
feedback. One method of determining if a system is controllable is called the rank test:

 =  ( )rank Co n
. [52]

The matrix Co is called the controllability matrix. For a four-state system such as the inverted pendulum 
it is computed by

 =  Co [ ], , ,B A B A2 B A3 B
.

[53]

If the rank of the controllability matrix equals the amount of states, i.e. if n = 4, then the system is 
controllable and a state-feedback control can be designed.

Assuming (A,B) is controllable, the control gain K in Equation [48] can be computed using the Linear-
Quadratic Regular (LQR) optimization method. For the user-defined weighting matrices Q and R, LQR 
finds a signal u(t) that minimizes the cost function

 =  J d
⌠

⌡


0

∞

 +  ( )x t T Q ( )x t ( )u t T R ( )u t t

.

[54]

With the state-feedback control
 =  u − K x [55]

LQR will compute a gain K that minimizes the J expression. For the SIP system, the weighting 
matrices will be chosen as

 =  Q













q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4 .

[56]

and
R = 15 [57]

Generally speaking if R is kept constant and the diagonal elements in the Q matrix are increased then 
LQR will work harder to minimize J and the gains generated will be larger. Instead, matrix R can be 
varied. To generate a larger control gain, decrease the value of R while keeping Q constant. This way 
the algorithm must work harder against the smaller R value to minimize J and will yield a larger control 
gain.

To gain some intuition on LQR go through the following exercises:
1. One of the problems with the LQR method is that there are little guidelines in choosing the 
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weighting matrices. Typically the Q and R matrices are initially set to their corresponding 
identity matrices, the optimization algorithm is ran, and the system is simulated using the 
generated gain to observe the closed-loop response and check whether the specifications are 
satisfied. However, it can be useful to gain some insight on how the weighting parameters affect 
the gain being generated. Expand the inside of the cost function

 +  ( )x t T Q ( )x t ( )u t T R ( )u t [58]
such that it is in terms of the weighting parameters qi, the proportional and derivative gains, and 
the states. Use the value of R given in equation [57].
Solution:
Given that R = 15, the control input is a scalar and the cost function becomes

J =x t T∗Q∗x t 15ut 2 [s44]

Using the state-feedback control in [55], the Q weighting matrices in [56], and gain R given in 
[57], into the above expression gives

J =x1
2 q1x2

2 q2x3
2 q3x4

2 q415x1 k pθx2 k pαx3 k dθx4 k dα
2 [s45]

2. Based on the result, can you determine which gains are primarily affected by which weighting 
parameter? Give the correlations between the qi and the gains in K.
Solution:
The result obtained can be expanded and then collected with respect to the states to get

Jint ( ) +  k ,p θ 2 q1 x12 ( ) +   +  2 k ,p θ x2 k ,p α 2 k ,p θ x3 k ,d θ 2 k ,p θ x4 k ,d α x1 +   =  

( ) +  q3 k ,d θ 2 x32 ( ) +  2 x2 k ,p α k ,d θ 2 k ,d θ x4 k ,d α x3 ( ) +  q4 k ,d α 2 x42 +   +   +  

2 x2 k ,p α x4 k ,d α ( ) +  k ,p α 2 q2 x22 +   +  

[s58]

It is evident from the x1
2 coefficient that the arm proportional gain is directly affected by the 

choice of the q1 parameter. Similarly from the x2
2 term, the pendulum proportional gain kp,α is 

primarily affected by q2. By the same token, the arm and pendulum derivative gains, kd,θ and 
kd,α, are mainly determined by how the q3 and q4 weighting parameters are chosen.
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4.3. Inverted Pendulum Swing Up 
Controller Design

In this section a control scheme is developed for swinging up the pendulum from its vertical downward 
position. The controller is an energy based controller.

From the earlier sections, the potential energy of the SIP system can be written as:

 =  Ep Mp g lp ( ) −  1 ( )cos ( )α t [59]

where Mp denotes the pendulum mass, g denotes the gravitational constant and lp denotes the pendulum 
length. In addition the kinetic energy of the SIP system is:

 =  Ek
1
2

Jp






d

d
t

( )α t
2

[60]

Where Jp denotes the pendulum moment of inertia.

