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Abstract

For the over-identified linear instrumental variables model, researchers commonly

report the 2SLS estimate along with the robust standard error and seek to conduct infer-

ence with these quantities. If errors are homoskedastic, one can control the degree of in-

ferential distortion using the first-stage F critical values from Stock and Yogo (2005), or

use the robust-to-weak instruments Conditional Wald critical values of Moreira (2003).

If errors are non-homoskedastic, these methods do not apply. We derive the general-

ization of Conditional Wald critical values that is robust to non-homoskedastic errors

(e.g., heteroskedasticity or clustered variance structures), which can also be applied to

nonlinear weakly-identified models (e.g. weakly-identified GMM).
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I Introduction

This paper considers inference in the over-identified linear instrumental variables model

and its generalization to weakly-identified models and GMM more generally. The core

problem of inference in the weak IV literature is that when instruments are weak, con-

ventional asymptotic approximations are poor, causing standard inference procedures (like

Wald or t-ratio-based inference) to over-reject, even under the null. Indeed, Dufour (1997)

pointed out that any confidence set that is bounded with probability 1 (like the usual

β̂ ±1.96 · ŝe(β̂ )) could have the potential to cover the true parameter 0 percent of the time

(i.e., zero percent confidence level).

Moreira (2003) provided a generalized approach to constructing inference procedures

that addressed this weak instrument problem via data-dependent critical values; this ap-

proach was first demonstrated in the case when errors are homoskedastic. Moreira (2003)

presented, for the hypothesis that the parameter is equal to a particular value, conditional

versions of the "trinity" of test procedures: Likelihood Ratio (LR), Lagrange Multiplier

(LM), and Wald tests. The critical values for each of these test statistics were functions of

the observed data and the null hypothesis.

Since then, a number of efforts have generalized these tests to accommodate non-

homoskedastic settings, given the widespread preference of applied researchers to remain

somewhat agnostic about the properties of the errors in the linear model.1 Curiously, while

there have been efforts to generalize the Conditional LR (CLR) and LM tests to general

non-homoskedastic errors, to the best of our knowledge, the extension of the Conditional

Wald in such a way has been neglected.

In this paper, we derive the extension of Conditional Wald to non-homoskedastic set-

tings. This effort delivers a Wald-based inference procedure that is valid, similar, robust

to arbitrarily weak instruments, robust to HAC error structures, and applicable to more

general weakly-identified settings like GMM.

There are a number of practical reasons to revisit a testing procedure rooted in a Wald

approach. First, for the linear instrumental variables model, applied research has revealed

a preference for Wald-based inference. Most typically, researchers compute and report

the 2SLS estimator and robust standard errors, regardless of concerns about instrument

weakness. In homoskedastic settings, researchers could pursue two different options for

conducting Wald-based inference using the computed t-ratio. Researchers can either use

1See, for example, Andrews, Moreira and Stock (2004), Kleibergen (2005), Andrews (2016).
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the critical value function for Conditional Wald in Moreira (2003), or they can use the

first-stage F-statistic along with the critical value tables in Stock and Yogo (2005) and

the Bonferroni arguments used in Staiger and Stock (1997). When the errors are non-

homoskedastic – as is typically allowed in modern empirical work – the values in Stock and Yogo

(2005) tables no longer reliably control size distortions, as pointed out in Andrews, Stock and Sun

(2019). The contribution of the current paper is to provide a method for computing critical

values for the t-ratio that will deliver valid, robust inference, even in non-homoskedastic

settings.2

A second reason to consider a robust-to-HAC version of Conditional Wald of Moreira

(2003) is that there are two recent studies pointing to power advantages of Conditional Wald

in the homoskedastic, over-identified setting and in the non-homoskedastic just-identified

setting. Van de Sijpe and Windmeijer (2023) analyze power for the over-identified, ho-

moskedastic case, and provide simulation evidence that Conditional Wald using 2SLS tends

to produce shorter confidence set lengths, compared to CLR (Moreira (2003)). This is a

particularly striking finding, in light of papers that point to the near-optimality, in terms of

power, of CLR. Furthermore, Lee et al. (2023), in the context of the just-identified (robust

to HAC errors) IV model, show that two different Wald-based – VtF and Conditional Wald

– confidence intervals appear to be almost always shorter than that of Anderson and Rubin

(1949), a recommended benchmark in the literature. Thus, developing the Conditional

Wald robust to HAC errors is not only already aligned with practitioner practice, but these

recent studies suggest that it may even have power advantages in the form of shorter confi-

dence intervals.

