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Abstract

Household expenditure survey data cannot yield precise estimates of poverty or inequality
for small areas for which no or few observations are available. Census data are more plentiful,
but typically exclude income and expenditure data. Recent years have seen a widespread use
of small-area “poverty maps” based on census data enriched by relationships estimated from
household surveys that predict variables not covered by the census. These methods are used
to estimate putatively precise estimates of poverty and inequality for areas as small as 20,000
households. In this paper we argue that to usefully match survey and census data in this way
requires a degree of spatial homogeneity for which the method provides no basis, and which is
unlikely to be satisfied in practice. The relationships that are used to bridge the surveys and
censuses are not structural but are projections of missing variables on a subset of those variables
that happen to be common to the survey and the census supplemented by local census means
appended to the survey. As such, the coefficients of the projections will generally vary from
area to area in response to variables that are not included in the analysis. Estimates of poverty
and inequality that assume homogeneity will generally be inconsistent in the presence of spatial
heterogeneity, and error variances calculated on the assumption of homogeneity will underes-
timate mean squared errors and overestimate the coverage of calculated confidence intervals.
We use data from the 2000 census of Mexico to construct synthetic “household surveys” and
to simulate the poverty mapping process. In this context, our simulations show that while the
poverty maps contain useful information, their nominal confidence intervals give a misleading
idea of precision. JEL: I32, C31, C42
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1 Introduction

Household surveys collect information on incomes, expenditures, and demographics, and are reg-

ularly used to generate population statistics, such as mean incomes, poverty headcount ratios, or

rates of malnutrition. Such surveys are now widely available around the world. For example, in

its latest estimates of the global poverty counts, the World Bank used 454 income and expenditure

surveys from 97 developing countries, Chen and Ravallion (2004). Some of these surveys support

sub-national estimates, for example for states or provinces. But few surveys are large enough

to support estimates for small areas such as districts, counties, school districts, or electoral con-

stituencies. In the United States, where the decadal census collects good income information for

five percent of the population, there is a substantial literature, including two National Research

Council reports, on obtaining mean income and poverty estimates for counties and school districts

in the intercensal years, estimates that are required for the apportionment of federal funds (National

Research Council 1980, Grosh and Rao 1994, Citro and Kalton 2000).

In most developing countries, censuses do not collect income or expenditure information, so that

small area poverty estimates are typically not available even for census years. To fill this gap, the

World Bank has recently invested in a methodology for generating small-area poverty and inequality

statistics, in which an imputation rule, estimated from a household survey, is used to calculate small-

area estimates from census data. The methodology, developed by Elbers, Lanjouw, and Lanjouw,

2003, henceforth ELL, has been applied (with some local variation) to a substantial number of

countries, including Albania, Azerbaijan, Brazil, Bulgaria, Cambodia, China, Ecuador, Guatemala,

Indonesia, Kenya, Madagascar, Mexico, Morocco, South Africa, Tanzania, and Uganda.1 In many

cases, and even when the area is as small as a few thousand people, the estimates come with high

reported precision; for example, the Kenyan poverty map reports poverty rates for areas with as

few as 10,000 people with relative standard errors of a quarter, and of around ten percent for areas

with 100,000 people. In some cases, such as Kenya, the provision of poverty maps has become part

of the regular statistical service.2 In others, hundreds of millions of dollars have been distributed

based on the estimates. And the computed poverty and inequality estimates have been used in

other studies, for example, of project provision and political economy, of the effects of inequality

on crime, of whether inequality is higher among the poor, and of child malnutrition.

In spite of the widespread application and growing popularity of poverty mapping, there has

been little formal investigation of its properties. The original paper by ELL describes their proce-

dure, but does not provide a characterization of the general properties on which the imputation is

based, nor a consideration of the likelihood or consequences of assumption failure.

In this paper, we provide a set of “conditional independence” or “area homogeneity” assump-
1 For a comprehensive description of the methodology used by the Bank, as well as for reference to the numerous

applications, see www.worldbank.org/poverty.
2 See www.worldbank.org/research/povertymaps/kenya.
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tions that are required for the poverty mapping to provide useful estimates for small areas. These

assumptions, which are closely related to the “ignorability” or “unconfoundedness” assumptions

familiar from the statistical and econometric literature on program evaluation, require that (at

least some aspects of) the conditional distribution of income be the same in the small area as in

the larger area that is used to calibrate the imputation rule. We argue that the area homogeneity

assumptions are likely to fail in practice, and that local labor markets, local rental markets, and

local environmental differences are likely to generate heterogeneity that violates the assumptions

of both the ELL estimator and of a simpler version that we propose below. More generally, we

note that the imputation formulas are projections of expenditure, income, or poverty on a subset

of whatever variables happen to be common to the census and the survey, supplemented by local

averages from the census, and are not well-founded structural relationships, so that their coefficients

will generally be functions of any local variables that are not explicitly included.

We consider some obvious special cases of heterogeneity, where either the intercept or the slopes

of the projection vary randomly across areas, and discuss the consequences for estimators. We focus

on mean squared error (MSE) and coverage probabilities rather than means, since in many cases

of interest, including the example above, the estimates are not consistent. While both ELL and

our own estimators produce precise estimates of welfare measures in some cases, we also show that

even a small amount of heterogeneity may lead to misleading inference.