Summing the above energies we obtain the following for the total energy of the SIP system:

 =  E  +  
1
2

Jp






d

d
t

( )α t
2

Mp g lp ( ) −  1 ( )cos ( )α t [61]

Differentiating with respect to time we obtain:

 =  
∂
∂
t

E






d

d
t

( )α t











 +  











d

d2

t2
( )α t Jp Mp g lp ( )sin ( )α t [62]
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1. In order to introduce the control variable u, into the above equation solve for sin(α(t)) in the 
non-linear equation of motion you found in section 4.1.4 and substitute the resulting expression 
into [62].

A non-linear controller that swings the pendulum up to achieve a given reference energy Er  has the 
following form:

 =  u ( ) −  E Er ( )cos ( )α t






d

d
t

( )α t [63]

However for energy to change quickly the magnitude of the control signal must be fairly large. As a 
result a tunable gain μ is multiplied by the above and the controller is saturated at the maximum 
acceleration deliverable by the motor  umax :

 =  u






satumax

µ ( ) −  E Er






Sign ( )cos ( )α t







d

d
t

( )α t [64]

As found in [7] the torque at load gear of the SRV02 is given by:

 =  τ m η g Kg η m Kt I
m [65]

Where ηg is the gearbox efficiency,  Kg is the gear ratio, ηm is the motor efficiency, and Kt is the 
current-torque constant.
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Solution:
Solving for  sin(α(t)) in the non-linear equation of motion found in section 4.1.4 we obtain:

 =  ( )sin ( )α t

−  +  Jp











d

d2

t2
( )α t Mp u lp ( )cos ( )α t

Mp g lp

[S59]

By substituting [S59] into [62] we obtain:

 =  
∂
∂
t

E Mp u lp ( )cos ( )α t






d

d
t

( )α t [S60]
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2. Using the following torque and linear acceleration relationship, write down the complete 
equation describing the relationship between controller acceleration and motor input current.

 =  τ m marm larm u [66]

3. It  was  shown  in  equation  [63]  that  with  a  given  reference  energy,  a  controller  can  be 
implemented that swings the pendulum up to achieve that given energy. Calculate the reference 
pendulum energy that results in the pendulum to balance in its vertical upward position. You 
can refer to the supplied file config_sp.m to obtain system parameter values such as pendulum 
mass and length if required.
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Solution:

By equating [66] and [65] we obtain the following relationship between the controller 
acceleration and motor input current:

 =  I
m

marm larm u

η g Kg η m Kt
[S61]

0 1 2
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Solution:

From equation [61] we know that the total energy of the pendulum is:

 =  E  +  
1
2

Jp






d

d
t

( )α t
2

Mp g lp ( ) −  1 ( )cos ( )α t [S62]

At the vertical upward position the pendulum angle is constant at 180 degrees. Hence the first 
term in [S63] is zero since the derivative of the now constant angle is zero. This can also be 
concluded from the fact that when the pendulum is at its vertical upward position it is not 
moving and hence its kinetic energy is zero. To evaluate the second term, pendulum mass and 
length are found from the file config_sp.m:

Mp = 0.127 kg
lp = 0.156 m

Substituting the above values into [S63] we obtain:

E r=00.127∗9.81∗0.1561−−1=0.3877
0 1 2
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5. In-Lab Procedures

The q_sesip Simulink diagram shown in Figure 3 is used to control the SRV02 self erecting single 
inverted pendulum system using the QUARC software. The SRV02-E+SIP-QuaRC subsystem contains 
QUARC blocks that interface with the DC motor and sensors (encoders) of the SIP system.

In the Setpoint block the user can adjust the reference input to the system when the balance controller is 
running. The reference has been set to a sinewave with a frequency of 0.2 Hz. The amplitude of the 
reference signal can be entered in degrees in the Amplitude (deg) gain block.

The “Swing-Up: Up to Enable”  block can be used to switch between manual swing up and automatic 
swing up of the pendulum. In the “Off” position the user must manually swing the pendulum up to its 
vertical upward position at which point the balance controller kicks in and balanced the pendulum at 
that  position.  In  the  “On” position  however  the  swing up is  done by the  energy based controller 
discussed in the Pre-Laboratory section.