Our motivation for deriving CW critical values is entirely practical and stems from

taking as given practitioners’ apparent preference for computing the 2SLS point estimate

and robust standard error (presuming non-homoskedasticity), and finding critical values

that lead to valid inference. Our approach is thus different from identifying the optimal test

after having defined a class of procedures and an objective function. Nevertheless, the two

studies mentioned above do suggest the possibility that in terms of power and confidence

interval length, CW could fare well compared to existing alternatives for the over-identified

model.

Section II establishes the notation we use for the standard linear IV model with non-

homoskedastic errors, Section III derives the critical values for Robust Conditional Wald

tests based on 2SLS, LIML, two-step, and CUE GMM estimators, Section IV extends the

2In this paper, acceptance/rejection of the null is the result of comparing a single statistic with a valid

(in this case, data-dependent) critical value. A different, "two-step" inference approach where two different

procedures (one "robust to weak instruments" and the other non-robust) are combined to form an overall valid

procedure (which can also accommodate non-homoskedastic settings) is proposed by Andrews (2018).
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test to nonlinear weakly-identified models (e.g. GMM), and Section V concludes.

II The Linear IV Model

The standard linear IV model is represented by

y1 = Y2β +u

Y2 = ZΠ+V2

where y1 (n×1) is the dependent variable, Y2 (n× p) are the endogenous variable(s) of

interest, and Z (n× k) are the excluded instruments, while u (n×1) and V2 (n× p) are

the unobserved structural-form errors. The single endogenous regressor case simply corre-

sponds to p = 1. We will always take k ≥ p with k = p corresponding to the just-identified

model and k > p corresponding to the over-identified model. The parameter of interest is

β . It is straightforward to accommodate additional covariates (including a constant), but

we omit their inclusion in the exposition below.

The reduced-form model is:

y1 = ZΠβ + v1

Y2 = ZΠ+V2,

where u ≡ v1 −V2β . It will be convenient to write the model in a matrix form:

Y = ZΠA+V,

where Y = [y1 : Y2], V = [v1 : V2], and A = [β : Ip]. We will use the notation Yi, Vi, Zi, etc,

to denote the i-th row of the corresponding matrix.

In Moreira (2003), the rows of V were assumed to be i.i.d. This paper relaxes this

assumption for the derivation of the Conditional Wald test robust to different DGPs. We

are motivated by the observation that applied researchers typically prefer not to make the

assumption of homoskedasticity, and often they are interested in a clustered error structure,

for example.
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III The Robust Conditional Wald Tests

In this section, we derive the Conditional Wald (CW) tests robust to HAC errors for the

linear model given in section II.

The Wald statistic is formed by three elements: a null value β0, an estimator β̂n, and a

robust asymptotic variance estimator Â.Var for
√

n
(

β̂n −β0

)
:

Ŵn = n

(
β̂n −β0

)′ [
Â.Var

]−1(
β̂n −β0

)
.

In section III.A, we review the class of linear GMM estimators for β , which includes com-

mon estimators like 2SLS, LIML, efficient two-step GMM, and the CU (continuously up-

dating) GMM estimator, all of which can be used for constructing a Robust Conditional

Wald test. In section III.B, we review the robust variance estimators based on the asymp-

totic distribution of
√

n
(

β̂n −β0

)
. With these components in hand, we can form robust

versions of the Wald statistic for various estimators, β̂n. Note that there are no new results

in Sections III.A and III.B, and there are many references that detail these standard results

(as one example, see Newey and McFadden (1994)). We review a selected set of well-

established facts about GMM to highlight that the Robust Conditional Wald test we derive

in III.C is not specific to the leading case in applied work – 2SLS – and can be applied

to tests based on other estimators of the parameter of interest. Note that the multitude of

different estimators that could be employed arises in the over-identified case; in contrast,

for example, in the single instrument case, all of the estimators we discuss below collapse

to the standard IV estimator.

With that as context, an interested reader can skip to section III.C, in which we show

how to apply the conditional argument of Moreira (2003) to obtain a critical value function

for the Wald statistic that is robust to instrument weakness. The critical value function

is then used to form a robust similar test, which can be inverted to generate confidence

intervals for β .