We provide calculations from the Mexican census of 2000 which we use to construct random

synthetic “household surveys” that are used to calculate imputation rules for poverty. Because the

Mexican census contains income information, these can be checked against the poverty rates for

small areas calculated from the census extract. While the poverty mapping technique is certainly

informative in this case, the coverage probabilities are often far from the nominal ones, so that

for a substantial fraction of the areas we consider, nominal standard errors based on homogeneity

provide misleading indications of precision.

The rest of the paper is organized as follows. The next section introduces the notation, formally

describes the problem and discusses the assumptions that justify merging census and survey data.

Section 3 describes the consequences of unobserved heterogeneity across areas. Section 4 describes

estimation, and proposes a simple estimator that is appropriate under the same assumptions as the

estimator in Elbers et al. 2003. Section 5 describes a series of Monte Carlo simulations designed to

explore the consequences of unobserved heterogeneity. Section 6 describes the validation exercise

with data from the 2000 Mexican Census. Section 7 concludes.

2 Statistical Background

The object of interest is a welfare measure W defined for a “small area” A, where A ⊂ R denotes

a small area included in a larger “region” R. For instance, A may be a town and R a district,
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or A may be a district while R is a state. In a typical census, each small area will be further

divided into a number of smaller units or clusters which are usually referred to as census “tracts”

or enumeration areas (EAs), typically containing around 100 households. In this paper we use the

term “cluster” throughout, and we treat cluster and EA as synonymous. In most cases, W is a

poverty or inequality index defined as a function of the distribution over individuals of a variable y,

which usually measures income or expenditure (“expenditure” hereafter). However, W may also be

a function of the distribution of other variables, such as wages, schooling, or occupation or health

indicators. In the frequent case where data on y are collected at the household level, we assign to

each individual within a household the same per capita measure y.

Most poverty measures are identified by a simple population moment condition such as the

following:

E [shg(yh;W0) | h ∈ H(A)] = 0, (1)

where sh represents the size of household h, W0 is the true value of the parameter to be estimated

and H(A) denotes the set of households in area A. For instance, if W0 represents a Foster-Greer-

Thorbecke (FGT) poverty index, and z is a fixed poverty line, then

g(yh;W0) = 1(yh < z)
(
1− yh

z

)α
−W0, (2)

where α ≥ 0 is a known parameter and 1(E) is an indicator equal to one when event E is true.

When α = 0 the index becomes the headcount poverty ratio, while α = 1 characterizes the poverty

gap ratio. A larger parameter α indicates that large poverty gaps (1−y/z) are given a larger weight

in the calculation, so that the poverty index becomes more sensitive to the distribution of y among

the poor. Most inequality measures can be written as continuous functions of expected values,

each of them identified by a moment condition. For instance, the variance of the logarithms can be

written as E[(ln y)2]− [E(ln y)]2. The Theil inequality index is defined as E[y ln y]/E(y)− ln(E(y)),

while the Atkinson inequality index is

W0 = 1− E(y1−ε)
1

1−ε

E(y)
.

The Gini coefficient, using a formula described in Dorfman (1979), can also be written in terms of

elements identified by a moment condition as

W0 = 1−
∫∞
0 (1− E[1(y ≤ z)])2 dz

E(y)
.

There are two data sources. The first is a household survey of region R with includes data on

y as well as on a set of correlates X. We assume that the sample size allows the estimation of

aspects of the distribution of y in region R with acceptable precision where what is “acceptable”

will depend on specific circumstances. For instance, the precision of the resulting welfare estimates

for region R could be deemed acceptable if it allows sufficient power in tests that compare welfare
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estimates for region R with estimates from other regions, or from the same region but in a different

period. The second data source is a census of the whole population of households h ∈ H(A). The

census will usually include information from a larger area (such as the whole region R), but for our

purposes only data from the small area A ⊂ R are relevant. We assume that the census does not

include information on expenditure y, but it does record information on the correlates X. Note

that the choice of correlates, while influenced by theory, is ultimately constrained by the overlap

between census and survey, each of which is designed with other purposes in mind.

If y is recorded for a sample of households in area A, the welfare estimate W0 can be estimated

using a sample analogue of the corresponding moment condition. As an example, the FGT poverty

index can be estimated as

Ŵ0 =
1∑

h∈Hn(A) sh

∑
h∈Hn(A)

sh1(yh < z)
(
1− yh

z

)α
, (3)

where Hn(A) denotes the set of households from area A included in the survey sample. Under

fairly general regularity conditions, such an estimator is consistent and asymptotically normal.

However, the corresponding standard errors will be large if the number of observations is small,

a common circumstance if the area A is only a small subset of the larger area covered by the

survey that collects information on y. The survey may indeed include no households at all from

certain areas. Sample size would be more than adequate in a complete census of the small area,

which will typically include several thousands of households. Censuses, though, rarely include

reliable information on income or expenditure. However, a census will record a list of variables X,

such as occupation, schooling, housing characteristics or availability of amenities at the local level,

which are also recorded in household surveys, and can be used as predictors for y. If the survey

also includes detailed geographical identifiers, one can also calculate averages of household-level

variables calculated for small locations (e.g. a village) and attach these variables to the survey data

as additional predictors of expenditure (Elbers et al. 2003). Under certain conditions, one can then

merge information from both data sets to improve the precision of the estimates of W0 for a small

area A. Consider the following assumptions:

Assumption 1 (MP) Measurement of Predictors: Let Xh denote the value of the correlates

for household h as observed if h is included in the survey sample, and let X̃h denote the correspond-

ing measurement in the census. Then Xh = X̃h for all h.

