State Information in Bayesian Games

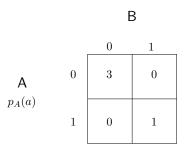
Paul Cuff

Princeton University

Oct. 1, 2009

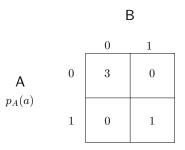
Zero-Sum Game

Payoff Matrix Π for Player A:



Zero-Sum Game

Payoff Matrix Π for Player A:

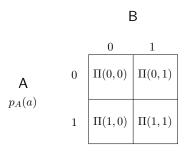


Value of game
$$=\max_{p_A}\min_{p_B}\mathbb{E}\ \Pi(A,B)=3/4.$$

$$p_A^*(a)=[1/4,3/4].$$

General Zero-Sum Game

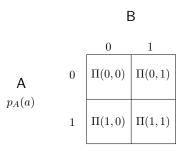
Payoff Matrix Π for Player A:



ш

General Zero-Sum Game

Payoff Matrix Π for Player A:



Allow payoff Π to be random, determined by a state S.

(In the literature, S is called the "type")

Erasure Game (two states)

S is equally likely to be 0 or 1:

S = 0

 $-\infty$

Bayesian Games

In a Bayesian game, the players each may or may not have some information about the stochastic state.

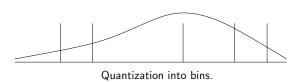
Recent related references:

- Gossner and Mertens (2001). The value of information in zero-sum games.
- Lehrer and Rosenberg (2004). What restrictions do Bayesian games impose on the value of information?
- Provan (2008). The use of spies in strategic situations.

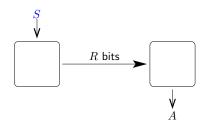
Information Structure

Information structure: the partition by which the state is quantized before being observed by a player of the game.

Distribution of S.



Communication of State Information



Questions that arise:

- What is the best "information structure?" (scalar quantization)
- How about vector quantization?

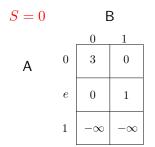
Communication Tools

Tools and references from information theory:

- Han and Verdú (1993). Approximation of output statistics.
- Cuff (2008). Communication requirements for generating correlated random variables.
- Cuff, Permuter, and Cover (2009). Coordination Capacity.

Erasure Game (two states)

S is equally likely to be 0 or 1:



S=1		В		
		0	1	
Α	0	$-\infty$	$-\infty$	
	e	1	0	
	1	0	3	

Neither know the state: Value = 1/2.

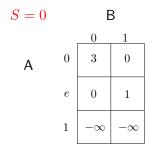
A knows the state: Value = 3/2.

B knows the state: Value = 0.

Both know the state: Value = 3/4.

Erasure Game (two states)

S is equally likely to be 0 or 1:



S = 1		В		
		0	1	
Α	0	$-\infty$	$-\infty$	
	e	1	0	
	1	0	3	

Neither know the state: Value = 1/2.

A knows the state: Value = 3/2. B knows the state: Value = 0.

Both know the state: Value = 3/4.

To generate correlated actions $\sim p(a|s)$,

$$R \geq I(S; A)$$
 is required.

To generate correlated actions $\sim p(a|s)$,

$$R \ge I(S; A)$$
 is required.

This does not produce independent actions in the sequence.

To generate correlated actions $\sim p(a|s)$,

$$R \ge I(S; A)$$
 is required.

This does not produce independent actions in the sequence. Decode the action sequence after observing $k=n\frac{R}{H(A)}$ actions.

To generate correlated actions $\sim p(a|s)$,

$$R \ge I(S; A)$$
 is required.

This does not produce independent actions in the sequence. Decode the action sequence after observing $k=n\frac{R}{H(A)}$ actions.

What is the price of independence?

Person A
0 1 0 0 1 1 1 1

Person A Person B
0 1 0 0 1 1 1 1 0 e e e e 1 e e

Person A Person B

0 1 0 0 1 1 1 1 0 e e e e 1 e e

How much must Person A tell Person B?