III.A Estimators

Estimators like 2SLS or LIML can be viewed as particular GMM estimators based on the

linear moment condition:

gn (β ) = n−1
n

∑
i=1

Zi

(
y1i −Y ′

2iβ
)
= n−1Z′Y b,
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where b = (1,−β ′)′. A GMM estimator for β is the minimizer of the criterion

(1) Q̂n (β ) = gn (β )
′
Wn (β )gn (β )

where the weighting matrix may or may not depend on the unknown coefficient β . Differ-

ent choices of Wn (β ) will lead to different estimators β̂n.

For the 2SLS estimator, the weighting matrix does not depend on β :

Wn
−1 = V̂u ·n−1

n

∑
i=1

ZiZ
′
i = V̂u ·n−1Z′Z,

where V̂u is an estimator of Vu, which is the variance of u. Because Q̂n (β ) is quadratic in

β , it is straightforward to show that the resulting estimator is 2SLS:

(2) β̂n =
[
Y ′

2Z
(
Z′Z
)−1

Z′Y2

]−1

Y ′
2Z
(
Z′Z
)−1

Z′y1.

We can re-express the estimator as

β̂n =
[
Ŷ ′

2Ŷ2

]−1

Ŷ ′
2y1,

where Ŷ2 = NY2 and N = Z (Z′Z)−1
Z′ is the usual projection matrix. That is, in the first

stage, we first regress Y2 on Z to obtain the fitted values Ŷ2. In the second stage, we regress

y1 on the fitted values Ŷ2.

For the LIML estimator, the weight matrix is formed by using β along with residuals

from OLS regressions of y1 and Y2 on Z. Let b = (1,−β ′)′, N = Z (Z′Z)−1
Z′, and M =

I −N. Then

V̂u (β ) = n−1
n

∑
i=1

(
v̂1,i −V̂ ′

2,iβ
)2

= n−1b′Y ′MY b,

where V̂ = MY = MV . The GMM criterion is no longer quadratic in β once we use

Wn (β )
−1 = V̂u (β ) ·n−1

n

∑
i=1

ZiZ
′
i = V̂u (β ) ·n−1Z′Z.

Instead it is a ratio of quadratic forms:

Q̂n (β ) =

n−1
n

∑
i=1

(
y1i −Y ′

2iβ
)

Zi

(
n−1

n

∑
i=1

ZiZ
′
i

)−1

n−1
n

∑
i=1

Zi

(
y1i −Y ′

2iβ
)

n−1
n

∑
i=1

(
V̂1,i −V̂ ′

2,iβ
)2

.
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The minimum of

Q̂n (β ) =
b′Y ′NY b

b′Y ′MY b

is well-known to lead to the LIML estimator (see Davidson and MacKinnon (2021) among

others). This estimator is proportional to the eigenvector associated to the smallest eigen-

value λ nof the characteristic polynomial |Y ′NY −λ .Y ′MY |= 0.

Once we consider different weighting functions Wn (β ), we can wonder if there is the

“best” possible choice. The answer depends if errors are heteroskedastic, clustered, etc.

Only in special cases, such as with homoskedastic errors, are the 2SLS and LIML estima-

tors “best.” To obtain the weighting function that optimally accounts for heteroskedasticity,

clustering, serial correlation, and other departures from homoskedastic errors with no serial

correlation, one first considers the (infeasibly estimated) variance of

vec

(
n−1/2

n

∑
i=1

ZiV
′
i

)
= n−1/2

n

∑
i=1

(Vi ⊗Zi) .
3

Under general conditions for the DGPs, the limiting variance exists and is given by

Ω = lim
n

n−1
n

∑
i=1

n

∑
j=1

C
(
Vi ⊗Zi,Vj ⊗Z j

)
.

Since we do not observe the errors Vi, we can make this feasible by replacing them

with, as an example, the OLS residuals V̂i. There are different estimators for the variances

and covariances above, each one of them suited to different assumptions on the DGPs.

For example, typically, one uses the variance estimate of White (1980) for heteroskedastic

errors that are serially uncorrelated:

Ω̂n = n−1
n

∑
i=1

(
V̂i ⊗Zi

)(
V̂i ⊗Zi

)′
.