The  Swing-Up Control  block consists of three subsystems itself and implements the two controllers 

Document Number 773 ♦ Revision 1.0 ♦ Page 38

Figure 3: Simulink model used to control the SRV02 self erecting SIP system
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used  in  this  laboratory.  The  Balance  Control  subsystem  implements  a  state-feedback  controller 
obtained using LQR to balance the pendulum in its vertical upward position. The  SRV02 Swing-Up 
Control  subsystem implements the energy based controller to swing the pendulum up and finally the 
Mode-Switching Strategy block implements the switching strategy between the two controllers. There 
are two conditions that should be met in order for the switch to take place. First, the pendulum angle 
has to be within 2.5 degrees of the vertical upward position and second the angular velocity of the 
pendulum has to be smaller than or equal to 17.6 rad/s. These conditions are checked using the two pre-
defined variables CATCH_ALPHA_UP_LIM and CATCH_ALPHA_DOT_LIM which are set to values 
mentioned above in the setup script supplied.

The  High-Gain Observer  block contains two second-order high-pass filters that compute the angular 
rates  of  the  servo  and  pendulum and  outputs  the  corresponding  estimated  state,  Xe.  Remark  that 
although the rates can be computed by the Simulink State-Space block, the filtering is used to mimic 
the actual plant as closely as possible (the high-pass filters are used in the implemented controller).

Follow these steps to implement a complete control system on the actual SIP plant:

1. Load the MATLAB software.
2. Browse through the Current Directory window in MATLAB and find the folder than contains 

the controller files.
3. Double-click on the q_sesip.mdl file to open the Simulink diagram shown in Figure 3. 
4. Double-click on the setup_srv02_exp08_sip.m to open the setup script for this laboratory.
5. Configure the setup script:  When used with the SIP, the SRV02 must be in the high-gear 

configuration  and  no  load  is  to  be  specified.  Make  sure  the  script  is  setup  to  match  this 
configuration, i.e. the EXT_GEAR_CONFIG should be set to 'HIGH' and the LOAD_TYPE 
should be set to 'NONE'. Also, ensure the ENCODER_TYPE, TACH_OPTION, K_CABLE, 
AMP_TYPE, and VMAX_DAC parameters are set according to the SRV02 system that is to be 
used in the laboratory. Next, make sure CONTROL_TYPE is set to 'MANUAL'.
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Note to Instructor:

Set  CONTROL_TYPE  =  'AUTO'  to  automatically  calculate  the  LQR  control  gains  and 
reference energy for swing up control. If CONTROL_TYPE is set to 'MANUAL' the students 
are asked to enter their calculated reference energy. 

The students  should not  have access  to the script  calculate_qr.m  as this  file  contains 
values  for  parameters  that  students  are  supposed  to  calculate  themselves. However, 
exactly what should be given to the students is at the discretion of the instructor.



SRV02 Self Erecting Inverted Pendulum Control  – Instructor Manual

5.1. Reference Energy Calculation 

Run the setup script  setup_srv02_exp08_sip.m by selecting the Debug | Run item from the menu bar or 
clicking on the Run button in the tool bar. A message will appear in the MATLAB Command Prompt 
asking you to enter your calculated reference energy value. Type in the value you found in question 3 of 
section  4.3 and hit  enter.  The MATLAB Command Prompt  window will  show the  SRV02 model 
parameters and a state-feedback gain vector which is currently set to zero. You will design this state-
feedback gain using the LQR method as outlined in the next section.

5.2. LQR Control Design

Upon running the setup script setup_srv02_exp08_sip.m the linear state space model of the SIP system 
is loaded into the MATLAB workspace under the matrices A, B, C and D.

1. Using MATLAB and the content in section 4.2.1 show that the SIP system is controllable.
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2. Using the A and B matrices loaded into the MATLAB workspace, the weighting matrices Q and 
R given below and the MATLAB 'lqr' command, generate a state-feedback control gain and 
save it under a variable called k.  You should first store the Q and R matrices given below in the 
workspace under the names Q_lqr and R_lqr respectively and then run the 'lqr' function. Record 
the MATLAB commands used and the corresponding generated control gain.
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0 1 2

Solution:
As discussed in Section 4.2.1, the system can be deemed controllable by performing the rank 
test. The controllability matrix for a state space model can be formed by using the MATLAB 
'ctrb' function. You pass the A and B matrices as arguments to this function and it return the 
controllability matrix associated with that system. The rank of any matrix can be computed 
using the MATLAB 'rank' command. The matrix is passed as an argument to this function and 
it returns the rank. As shown below the above two functions were ran in MATLAB and the 
result shows that the controllability matrix is indeed full rank and hence the system is 
controllable.