Assumption 2 (AH) Area Homogeneity (or Conditional Independence):

f (yh | Xh, h ∈ H(A)) = f (yh | Xh, h ∈ H(R)) . (4)

Assumption MP is clearly necessary if the correlates have to be used to “bridge” census and

household data. The validity of this assumption should not be taken for granted. For instance, the
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two data sources may use a different definition of “household”, or they may use different (possibly

non-nested) coding schemes for schooling, industry or occupation of household members. Different

reports may also arise from other less obvious reasons, even if census and household survey use

the exact same wording to record all variables included in X: for instance, reporting errors may

differ due to differences in questionnaire length or interviewer training.3 In the rest of the paper we

will maintain the validity of MP, but the caveats just described should be kept in mind. We also

assume that the list of correlates that are measured consistently in the two surveys also includes

household size, but none of our results rely crucially on this assumption.

Assumption AH requires that the conditional distribution of y given X in the small area A

is the same as in the larger region R. Conditional independence assumptions such as AH have

been used extensively in statistics and econometrics. Following the seminal work by Rubin (1974)

and Rosenbaum and Rubin (1983), the program evaluation literature has made frequent use of the

assumption (sometimes referred to as unconfoundedness or ignorability) that treatment status is

independent of potential outcomes, conditionally on observed covariates (see e.g. the references

surveyed in Heckman et al. 1999 and Imbens 2004). In the estimation of models with missing data,

several authors have used the identifying assumption that the probability of having a complete

observation conditional on a set of auxiliary variables is constant (see e.g. Rubin 1976, Little and

Rubin 2002, Wooldridge 2002b). Analogous assumptions can be found in the estimation of non-

linear models with non-classical measurement errors in presence of validation data. In this case the

requirement is that the distribution of the mis-measured variables conditional on a set of proxies

is the same in the main and in the auxiliary sample (see e.g. Lee and Sepanski 1995, Chen et al.

2005, Chen et al. 2007).

In the estimation of small area statistics, Assumption AH is demanding, due to the many

possible sources of heterogeneity in the relationship between the predictors and y across different

areas. For example, X may include schooling or occupation variables, but the conditional relation

between such factors and expenditure are driven by local “rates of return”, which are typically

unobserved and unlikely to be identical across different geographical areas. The inclusion of physical

assets, or proxies for physical assets, such as indicators of durable ownership, may capture some

of the variation in the rates of return. However, such indicators are subject to similar concerns

because the rate of return to assets may vary across areas. Differences in tastes, relative prices,

or the environment across areas will also lead to the failure of AH; the implications of bicycle or

television ownership for the poverty of a household must depend on whether the area is suitable

for riding a bicycle, or whether the village has an electricity supply or television signal. It should

also be noted that the conditional distribution will generally change over time so that caution

should be exercised when survey and census data have not been collected during the same period.

This is a common circumstance, because while censuses are usually completed only once every
3 See Deaton and Grosh 2000 for a brief overview of the difficulties related to reporting bias in household surveys.
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decade, household expenditure surveys are often completed at shorter intervals. More generally,

the coefficients of the projection of y on X, including the constant term, will be a function of

omitted variables; if these are not constant across localities, area homogeneity will fail.

The area homogeneity assumption AH requires, for instance, that the probability of being poor

given X in the small area A is the same as in the larger region R. If assumptions MP and AH hold,

the welfare estimate of interest is also identified by the following modified moment condition:∫
E [shg(yh;W0) | X, h ∈ H(R)] dF (X | h ∈ H(A)) = 0, (5)

where dF (.) represents the distribution of the correlates in the small area.4 In Appendix A we

show that (5) can be obtained from assumptions MP and AH from a simple manipulation of the

moment condition (1). If we replace the modified moment condition (5) by its sample analog, we

have a basis for estimating the welfare measure. As the sample size within each area becomes large,

the sample analog will converge to (1) and give a consistent estimate of the welfare measure. In

practice, with a finite number of households in each area, consistency will not guarantee estimator

precision, but it provides a basis from which we can examine performance in terms of MSE.

3 Consequences of Unobserved Heterogeneity

In this section, we maintain the validity of MP while we discuss consequences of the presence of

unobserved heterogeneity, which invalidates AH. Virtually all household expenditure surveys adopt

a complex survey design, so that enumeration areas (EAs) such as villages or urban blocks are

sampled first, and then households are sampled from each EA. As is well known, the resulting

intra-cluster correlation among households drawn from the same EA can considerably increase the

standard errors of the estimates (see e.g. Kish 1965, Cochrane 1977). In what follows, the subscript

a denotes a small area, c denotes a cluster or primary stage unit and h denotes a household. Hence,

for instance, yach indicates expenditure of household h, residing in cluster c, inside area a. Every

cluster is assumed to be completely included in a unique small area. For illustrative purposes, we

abstract from the distinction between household and individual level observations.