Henceforth, we will employ the broader notation Ω̂n without explicitly specifying its for-

mulae for different departures from homoskedasticity. Examples of robust variance esti-

mators include White (1980) for heteroskedasticity, Newey and West (1987) and Andrews

(1991) for both heteroskedasticity and autocorrelation (HAC), and Cameron, Gelbach and Miller

(2011) for clustered errors. See Andrews, Moreira and Stock (2004) for the IV model.

3Because the ZiV
′
i is an k× p matrix, we can stack its columns to form a single vector with the vec(·)

operator.
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The GMM criterion is then

Q̂n (β ) =

[
n−1

n

∑
i=1

(
Yi −X ′

i β
)

Zi

]
Wn

[
n−1

n

∑
i=1

Zi

(
Yi −X ′

i β
)
]

, where

Wn
−1 =

(
b̃n ⊗ Ik

)′
Ω̂n

(
b̃n ⊗ Ik

)
and b̃n =

(
1,−β̃ ′

n

)′
,

with β̃n being a preliminary consistent estimator of β . Again, this criterion

Q̂n (β ) = b′Y ′ZWnZ′Y b

is quadratic in β and we can easily find its closed-form solution:

(3) β̂n =
[
Y ′

2ZWnZ′Y2

]−1
Y2

′ZWnZ′y.

which is the two-step GMM estimator. It simplifies to the 2SLS estimator if W−1
n is pro-

portional to n−1Z′Z. When the weight matrix depends on β , we obtain

Q̂n (β ) = n−1
n

∑
i=1

(
y1i −Y ′

2iβ
)

ZiWn (β )n−1
n

∑
i=1

Zi

(
y1i −Y ′

2iβ
)

, where

Wn (β )
−1 = (b⊗ Ik)

′ Ω̂n (b⊗ Ik) .

which is the Continuously Updating (CU) GMM estimator, proposed by Hansen and Singleton

(1982).

III.B Wald Test Statistics

Finally, the usual Wald test statistics are based on the standard asymptotic approximation

to the distribution of the GMM estimators. Under the true parameter β0,

n1/2gn (β0)→d N (0,V0) , where V0 = (b0 ⊗ Ik)
′Ω(b0 ⊗ Ik)

for b0 =
(
1,−β ′

0

)
. For convenience, we derive the asymptotic distribution where we use

the parameter β0 in the criterion function:

Qn (β ) = gn (β )
′
Wn (β0)gn (β ) .

This setup allows for the possibility that the limiting behavior of Wn (β0) is not necessarily

proportional to V−1
0 . Hence, β̂n is not necessarily optimal. Under the usual asymptotics,
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the distribution of estimators which minimize Qn (β ) is the same as if we had used Q̂n (β )

instead, where the weight uses a preliminary estimator or uses β itself (derivations of these

results are standard and can be found, e.g. in Newey and McFadden (1994)). As a result,

the 2SLS and LIML estimators are asymptotically equivalent, while the two-step GMM

and CUE estimators are asymptotically equivalent as well. We derive the asymptotic dis-

tribution for the 2SLS and two-step GMM estimators from equations (2) and (3) and, so,

for the LIML and continuously updating estimators as well.

For the 2SLS estimator, we can write

n1/2
(

β̂n −β0

)
=
[
n−1Y ′

2Z
(
n−1Z′Z

)−1
n−1Z′Y2

]−1

n−1Y ′
2Z
(
n−1Z′Z

)−1
n−1/2Z′Vb.

Assuming that the following probability limits exist,

plim n−1Y ′
2Z = EY ′

2Z and plim n−1Z′Z = EZ′Z ,4

we then have n1/2
(

β̂n −β0

)
→d N

(
0,B−1

0 A0B−1
0

)
, where

B0 =
[
EY ′

2ZE−1
Z′ZEZ′Y2

]−1

and

A0 = EY ′
2ZE−1

Z′Z (b0 ⊗ Ik)
′Ω(b0 ⊗ Ik)E−1

Z′ZEZ′Y2
.