>> ctrb(A,B)

ans =

  1.0e+004 *

         0    0.0274   -0.0001    1.4649
         0    0.0274    0.0153    2.7140
    0.0274   -0.0001    1.4649    1.6339
    0.0274    0.0153    2.7140    3.8513

>> rank(ctrb(A,B))

ans =

     4
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Q=1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0 and R = 10 [68]

5.3. Setup for Control Implementation
Before running the above found controller on the actual SIP system, the q_sesip Simulink diagram and 
the setup_srv02_exp08_sip.m script must be confgiured.

Follow these steps to get the system ready for this lab:

1. Setup the SRV02 with the SIP module as detailed in Reference [9].
2. Load the MATLAB software.
3. Browse through the current directory window in MATLAB and find the folder that contains the 

QUARC SIP control file called q_sesip.mdl.
4. Double-click on the q_sesip.mdl file to open the self erecting single inverted pendulum control 

Simulink diagram shown in Figure 3.
5. Configure DAQ: Ensure the HIL Initialize block in the SRV02-E + SIP – QuaRC subsystem is 

configured for the DAQ device that is installed in your system. See Reference [6] for more 
information on configuring the HIL Initialize block.
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Solution:

See text below for the commands used to generate a control gain using the MATLAB 'lqr' 
command.

>> Q_lqr = [1 0 0 0; 0 1 0 0; 0 0 0 0; 0 0 0 0];

>> R_lqr = 10;

>> k = lqr(A,B, Q_lqr, R_lqr)

k =

   -0.31623    1.9146   -0.14956    0.26268

>> 

0 1 2
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6. Configure setup script: Set the parameters in the setup_srv02_exp08_sip.m script according to 
your system setup. See step 5 on page 37 for more details.

5.3.1. Balance and Swing-Up Controller Implementation

In this section the energy based swing up controller explained in section 4.3 and the LQR controller that 
was designed in question 2 of section 5.2 are ran on the actual SIP system.

Follow these steps to implement the controller:

1. The designed LQR gain found earlier should be already saved in the MATLAB workspace 
under the variable k. In addition the reference energy for swing up control that you found in 
question 1 of section 5.1 should be already saved in the MATLAB workspace. As mentioned 
earlier you are asked to enter this value when you run the setup script setup_srv02_exp08_sip.m. 

2. To run the energy based swing up controller and the LQR controller consecutively, ensure that 
the Swing-Up: Up to Enable switch is set to the upward position. If this switch is set to the 
downward position the swing up of the pendulum must be done manually and once the 
pendulum is within 2 degrees of its vertical upward position the balance LQR controller kicks in 
and balanced the pendulum.

3. Select QUARC | Build to build the real-time code for this Simulink model.
Once the code is successfully built and downloaded to target, select QUARC | Start to begin 
running the controller. 

The energy based swing up controller starts acting by swinging the pendulum left and right until the 
vertical upward position is reached at which point the LQR balance controller kicks in and balances the 
pendulum. There are watchdogs implemented in the model that shut down the controller in case the 
SRV02 motor shaft angle or the pendulum angle exceed a threshold to avoid damage to the device. You 
might have to run the controller for multiple times in order to achieve a successful switch between the 
controllers. You can also decrease the swing-up acceleration factor in the mu(g/J) slider block if you are 
not achieving a successful transition between the controllers. Once the balance controller kicks in and 
successfully balances the pendulum double-click on the Scopes sub-system where you can monitor 
various available signals present in the system such as the SRV02 motor shaft angle, the pendulum 
angle, input current to the SRV02 motor and the pendulum energy.

1. Provide plots of the LQR controller response, showing the SRV02 angle and the pendulum 
angle.
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2. The two time  figure  blocks  found in  the  “Scopes”  sub-system plot  the  same  data  as  their 
corresponding Simulink scopes. However time figures make data analysis easier as they provide 
the data cursor tool. Using these time figure blocks and the data cursor tool measure the peak to 
peak amplitude of both responses obtained above.

3. Verify that the reference energy you calculated in question 1 of section 5.1 is correct.
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Solution:

The closed-loop response of the SIP system using the tuned LQR gain in question 2 of section 
5.2 is given below. 

Figure 4 shows the SRV02 motor shaft angle response to the LQR controller implemented 
while Figure 5 shows the pendulum angle under the same controller. As seen from the right 
figure and pendulum has been balanced about zero degrees (vertical upward position) with 
small disturbances resulting from movement of the motor shaft which is trying to keep the 
pendulum balanced. 0 1 2

Figure 4: SRV02 Motor Shaft Angle Response Figure 5: Pendulum Angle Response

Solution:

Using the data cursor tool the peak to peak amplitude of the SRV02 motor shaft angle was 
measured to be approximately 13.36 degrees and the peak to peak amplitude of the pendulum 
angle response was measured to be approximately 1.93 degrees.