To fix ideas and to more clearly illustrate the concepts, assume temporarily that the relationship

between y and the correlates X is described by a parametric linear model whose coefficients, apart

from the constant term, are homogenous across areas. This provides the simplest example of a

(limited) failure of area homogeneity. In reality, heterogeneity in the slopes is also likely and, as

documented in section 5.2, equally capable of leading to incorrect inference. Suppose then that the

data generating process (DGP) is described by the following model:

yach = β′Xach + uach = β′Xach + ηa + eac + εach, (6)
4 The validity of (5) also requires that the support of X in A is a subset of the support of X in R, but this

condition holds by construction, because the small area is a subset of the larger region R.
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where Cov(ηa, eac) = 0, Cov(ηa, εach) = 0, Cov(eac, εach) = 0, Cov(Xach, uach) = 0, Cov(εach, εach′) =

0 ∀ a, c, h, h′ 6= h, Cov(eac, eac′) = 0 ∀ a, c, c′ 6= c, Cov(ηa, ηa′) = 0 ∀ a, a′ 6= a. All error com-

ponents are uncorrelated with each other and with the correlates. We assume that model (6) holds

for every cluster c in region R, so that it also holds for all clusters within the small area. Model

(6) allows for the presence of a small-area fixed effect ηa, which violates area homogeneity, but it

otherwise maintains homogeneity in the slopes β which can be consistently estimated using either

Ordinary Least Squares or Feasible Generalized Least Squares on survey data from the larger region

R. Note that Assumption AH fails because in a specific small area A:

E (yach | Xach, h ∈ H(A)) = β′Xach + ηa 6= β′Xach = E (yach | Xach, h ∈ H(R)) .

In this case, because of the violation of homogeneity through the presence of ηa we cannot obtain

consistent estimation of welfare estimates for small areas by merging census and survey data.

Suppose that the object of interest is the simple poverty head count for a small area A, that is,

WA = P (y ≤ z | a = A), where z denotes the poverty line. The head count in A is equal to

P (y ≤ z | a = A) = P (eac + εach ≤ z − β′Xach − ηa), but without knowing ηa this quantity cannot

be calculated even if both β and the distribution of eac + εach were known. In such a case, the use

of household survey data from the larger region R will not allow the consistent estimation of the

welfare estimate WA.

The presence of this kind of heterogeneity makes the problem of estimating WA similar to the

problem of making forecasts in time series analysis. In time series forecasting, while parameters that

relate the predicted variables to their predictors can—under appropriate conditions—be estimated

consistently, the same cannot be said for the actual (future) value of the variables to be predicted.

For this reason, inference on the predictions should be based on measures of mean squared forecast

error (MSE). In our context, the presence of the area fixed effect ηa, which cannot be precisely

estimated without a large sample of observations (yach, Xach) from the small area a, implies that

the MSE of ŴA will also be affected by the presence of bias. The following section illustrates the

point further, and describes the consequences for MSE of ignoring the presence of a small area fixed

effect under a variety of DGPs.

3.1 Consequences of Area Heterogeneity for Mean Squared Error

As in the previous section, we assume that region R is composed of a number of small areas labeled

a, each including a large number C of clusters labeled c, each of which includes a population of

m households labeled h. For simplicity, and for this subsection only, we assume that both C and

m are constant and that the welfare measure of interest is mean expenditure in area a, which we

denote by µa
y. We also assume an equi-correlated structure for the errors, and treat the area fixed

effect as random, even if the specific value of the fixed effect η is treated as a constant for a given
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small area. Specifically:

V ar(uach) = σ2
u

Cov(uach, ua′c′h′) =


0 if a 6= a′ (no correlation between areas)

σa = ρaσ
2
u if a = a′, c 6= c′ (same area, different clusters)

σc = ρcσ
2
u if a = a′, c = c′, h 6= h′ (same cluster, different household),

where ρa and ρc are respectively the intra-area (inter-cluster) and the intra-cluster correlation

coefficients. In the specific case where the error term has a random effects structure as in (6), the

total variance of the error is σ2
u = σ2

η + σ2
e + σ2

ε , while ρa = σ2
η/σ2

u and ρc = (σ2
η + σ2

e)/σ2
u. We

are particularly interested in the consequences of assuming area homogeneity, as in the standard

poverty mapping exercise, which here means assuming that σ2
η = 0 (implying ρa = 0) when it is

not in fact true. We also assume that β is known, so that our argument will abstract from the

existence of estimation error in these parameters; note that this estimation error will contribute to

the MSE of estimation of µa
y, whether or not homogeneity holds.

The estimator for the mean expenditure in a given small area A will be

µ̂a
y =

1
Cm

C∑
c=1

m∑
h=1

X ′
achβ,

so that, by using the structure of the error term, the MSE can be written as:

M.S.E. = E[(µ̂a
y − µa

y)
2 | a = A] = η2

A +
σ2

e

C
+

σ2
ε

Cm

= η2
A +

σ2
u

Cm
[(ρc − ρa)m + (1− ρc)]

= η2
A +

σ2
u

Cm
[1 + ρc(m− 1)]−

σ2
η

C
. (7)

The second term coincides with the variance of the estimator when the DGP in (6) does not include

an area fixed effect, so that ηA = ση = 0. Both this and the third term converge to zero when the

number of clusters in the small area becomes large, but the first term does not, and can lead to

severe underestimation of the MSE in areas characterized by a non-zero value of ηA.