We can find some consistent estimators for A0 and B0, and derive a Wald statistic for the

2SLS and LIML estimators:

Ŵ
∗

n = n

(
β̂n −β0

)′ [
B̂−1

n ÂnB̂−1
n

]−1(
β̂n −β0

)
, where

B̂n = n−1Y ′
2Z
(
Z′Z
)−1

Z′Y2 and

Ân = Y ′
2Z
(
Z′Z
)−1
(

b̂n ⊗ Ik

)′
Ω̂n

(
b̂n ⊗ Ik

)(
Z′Z
)−1

Z′Y2,

with b̂n =
(

1,−β̂ ′
n

)′
based on the respective 2SLS/LIML estimator.5

Likewise, for the two-step GMM estimator, we find that n1/2
(

β̂n −β0

)
→d N

(
0,B−1

0

)
,

where

B0 = EY ′
2Z

[
(b0 ⊗ Ik)

′Ω(b0 ⊗ Ik)
]−1

EZ′Y2
.

We can find a consistent estimator for B0 and derive a Wald statistic for the two-step GMM

5We typically use
(

b̂n ⊗ Ik

)′
Ω̂n

(
b̂n ⊗ Ik

)
as a consistent estimator for V0. However, other estimators are

possible, including (b0 ⊗ Ik)
′ Ω̂n (b0 ⊗ Ik).
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and continuously updating estimator:

Ŵ
o

n = n

(
β̂n −β0

)′
B̂n

(
β̂n −β0

)
, where

B̂n = n−1Y ′
2Z

[(
b̂n ⊗ Ik

)′
Ω̂n

(
b̂n ⊗ Ik

)]−1

n−1Z′Y2.

with b̂n =
(

1,−β̂ ′
n

)′
based on the GMM/CU estimators.6

III.C Valid Critical Value Functions

As emphasized in Dufour (1997), since the nuisance parameter representing the strength of

the first stage may be arbitrarily close to zero, then the usual constant critical values cannot

be valid; indeed, Dufour (1997) points out that any valid confidence set in this context must

be unbounded with positive probability, which clearly cannot be the case with a constant

critical value for any of the Wald statistics mentioned above. To derive valid critical values,

using the conditioning strategy of Moreira (2003), we begin by defining the quantity

R =
(
Z′Z
)−1/2

Z′Y = [R1 : R2] ,

where the k-dimensional vector R1 is the first column of R and the k× p-matrix R2 is the

last p columns of R. The standardization avoids multiplication by the sample size n. The

asymptotic variance of vec(R) is

Σ =
(

Ip+1 ⊗ (EZ′Z)
−1/2

)
Ω
(

Ip+1 ⊗ (EZ′Z)
−1/2

)
=

[
Σ11 Σ12

Σ21 Σ22

]
,

where the matrix Σ is being partitioned by submatrices of columns/rows of dimensions 1

and p. Analogously, we can use the estimator

Σ̂n =
(

Ip+1 ⊗
(
n−1Z′Z

)−1/2
)

Ω̂n

(
Ip+1 ⊗

(
n−1Z′Z

)−1/2
)
=

[
Σ̂11,n Σ̂12,n

Σ̂21,n Σ̂22,n

]
.

Up to a scale of the sample size n, the GMM criterion is

Q̂n (β ) = b′R′ (n−1Z′Z
)1/2

Wn (β )
(
n−1Z′Z

)1/2
Rb = b′R′W n (β )Rb,

where W n (β ) =
(
n−1Z′Z

)1/2
Wn (β )

(
n−1Z′Z

)1/2
. It is clear that only R and the weight

6We can also use here either the null value β0 or the preliminary estimator β̃n for the variance estimator.
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function W n (β ) fully determine the estimator β̂n. To illustrate this connection, recall that

the 2SLS estimator results if W−1
n is proportional to n−1Z′Z. For such a weight, we have

W n (β ) = Ik, and we trivially have the 2SLS being dependent only on R. Indeed, the 2SLS

estimator can be written as

β̂ =
(
R′

2R2

)−1
R′

2R1.

The same holds for the other estimators as well. For example, we take the LIML estimator.

When Wn (β )
−1 = V̂u (β ) · n−1Z′Z, we have W n (β ) = V̂u (β )

−1
Ik. The LIML estimator

solves

Q̂n (β ) =
b′R′Rb

b′Φ̂nb
, where Φ̂n = n−1Y ′MY.

Having found that the estimators are completely determined by the standardized reduced-

form coefficients R and the function W n (β ), we can turn our attention to the Wald statistics.

The Wald statistic for the 2SLS/LIML estimators has the form

Ŵ
∗

n =
(

β̂n −β0

)′[(
R′

2R2

)−1
R′

2

(
b̂n ⊗ Ik

)′
Σ̂n

(
b̂n ⊗ Ik

)
R2

(
R′

2R2

)−1

]−1(
β̂n −β0

)
.

