Lecture 5

ELE 301: Signals and Systems

Prof. Paul Cuff

Princeton University

Fall 2011-12

History of the Fourier Series

• Euler (1748): Vibrations of a string

Fourier: Heat dynamics

• Dirichlet (1829): Convergence of the Fourier Series

Lagrange: Rejected publication

What is the Fourier Series

 The Fourier Series allows us to represent periodic signals as sums of sinusoids.

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}$$

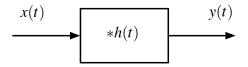
where $f_0 = 1/T_0$ and T_0 is the fundamental period.

- There are other transforms for representing signals
 - Wavelet transform
 - Taylor expansion
 - Any orthonormal basis

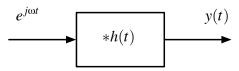
Response of LTI Systems to Exponential Functions

For an LTI system with impulse response h(t), output is the convolution of input and impulse response:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)\,d\tau$$



If the input is a complex exponential $x(t) = e^{j\omega t}$



4□ > 4□ > 4 = > 4 = > = 90

Eigenfunctions

Continuous time:

$$e^{st} \longrightarrow^h H(s)e^{st}$$

Discrete time:

$$z^n \longrightarrow^h H(z)z^n$$

Aliasing

Wolfram Demo:

$$e^{(\sigma+j(2\pi f))n}=e^{(\sigma+j(2\pi(f+k)))n}$$
 for all integers n and k .

Sums of Exponentials

$$a_1 + e^{s_1t} + a_2 + e^{s_2t} + a_3 + e^{s_3t} \longrightarrow^h a_1H(s_1)e^{s_1t} + a_2H(s_2)e^{s_2t} + a_3H(s_3)e^{s_3t}$$

Period Signals

Claim:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}$$

where $f_0 = 1/T_0$ and T_0 is the fundamental period.

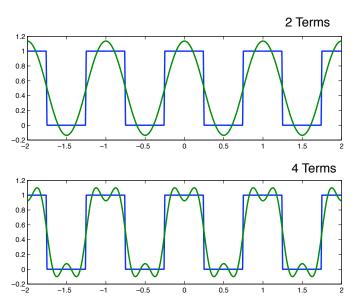
Consider an easy one:

$$x(t) = \cos(2\pi f_0 t)$$

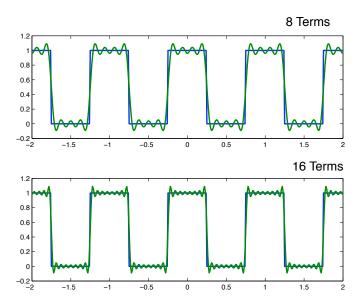
= $\frac{1}{2}e^{2\pi f_0 t} + \frac{1}{2}e^{-2\pi f_0 t}$.

Therefore, $T = 1/f_0$ and $a_1 = a_{-1} = 1/2$.

Fourier Series approximation to a square wave



Fourier Series approximation to a square wave



Real Signals

If x is real

$$x(t) = a_0 + 2\sum_{k=1}^{\infty} A_k \cos(k2\pi f_0 t + \theta_k),$$

where $A_k e^{j\theta_k} = a_k$.

Fourier Series Coefficients

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk2\pi f_0 t} dt.$$

Conditions for Convergence

- Continuous
- Finite Power (energy over a period)
- Dirichlet conditions:
 - Absolutely integrable
 - Bounded Variation
 - Finite Discontinuities

Linearity

Time-shift

Time Reversal

Time Scaling

Multiplication

Conjugate

Parseval's Theorem

Discrete Time

Aliasing:

All periodic exponential signals with period N are:

$$\phi_k[n] = e^{jk\frac{2\pi}{N}n}$$
 for $k = 0, 1, ..., N - 1$.

Discrete Time Fourier Series

$$x[n] = \sum_{k=} a_k \phi_k[n]$$

$$a_k = \frac{1}{N} \sum_{n=} x[n] \phi_k[-n]$$

Multiplication

Fourier Series Example

Fourier Series Example using Matlab

$$x(t) = e^{-t} \quad \text{for} \quad -1 < t \le 1.$$