0 1 2
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As you might have noticed in question 1 above, although the pendulum angle response is fairly close to 
the reference zero degree mark, the SRV02 motor shaft angle has a significant amount of variation. 
Using the intuition developed in section 4.2.1 tune the Q matrix given in [68] such that these variations 
are decreased. Follow the steps below to tune this parameter on the fly without stopping the model.

1. Recall from section 5.2 question 2, that the Q matrix should be save under the MATLAB 
variable name Q_lqr. While the model is still running type in the new Q matrix in MATLAB 
Command Prompt and save it under the variable Q_lqr.

2. Calculate the new LQR gain in the same way as was done in question 2 of section 5.2 and save 
it under the MATLAB variable k as before.

3. Type qc_update_model in the MATLAB  Command Prompt. This function causes the newly 
calculated LQR gain to be downloaded to the model in real-time and you will see the resulting 
changes immediately.

4. Follow this tuning procedure until you notice a decrease in the amount of motor shaft angle 
variations.

5. Provide your final Q matrix and associated LQR gain.
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Solution:

In the q_sesip.mdl Simulink model and under the Swing-Up Control/SRV02 Swing-Up 
Control/Energy-Based Swing-Up Control the total energy of the pendulum is calculated for 
energy control purposes. The controller implemented in this sub-system is the same as the one 
discussed in section 4.3. The second output of this sub-system is E (J) which holds the total 
energy of the pendulum (potential + kinetic). By looking at the value of this variable when the 
pendulum is balanced at the vertical upward position we see that it is holding at 0.3876 which 
is precisely the value found in question 1 of section 5.1.

0 1 2



SRV02 Self Erecting Inverted Pendulum Control  – Instructor Manual

6. Provide the response of the motor shaft angle and the pendulum angle under your new tuned 
LQR controller.

7. Using the same Time Figure blocks as discussed in question 2 above, measure the new peak to 
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Solution:

Using the weighting matrices:

Q=1.1 0 0 0
0 1.1 0 0
0 0 0 0
0 0 0 0 and R = 15 [S64]

we obtain the control gain:

K = [-0.2708, 1.7774, -0.1324, 0.2421] [S65]

Solution:

Figure 6 and Figure 7 below show these responses.

Figure 6: SRV02 Motor Shaft Response Figure 7: Pendulum Angle Response

0 1 2

0 1 2
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peak  amplitude  of  both  responses  found  above  and  comment  on  any  changes.  Provide 
percentage improvement if any.

8. Make sure QUARC is stopped and the amplifier system is shut off if no more experiments will 
be performed in this session.

6. Results Summary

Fill out Table 14 with the pre-laboratory and in-laboratory results obtained such as the designed gains 
along with the measured data.

Section Exercise 
#

Description Symbol Value

4.3 3 Reference Swing Up Energy Er 0.3877

5.2 2 Initial LQR Gain k [-0.1633, 1.4406, 
-0.0906, 0.1913]

5.3.1 2 Initial peak to peak SRV02 motor shaft angle 
amplitude 

θp-p 13.36

5.3.1 2 Initial peak to peak pendulum angle amplitude αp-p 1.93

5.3.1 5 Final tuned LQR Gain k [-0.2708, 1.7774, 
-0.1324, 0.2421]

5.3.1 7 Final peak to peak SRV02 motor shaft angle 
amplitude 

θp-p 7.38

5.3.1 7 Final peak to peak pendulum angle amplitude αp-p 1.58

Table 14: SRV02 Exp #8: Self Erecting Single Inverted Pendulum Control Results Summary Table
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Solution:

Using the data cursor tool the new peak to peak amplitude of the SRV02 motor shaft angle 
response was measured to be approximately 7.38 degrees and the peak to peak amplitude of 
the pendulum angle response was measured to be approximately 1.58 degrees.

By comparing these numbers with those obtained in question 2 above it is shown that the 
variations in SRV02 motor shaft angle response have been reduced by 45% and variations in 
pendulum angle response have been reduced by 18% as a result of choosing higher diagonal 
entries in the Q weighting matrix. 

0 1 2



SRV02 Self Erecting Inverted Pendulum Control  – Instructor Manual
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