Hence, it is a function of R and Σ̂n (or, for LIML, Φ̂n). Likewise, the Wald statistic for the

two-step GMM and CU estimators can be written as

Ŵ
o

n =
(

β̂n −β0

)′
[

R′
2

[(
b̂n ⊗ Ik

)′
Σ̂n

(
b̂n ⊗ Ik

)]−1

R2

](
β̂n −β0

)
,

which again depends only on R and Σ̂n (as long as the preliminary estimator β̃n depends

only on R and Σ̂n as well, such as the 2SLS estimator). In short, the Wald statistics associ-

ated with any of the estimators we have discussed above are functions of R, Σ̂n, and Φ̂n as

shown above.

We now apply the conditioning approach of Moreira (2003), beginning by finding a

useful transformation of R:

R0 = RB0 = [Ru : R2] , where B0 =

[
1 01×p

−β0 Ip

]
.

That is, Ru = R1 −R2β0. Note that the asymptotic variance of R0 is given by

Σ0 =
(
B′

0 ⊗ Ik

)
Σ(B0 ⊗ Ik) =

[
Σuu Σu2

Σ2u Σ22

]
.
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This quantity can of course be consistently estimated as well (regardless of identification

of β ):

Σ̂0,n =
(
B′

0 ⊗ Ik

)
Σ̂n (B0 ⊗ Ik) =

[
Σ̂uu,n Σ̂u2,n

Σ̂2u,n Σ̂22,n

]
.

Consider a transformation of R.

D̂ = vec(R2)− Σ̂2u,nΣ̂−1
uu,nRu.

Given Σ̂n, there is a one-to-one transformation between the pair R and R2 and the pair Ru and

D̂. Since we have established that all of the Wald statistics above can be written as functions

of R, Σ̂n, and Φ̂n, this means that they can also be written as functions of Ru, D̂, Σ̂n, and Φ̂n.

Importantly, adopting the appropriate assumptions relevant for HAC (e.g. see Kleibergen

(2005) or Andrews (2016)), it can be shown that
(

Ru, D̂
)
→d (Ru,D), where Ru and D are

asymptotically normal and independent, with Ru being mean zero with a variance matrix

that can be consistently estimated under the null – that is, Ru ∼ N (0,Σuu) under the null.

As Moreira (2003) shows, this allows one to establish the distribution of test statistics even

in the presence of the unknown nuisance parameter (the mean of R2), since the distribution

of Ru conditional on D is the same as the marginal distribution.7

We can write all Wald statistics as

Ŵn = ψ
(

Ru, D̂, Σ̂n, Φ̂n

)

(where we explicitly state the distribution of Ru depends on the sample size n). Its asymp-

totic behavior is given by

Wn = ψ (Ru,D ,Σ,Φ) .

where Φ = plim Φ̂n = plim n−1V ′MV (if the process is ergodic, Φ is just the variance of

the reduced-form errors V ). We then find the 1−α quantile, say, cα (d,Σ,Φ) of the null

asymptotic distribution of

ψ (Ru,d,Σ,Φ) , where Ru ∼ N (0,Σuu) .

The final conditional test rejects the null when

Ŵn = ψ
(

Ru, D̂, Σ̂n, Φ̂n

)
> cα

(
D̂, Σ̂n, Φ̂n

)
.

7We will not standardize here the Ru and D statistics. However, we could have

worked with their respective standardized versions, S = [(b′0 ⊗ Ik)Σ(b0 ⊗ Ik)]
−1/2

Rb0 and T =[
(A′

0 ⊗ Ik)Σ−1 (A0 ⊗ Ik)
]−1/2

(A′
0 ⊗ Ik)Σ−1vec(R), as in Moreira and Moreira (2019).
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IV Generalization to weakly-identified models (including

GMM)

Summarizing the setup in Andrews (2016), it is assumed that there is a sequence of models

Fn (θ ,γ), which is indexed by the sample size n. To illustrate the extension, we focus

on a parameter of interest θ ∈ Θ, and presume there is an l × 1 consistently estimable

nuisance parameter γ ∈ Γ. The objective is to test the null hypothesis θ = θ0, presuming

the availability of three quantities: 1) a standardized sample moment vector (or distance

function) evaluated at the null, hn (θ0)
8; 2) a sample gradient of hn (θ) with respect to θ

evaluated at the null, ∆hn (θ0); and 3) the consistent estimate γ̂ for γ .

