Lecture 6

ELE 301: Signals and Systems

Prof. Paul Cuff

Princeton University

Fall 2011-12

Outline

- LTI System Response
- Filtering

Transfer Function

• Response to LTI system h.

Continuous time:
$$e^{st} \longrightarrow^h H_c(s)e^{st}$$
,
Discrete time: $z^n \longrightarrow^h H_d(z)z^n$.

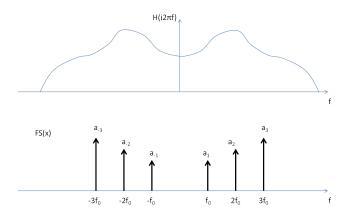
• We are interested in the cases $s = i2\pi f$ and $z = e^{i2\pi f}$.

Continuous time:
$$y(t) = \sum_{k=-\infty}^{\infty} a_k H_c(i2\pi f_0 k) e^{i2\pi f_0 kt}$$
,

Discrete time: $y[n] = \sum_{k=-\infty}^{\infty} a_k H_d(e^{i2\pi f_0 k}) e^{i2\pi f_0 kn}$.

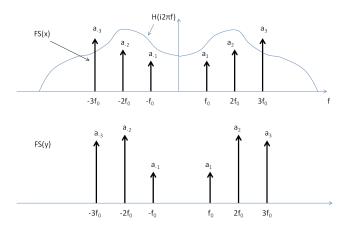
where a_k are the Fourier Series coefficients of the input with period $\mathcal{T}=1/f_0$.

Intuitive Visualization



Note: Plots aren't technically accurate because complex numbers are not one-dimensional.

Intuitive Visualization



Note: Plots aren't technically accurate because complex numbers are not one-dimensional.

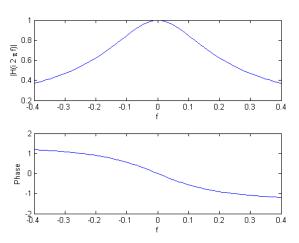
Filtering Example

$$h(t) = e^{-t}u(t),$$

$$H(i2\pi f) = ?.$$

First-order low-pass filter

$$H(i2\pi f) = \frac{1}{1+i2\pi f}.$$



7 / 15

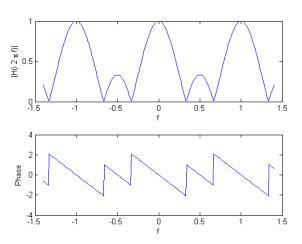
Filtering example - running average

$$h[n] = \frac{1}{3}(\delta[n] + \delta[n-1] + \delta[n-2]),$$

 $H(e^{i2\pi f}) = ?.$

Running average

$$H(i2\pi f) = \frac{1}{3} \left(1 + e^{-i2\pi f} + e^{-i4\pi f} \right).$$



Filtering example - Differentiator

What is the impulse response of a differentiator?

$$h(t) = ?$$

Unit Doublet

- Another invented pseudo-function
- Conceptually the derivative of the Dirac delta function
- Properties

$$\delta' * f = f'$$

$$f(t)\delta'(t-t_0) = -f'(t_0)\delta(t-t_0)$$

$$b \delta'(-t) = -\delta'(t)$$

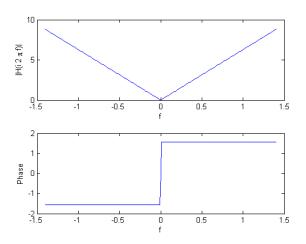
Differentiator

$$h(t) = \delta'(t),$$

$$H(i2\pi f) = ?.$$

High-pass filter (Differentiator)

$$H(i2\pi f) = i2\pi f.$$



Filtering example - discrete difference

$$h[n] = \frac{1}{2}(\delta[n] - \delta[n-1]),$$

$$H(e^{i2\pi f}) = ?.$$

Discrete Difference

$$H(i2\pi f) = i e^{-i\pi f} \sin(\pi f).$$