Table 1 shows the underestimation of the root MSE for a given small area that would result from

incorrectly assuming that area fixed effects are zero. We tabulate results for different parameter

combinations, keeping cluster size fixed at m = 100.5 Each figure is the ratio between the (true)

root MSE calculated as in (7) and the incorrect root MSE calculated assuming ρa = ση = 0, which

is given by the second term in (7). For each combinations of ρc, ρa and C, we calculate ratios for

two different values of the area fixed effect η, which are the taken to be the 75th and 90th percentile

of the distribution of η. We assume that the distribution of u is normal with mean zero and unit
5Results are much more sensitive to changes in C than to changes in m. Tabulations for different values of m are

available upon request from the authors.
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variance (it is straightforward to check that the unit variance is simply a choice of units); given ρc,

ρa and C, σ2
η and σ2

ε are set, as is the distribution of η.

The results show that disregarding the bias component can lead to severe underestimation of

the MSE even when the small area fixed effect is small, and even when the intracluster correlation

is below 0.05 or lower. For example, take the case where each area includes 150 clusters, the

intracluster correlation is 0.01, and ρa = 0.005. For a small area whose fixed effect is equal to the

75th percentile of the distribution of η (row e, column 3) the ratio between correct and “naive”

MSE is 4.2, which also means that the ratio will be even larger for the fifty percent of the small

areas whose absolute value of η is larger than the 75th percentile. Given the same DGP, the correct

MSE will be at least 7.9 times larger than the naive one for 20 percent of small areas (row e, column

4). The relative underestimation of the MSE generally worsens if the number of clusters within a

small area increases, and becomes smaller if the inter-cluster correlation becomes small relative to

the intra-cluster correlation. Overall, the ratios in the table range from 1 to 19.9, both resulting

from unlikely combinations that require a very high intra-cluster correlation equal to .20.

The MSE in (7) is calculated conditional on a specific area effect ηA. We are also interested in

the unconditional MSE for µy integrated over the distribution of η. In this case, the underestimation

of the MSE from ignoring the heterogeneity is closely analogous to the underestimation of standard

errors that comes from ignoring the complex survey design of household survey data. Appendix A

shows that the “unconditional” MSE, which here coincides with the sampling variance of µ̂y, can

be written as:

V ar(µ̂y) =

(
σu∑C

c=1 mc

)2


C∑

c=1

mc +
C∑

c=1

mc(mc − 1)ρc︸ ︷︷ ︸
from intracluster corr.

+
C∑

c=1

C∑
c′=1,c′ 6=c

mcmc′ρa︸ ︷︷ ︸
from inter-cluster corr.

 . (8)

The first term (in larger braces) is the variance calculated assuming that observations are i.i.d.. The

second and third terms come respectively from the intracluster and inter-cluster correlation implied

by model (6), because of the common geographical and socio-economic characteristics within the

area that come from the failure of area homogeneity. This last term can be large. In the simple

case where each cluster contains the same number of households, so that mc = m ∀c , equation (8)

simplifies to

V ar(µy − µ̂y) =
σ2

u

Cm
[1 + (m− 1)ρc + m(C − 1)ρa]

= V arSRS +
σ2

u

Cm
[(m− 1)ρc + m(C − 1)ρa]

= V arC +
σ2

u

Cm
[m(C − 1)ρa] , (9)

where V arSRS is the variance estimated under the assumption of i.i.d. observations, and V arC

is the variance estimated under the assumption that observations are correlated within clusters
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but independent across clusters. Although V arC goes to zero as the number of clusters goes to

infinity, the second term in the last line converges to ρaσ
2
u which is not zero unless the intra-area

(inter-cluster) correlation ρa is zero. In consequence, even if ρa is small, the ratio of the correct

MSE to the V arC , which is the MSE ignoring the intracluster correlation, goes to infinity with C.

Even with C = 150, m = 100, and an intercluster coefficient of only 0.01, the ratio of the correct

to incorrect root-MSE is 2.9 when the intracluster coefficient is 0.20, is 5.1 when it is 0.05, and is

7.1 when it is 0.02, so that the variance is underestimated fiftyfold.

These unconditional results, as well as the conditional results in Table 1, exaggerate the practical

effects of ignoring intercluster correlation because they exclude the contribution to the MSE of

estimating the β parameters, a contribution that is common to both the correct and the incorrect

MSE, and whose inclusion would bring their ratio toward unity. In the other direction, we have so

far maintained the assumption that there is no inter-area variation in β. As we shall see in Section

5.2 below, violation of this condition will also impact the MSE.

4 Estimation

In this section we describe a simple parametric estimator for the estimation of poverty maps together

with a brief description of the more complex methodology proposed by Elbers et al. 2003 that is

routinely used in poverty mapping.