The main assumptions in Andrews (2016) are that for any true value (θ ,γ) ∈ Θ×Γ:

(
hn (θ0)

∆hn (θ0)

)
d→
(

h(θ0)

∆h(θ0)

)

and

(
h(θ0)

vec(∆h(θ0))

)
∼ N

((
m(θ0)

vec(µ)

)
,Σ0

)
, where Σ0 =

(
Σhh Σhθ

Σθh Σθθ

)

and γ̂
p→ γ . It is further assumed that Σhθ and Σhh are continuous in γ , and hence consistently

estimable.

The mean m(θ0) belongs to a set M (µ,γ) ⊆ Rk, with µ ∈ M , and is defined so that

when θ = θ0, m(θ0) = 0. The goal is to test the null hypothesis (m(θ0) ,µ) = (0,µ) against

the alternative (m(θ0) ,µ) = (M \{0} ,µ) , for any unknown value of µ .

We can once again consider the k×1 quantity

D = vec(∆h(θ0))−ΣθhΣ−1
hh h(θ0)

which, by construction is independent of h(θ0). The Wald statistic based on the 2SLS

estimator for the linear model simplifies to

Ŵn = R′
uR2

[
R′

2

(
b̂n ⊗ Ik

)′
Σ̂0,n

(
b̂n ⊗ Ik

)
R2

]−1

R′
2Ru, where

b̂n =
(

1,−R′
uR2

(
R′

2R2

)−1
)′
.

8For the linear model, we can take either the (standardized) moment condition hn (β ) =

(Z′Z)−1/2
Z′ (y1 −Y2β ) or the distance function h(Π,β ) = (Z′Z)−1

Z′Y − [Πβ : Π].
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We can thus define a nonlinear analog as

Ŵn = h′n∆hn

[
∆h′n

(
b̂n ⊗ Ik

)′
Σ̂n

(
b̂n ⊗ Ik

)
∆hn

]−1

∆h′nhn, where

b̂n =
(

1,−h′n∆hn

(
∆h′n∆hn

)−1
)′
.

(where we have suppressed the dependence on θ0), which will converge in distribution

to

W ≡
(
h′∆h

)[
∆h′ (b⊗ Ik)

′Σ(b⊗ Ik)∆h
]−1 (

∆h′h
)

After substituting in ∆h = D +ΣθhΣ−1
hh h, then it is easy to compute the (1−α)th condi-

tional quantile defined by

Pr [W > c(d,Σ;α) |D = d] = α

The test is straightforward to implement as follows: reject the hypothesis if and only if

Ŵn > c

(
D̂n, Σ̂n;α

)
, where D̂n = vec(∆hn (θ0))− Σ̂θhΣ̂−1

hh hn (θ0) .

This test will have the property, under the null, that

limPr
[
Ŵn > c

(
D̂n, Σ̂n;α

)
|D̂n = d

]
= α

for all values of d and hence

limPr
[
Ŵn > c

(
D̂n, Σ̂n;α

)]
= α

as desired.

V Conclusion

We are motivated by providing an inference method for researchers interested in the over-

identified linear instrumental variables model, and who have a preference for using the

2SLS estimator β̂ for inference, and who do not wish to rely on the assumption of ho-

moskedasticity. If errors are assumed to be homoskedastic, one can use the results of

Staiger and Stock (1997) and Stock and Yogo (2005) to control the amount of distortion

in inference. As noted in Andrews, Stock and Sun (2019), the tables in Stock and Yogo

(2005) do not apply to non-homoskedastic settings. Andrews (2018) provides a conserva-
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tive two-step procedure that builds on Stock and Yogo (2005) for more general DGPs.

To accommodate practitioners’ preference for using the 2SLS estimator and conven-

tional robust standard errors, we present the robust Conditional Wald (data-dependent)

critical values for the Wald statistics robust to heteroskedastic, autocorrelated, and/or clus-

tered errors, which turns out to be a relatively straightforward extension of the Conditional

Wald test of Moreira (2003); its derivation has been neglected in the weak-IV literature,

which has provided a number of other non-Wald procedures that are both robust to non-

homoskedastic errors and to arbitrarily weak instruments.