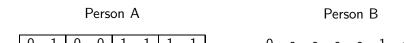
• Tell all the bits 8 bits

Person A Person B
0 1 0 0 1 1 1 1 0 e e e e 1 e e

- Tell all the bits8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits

Person A Person B
0 1 0 0 1 1 1 1 0 e e e e 1 e e

- Tell all the bits8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits



- Tell all the bits8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

- Tell all the bits8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

1 1 1

Person B

0 1 e e 1 1 e e

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

Person A

Person B

0 e e e e 1 e e

- Tell all the bits 8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization

Person A

Person B

0 e e e	e 1	е е
----------------	-----	-----

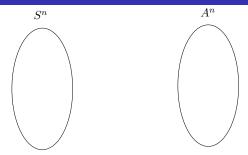
- Tell all the bits8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization $\log_2\binom{4}{2} + 4$ bits

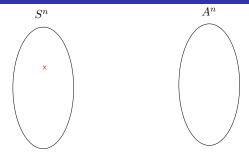
Person A

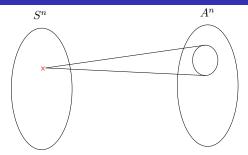
Person B

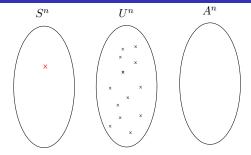
0	е	е	е	е	1	е	е

- Tell all the bits8 bits
- Choose the sequence for B and tell it $\log_2{8 \choose 2} + 2$ bits $= \log_2 112 = 6.81$ bits
- Split the randomization $\log_2\binom{4}{2}+4$ bits $=\log_296=6.58$ bits

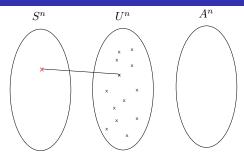




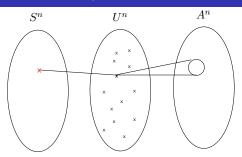




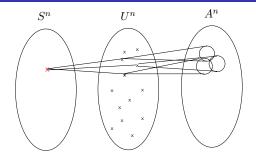
• Generate a codebook with extra u^n sequences $\sim \prod_{i=1}^n p(u_i)$.



- Generate a codebook with extra u^n sequences $\sim \prod_{i=1}^n p(u_i)$.
- Encoder randomly chooses among u^n sequence that are correlated with x^n and sends the index i.



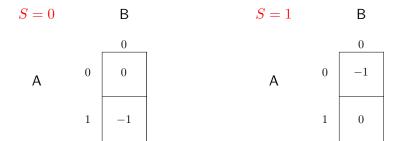
- Generate a codebook with extra u^n sequences $\sim \prod_{i=1}^n p(u_i)$.
- Encoder randomly chooses among u^n sequence that are correlated with x^n and sends the index i.
- Decoder generates y^n randomly conditioned on $u^n(i)$.



$$R \geq I(X;U) + I(U;Y|X).$$

Resolvability: [Wyner 75] [Han, Verdú 93]

Degenerate Game (counter-example)



The expected payoff is simply the negative Hamming distortion.

No need for randomizing.

Bayesian State Communication

Simple idea first:

Choose U such that S-U-A form a Markov chain and R>I(S;U).

$$\begin{array}{lll} \mathsf{B} \ \mathsf{doesn't} \ \mathsf{know} \ S \colon \ \mathsf{Payoff} & \geq & \frac{R}{I(S,A;U)} \ \underline{\Pi}_{p_{A|S}} + \frac{I(S,A;U) - R}{I(S,A;U)} \ \underline{\Pi}_{p_{A|U}}^{(U)}. \\ \\ \mathsf{B} \ \mathsf{knows} \ S \colon \ \mathsf{Payoff} & \geq & \frac{R - I(S;U)}{I(A;U|S)} \ \underline{\Pi}_{p_{A|S}}^{(S)} + \frac{I(S,A;U) - R}{I(A;U|S)} \ \underline{\Pi}_{p_{A|U}}^{(S,U)}. \end{array}$$

Bayesian State Communication

More complexity:

Choose U_1 and U_2 such that $S-(U_1,U_2)-A$ form a Markov chain and $R>I(S;U_1,U_2)$.

Generate a U_1 codebook and a U_2 codebook for each U_1 sequence.

The opponent learns U_1 early and U_2 late.

Bottomline

Summary:

- Rate-distortion type coding is not suited for games.
- Generating i.i.d. sequences plays a partial role.
- Causality of decisions creates a time-varying result even with i.i.d. codebooks.