4.1 A Simple Projection-based Estimator

We assume that both MP and AH hold. Given AH, we can see from the modified moment condition

(5) that the sampling process identifies the parameter of interest and we propose an estimator

based on the simple idea of replacing the modified moment condition (5) by its sample analog. The

estimate Ŵ0 is then obtained as the solution to the following equation:

1
NA

∑
h∈H(A)

Ê
[
shg(yh; Ŵ0)

∣∣∣Xh

]
= 0, (10)

where NA is total population in the small area according to the census, and the expectation can

be approximated by a projection of shg(yh) on a series of functions of Xh.6

To fix ideas, suppose that the welfare measure of interest WA is the head count poverty ratio

in a small area A, calculated for a given fixed poverty line z. If we disregard for simplicity the
6Note that this approach also lends itself well to non-parametric estimation, as in Chen et al. (2005) or Chen

et al. (2007). However, the accurate implementation of non-parametric estimation requires the choice of smoothing

parameters and it may be cumbersome when the number of predictors is large, so we do not pursue this direction

further. Even so, note that parametric rates of convergence for the parameter of interest can still be achieved, because

W0 is calculated as the integral of a conditional expectation, and is not a conditional expectation itself.
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difference between household and individual level data, the parameter of interest then becomes

WA =
1

NA

∑
h∈H(A)

1(yh ≤ z) (11)

Under assumptions MP and AH, the head count can be estimated in two steps. In the fist step,

the parameters γ that describe the conditional probability P (yh ≤ z | Xh; γ) are estimated with a

parametric binary dependent variable model such as logit or probit using survey data from region

R. In the second step, the poverty count is estimated as

ŴA =
1

NA

∑
h∈H(A)

P (yh ≤ z | Xh; γ̂), (12)

that is, as the mean of the imputed probabilities over all census units from area A. In the rest of

the paper we will refer to (12) as projection estimator.

Because the census population is kept fixed and is therefore non-random, the only source of

sampling error in (12) is the estimation of the parameters γ so the standard error can be calculated

using the delta method (see, e.g. Wooldridge 2002a, pp. 44-45). If a logit model is adopted in the

first stage, the delta method leads to

V̂ ar(ŴA) = ĜV̂ ar(γ̂)Ĝ′, (13)

where

Ĝ ≡ 1
NA

∑
h∈H(A)

eX̃′
hγ̂

(1 + eX̃′
hγ̂)2

X̃ ′
h,

where X̃h denotes the covariates used to estimate the projection and V̂ ar(γ̂) is the estimated

covariance matrix of the first-stage coefficients, calculated taking into account the clustered survey

design.7

Note, however, that the Mean Squared Error (MSE) of the estimator should take into account

not only the variance of ŴA, but also the difference between WA as defined in (11) and the census

mean of P (yh ≤ z | Xh; γ). This difference, which we refer to as a bias, would be present in the

estimation of WA even if γ were known. In Appendix B, we show that the contribution of this bias

to the MSE can be approximated by

b̂2(ŴA) =
Ê[(ph − 1(yh < z))2]

NA
+

NA − 1
NA

Ê[(ph − 1(yh < z))(ph′ − 1(yh′ < z))], (14)

where ph = P (yh ≤ z | Xh; γ) and the second expectation on the right-hand side is taken with

respect to different households within the same cluster. Both expectations can be estimated using

their respective sample analogues. To summarize, a confidence interval for ŴA with nominal

coverage (1− τ) will be constructed as

ŴA ± Φ−1(1− τ/2)×
[
V̂ ar

(
ŴA

)
+ b̂2

(
ŴA

)]
, (15)

7The variables X and X̃ do not necessarily coincide, because the latter may include, for instance, powers or

interactions.
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where Φ−1(.) is the inverse of the cumulative distribution function of a standard normal. It should

be noted that while the first term in (14) goes to zero when the size of the small area increases, the

second term does not. Therefore, the bias component may be relatively large when the residuals

of the first stage model exhibit a large intra-cluster correlation, because such correlation will lead

to a large second term. Appendix B contains a Monte Carlo simulation that confirms this finding

and shows that, as is to be expected, the bias adjustment is particularly important when the area

is small.

Adapting this approach to the estimation of parameters other than poverty head counts is

relatively straightforward, as long as WA can be written as a function of parameters identified by a

moment condition. For instance, if WA is the poverty gap, g(yh; ŴA) = 1(yh ≤ z)(1− yh/z)−WA,

so that in the first stage one can estimate E[1(yh ≤ z)(1 − yh/z) | Xh] by projecting the poverty

gaps on a list of functions of Xh. The parameter of interest can then be calculated as the mean

predicted value for all census units and the standard errors calculated using the delta method as

in (13), with G = Xh. The estimation of the squared bias would also proceed in analogous way.