Using existing results from the weak IV literature, we also generalize the procedure

to apply to the more general nonlinear models that are typically estimated via minimum

distance or GMM. We can explore several Wald statistics within the nonlinear setup as

well, contingent on the weights employed in the criterion function. The final conditional

test would substitute the conventional critical value with a conditional quantile.

14



References

Anderson, T. W., and H. Rubin. 1949. “Estimation of the Parameters of a Single Equa-

tion in a Complete System of Stochastic Equations.” Annals of Mathematical Statistics,

20: 46–63.

Andrews, Donald W. K. 1991. “Heteroskedasticity and Autocorrelation Consistent Co-

variance Matrix Estimation.” Econometrica, 59: 817–858.

Andrews, D. W. K., M. J. Moreira, and J. H. Stock. 2004. “Optimal Invariant Similar

Tests for Instrumental Variables Regression.” NBER Working Paper t0299.

Andrews, Isaiah. 2016. “Conditional Linear Combination Tests for Weakly Identified

Models.” Econometrica, 84: 2155–2182.

Andrews, Isaiah. 2018. “Valid Two-Step Identification-Robust Confidence Sets for

GMM.” The Review of Economics and Statistics, 100(2): 337–348.

Andrews, Isaiah, James H. Stock, and Liyang Sun. 2019. “Weak Instruments in In-

strumental Variables Regression: Theory and Practice.” Annual Review of Economics,

11: 727–753.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2011. “Robust Inference

With Multiway Clustering.” Journal of Business Economics and Statistics, 77: 238–249.

Davidson, Russell, and James G. MacKinnon. 2021. Estimation and Inference in Econo-

metrics. New York: Oxford University Press.

Dufour, J-M. 1997. “Some Impossibility Theorems in Econometrics with Applications to

Structural and Dynamic Models.” Econometrica, 65: 1365–1388.

Hansen, Lars P., and Kenneth J. Singleton. 1982. “Generalized Instrumental Variables

Estimation of Nonlinear Rational Expectations Models.” Econometrica, 50(5): 1269–

1286.

Kleibergen, F. 2005. “Testing Parameters in GMM without Assuming that they are Identi-

fied.” Econometrica, 73: 1103–1123.

Lee, David S, Justin McCrary, Marcelo J Moreira, Jack R Porter, and Luther Yap.

2023. “What to do when you can’t use ’1.96’ Confidence Intervals for IV.” National

Bureau of Economic Research Working Paper 31893.

Moreira, H., and M. J. Moreira. 2019. “Optimal Two-Sided Tests for Instrumental Vari-

ables Regression with Heteroskedastic and Autocorrelated Errors.” Journal of Econo-

metrics, 213: 398–433.

Moreira, M. J. 2003. “A Conditional Likelihood Ratio Test for Structural Models.” Econo-

metrica, 71: 1027–1048.

15



Newey, Whitney, and Daniel L. McFadden. 1994. “Large Sample Estimation and Hy-

pothesis Testing.” In Handbook of EconometricsVol. 4, , ed. Robert F. Engle and

Daniel L. McFadden, Chapter 36, 2111–2245. Amsterdam:Elsevier Science.

Newey, Whitney K., and Kenneth D. West. 1987. “A Simple, Positive Semi-Definite,

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix.” Econometrica,

55: 703–708.

Staiger, D., and J. H. Stock. 1997. “Instrumental Variables Regression with Weak Instru-

ments.” Econometrica, 65: 557–586.

Stock, James H., and Motohiro Yogo. 2005. “Testing for Weak Instruments in Linear IV

Regression.” In Identification and Inference in Econometric Models: Essays in Honor

of Thomas J. Rothenberg, ed. Donald W.K. Andrews and James H. Stock, Chapter 5,

80–108. Cambridge University Press.

Van de Sijpe, Nicolas, and Frank Windmeijer. 2023. “On the power of the condi-

tional likelihood ratio and related tests for weak-instrument robust inference.” Journal

of Econometrics, 1: 82–104.

White, Halbert. 1980. “A Heteroskedasticity-Consistent Covariance Matrix Estimator and

a Direct Test for Heteroskedasticity.” Econometrica, 48: 817–838.

16


	Introduction
	The Linear IV Model
	The Robust Conditional Wald Tests
	Estimators
	Wald Test Statistics
	Valid Critical Value Functions

	Generalization to weakly-identified models (including GMM)
	Conclusion