4.2 The ELL Estimator

The poverty maps constructed by the World Bank or with their assistance make use of an alterna-

tive estimation method proposed by Elbers et al. 2003 (ELL for brevity). Like our estimator, ELL

requires the validity of both MP and of the area homogeneity assumption AH. Unlike the estima-

tor described in the previous section, ELL is a simulation-based estimator that requires explicit

parametric assumptions about the distribution of regression residuals. In the context of poverty

mapping, we will need functional forms for the conditional mean of y, as well as for the distribution

around that mean. Different variants of ELL have been described in the literature, but all of them

share the same central features. As a basis for the calculations below, we provide a brief description;

for more see Elbers et al. (2002), Elbers et al. (2003) and Demombynes et al. (2007). Expenditure

for household h in EA c is modeled as:

ln(ych) = β′Xch + uch = β′Xch + ηc + εch

where Cov(ηc, εch) = Cov(Xc, ηc) = Cov(Xc, εch) = Cov(εch, εc′h′) = 0 ∀ c, c′, h, h′ 6= h. The

idiosyncratic errors are allowed to be heteroskedastic, while the cluster fixed effects are assumed to

be i.i.d. and homoskedastic; higher conditional moments are not considered. Consistent estimation

of β is clearly not sufficient for the estimation of poverty or inequality measures, which are function

of the distribution of y, and not functions of the distribution of the conditional expectation β′Xch.

For this reason, once β has been estimated using Ordinary Least Squares or feasible Generalized

Least Squares, ELL use a simulation procedure to “recreate” the conditional distribution of y

by adding to each estimated fitted value β̂′Xch simulated values of the cluster-specific (ηc) and

household-specific (εch) errors. Because the errors uch are not i.i.d., the simulated draws must
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take into account the clustering and heteroskedasticity. Several alternative algorithms have been

proposed for this; all start from the separate estimation of ηc and εch. Once β̂ has been obtained,

the cluster fixed effects are estimated as the mean value of the residuals ûch over all the observations

from the same cluster c. Estimates ech of the idiosyncratic errors are then calculated as ûch − η̂c.

The variance of the idiosyncratic error εch is then estimated imposing the following parametric

form for heteroskedasticity:

σ2(X) =
Aez′chα + B

1 + ez′chα
, (16)

where zch is a function of the correlates X, and A and B are parameters to be estimated. Using

the estimates from (16) standardized residuals are then calculated as

e∗ch =
ech

σ̂ε,ch
− 1

H

∑
ij

eij

σ̂ε,ij
.

The point estimates and corresponding variances of β and the heteroskedasticity parameters, to-

gether with the empirical distribution of the cluster-specific and idiosyncratic errors, are the inputs

that can now be used to estimate W0 and its standard error.

The structure of each simulation step r is as follows. First, a set of parameters is drawn

from the sampling distribution of β and of the parameters in (16). Second, each cluster in the

census is assigned a cluster-specific error η̂r
c drawn from the empirical distribution of all η̂. Third,

each observation in the census is assigned a normalized idiosyncratic error e∗rch which is obtained

either from a parametric distribution or from the empirical distribution of the errors. Fourth,

heteroskedastic errors er
ch are calculated by using the parametric model in (16) evaluated at the

simulated parameter values. Lastly, simulated values for ln y are generated as ln yr = X ′r + η̂r
c +er

ch,

and a value W r is then simply calculated based on the simulated expenditure data. The mean and

the variance over a large number of simulations are then used as an estimate of Ŵ and V̂ ar(Ŵ )

(note the similarity with multiple imputation, Rubin 1987). The bias adjustment described in

Section 4.1 is not necessary in ELL, because the simulation procedure accounts automatically for

the presence of the bias.8

This approach disregards the possible correlation among observations that belong to different

clusters, and will therefore overstate the precision of the estimates if such correlation exists. Such

would be the case, for instance, if the true model includes area fixed effects such as in (6). Elbers

et al. (2002) argue that in such cases one can modify ELL to obtain an upper bound of the true

variance: in each replication, instead of assigning the same location effect estimated at the cluster

level to all units within a cluster, one can assign the location effect to all units within the same

area. Alternatively, one can also experiment attaching the estimated cluster effects to geographic

levels intermediate between the cluster and the area. This would lead to larger and larger (and

possibly more and more conservative) standard errors the closer to the area is the chosen level
8ELL define the bias contribution to the MSE of their estimator as the “idiosyncratic” component of the standard

error.
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of aggregation. Elbers et al. (2002) argue that when the intra-cluster correlation is small such

conservative estimates of the standard errors will be only marginally different from those that

assume no inter-cluster correlation, but they only explore the consequences of correlation with

locations smaller than the area of interest. The arguments laid out in Section 3.1, as well as results

from Monte Carlo experiments in the next section suggest that such upper bound can be very much

larger than the standard errors calculated under the assumption of no inter-cluster correlation even

in cases where intra-cluster correlation is very small. The very large standard errors that may

arise from the use of such conservative estimates may be one reason why their use appears to

have been ignored in poverty mapping (see, for instance, Mistiaen et al. 2002, Alderman et al.

2003, Elbers et al. 2004, Demombynes and Özler 2005, Elbers et al. 2007). Even if the actual

consequences of intra-area correlation, as we have shown, depend on several factors, it would be

useful if conservative estimates were routinely produced and evaluated. We also note that these

considerations only address the existence of location fixed effects, while ignoring any heterogeneity

in the slopes of the estimated conditional model.

ELL’s simulation estimator has the advantage of allowing the estimation of any poverty or

inequality measure within the simulation procedure used for estimation. After a replication has

generated a complete “census” of expenditures y, any welfare measure can be easily calculated using

the generated y as if they were data. This works even for measures such as the Gini coefficient that

are not identified by a simple moment condition (see Section 1). But this versatility comes at the

price of parametric assumptions about the conditional mean of y, its conditional variance, and the

absence of conditional skewness or kurtosis, for example. The estimator we have described in (12),

while still parametric, only models the conditional probability of being in poverty. In this way, the

estimator is faster and simpler and it does not require assumptions on the complete conditional

distribution or first-stage residual errors. Both estimators, however, require the absence of area

heterogeneity, and this common ground is likely more important than their differences.

5 Monte Carlo Experiments

We first consider a best-case scenario where the Data Generating Process (DGP) is characterized

by a simplified version of model (6), where there is no small area fixed effect, the cluster fixed

effects are i.i.d. and homoskedastic, and MP and AH hold. Specifically, for each cluster within a

region the DGP is described as follows:

ych = β0 + β1xch + uch = 20 + xch + ec + εch

xch = 5 + zc,1wch + zc,2, w ∼ N(0, 1), zc,1, zc,2 ∼ U(0, 1), zc,1 ⊥ zc,2,

ec ∼ N(0, .01), εch ∼ N(0, σ2(x))

σ2(x) =
eα1x+α2x2

1 + eα1x+α2x2 , (17)
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with α1 = .5, α2 = −.01. The idiosyncratic errors εch are then assumed to be heteroskedastic, and

their variance is determined by a simplified version of model (16) so that the functional form of the

heteroskedasticity is consistent with the assumptions in ELL. This model implies that the proxy

variable x explains approximately 30 percent of the variance of y. The intracluster correlation

coefficient, calculated as σ2
e/(σ2

e + σ2
ε), is small and approximately equal to .027.

One conceptual complication in performing a Monte Carlo (MC) experiment in this context

is that the population of interest (synthetic “households” in a small area) is finite and relatively

small (for instance 15-20,000 households), and the quantity to be estimated (for example a poverty

ratio) is itself a function of this finite population, rather than being a fixed parameter as in a

typical MC simulation. In our case, the DGP described above would generate a unique value of

a welfare measure only in a population composed of an infinite number of EAs and households,

but in assessing the performance of different estimators we think it is important to work with a

population of size analogous to the ones met in real empirical applications with census data. Hence,

we use the DGP to generate a population of NA = 15, 000 households divided into 150 EAs of 100

households each. This population represents the “small area” A for which a welfare indicator has

to be calculated. We assume that the researcher is interested in estimating headcount poverty

ratios, P0(z), and poverty gaps, P1(z), evaluated at three different poverty lines z = 24, 25, 26.

The true values of the six poverty measures in the artificial population are reported in column 1

of Table 2. In each Monte Carlo replication, we use the DGP to generate an artificial sample of 10

households from each of 100 randomly generated clusters. For simplicity, we ignore the fact that a

few observations in the auxiliary sample may belong to the same small area of interest. Because the

usefulness of the estimation approaches considered in this paper hinges on the fact that the number

of such observations is typically very small, the correlation should be of little or no consequence in

the calculation of the standard errors.

For each estimator we calculate bias, Root Mean Squared Error (RMSE) and confidence interval

coverage rates (“coverage”) for 95 percent nominal coverage rates intervals. Bias is calculated

as R−1
∑R

r=1(Ŵ
r
A − WA) , where WA is the true value of the welfare measure, and Ŵ r

A is the

estimate obtained in the rth Monte Carlo replication. The RMSE is estimated as the square root

of R−1
∑R

r=1(Ŵ
r
A−WA)2, while coverage rates are calculated as the fraction of the replications for

which the true value lies within a 95 percent nominal confidence interval.

We consider the performance of the projection and simulation-based ELL estimators described

in Section 4. All Monte Carlo replications use the same artificial census population, which is

therefore treated as non-random. For a given auxiliary sample generated in the rth replication, we

calculate the projection estimator as described in the previous section, using as predictors x and

its square, sin(x), cos(x), sin(2x) and cos(2x). In empirical applications, the degree of flexibility

in the choice of the functional form will be limited by the number of predictors and by the size

of the survey sample. When adopting the ELL estimator, we estimate the heteroskedasticity
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parameters (α1, α2) using Non-Linear Least Squares, using the correct model (17) described in the

DGP. At each step of the ELL procedure, two sets of parameters (β1, β2) and (α1, α2) are drawn

from their respective estimated asymptotic distributions. Each EA in the artificial census is then

assigned a cluster-specific fixed effect drawn at random (with replacement) from the set of all fixed

effects estimated as described in Section 4.2. The household-specific standardized fixed effects are

similarly assigned to each unit after being randomly selected with replacement from the empirical

distribution of all e∗ch, and then transformed into heteroskedastic errors using the random draw of

the heteroskedasticity parameters.

Table 2 reports the results of 250 Monte Carlo replications. For all welfare measures, both

estimators are essentially unbiased, the RMSE is small relative to the true value being estimated

and coverage rates are very close to the nominal 95 percent. Overall, when the parametric assump-

tions used by ELL are correct, both estimators perform well, although the projection estimator

is substantially simpler than ELL. Both estimators, however, rely on the absence of heterogeneity

across areas within the same region. In the next section we explore the consequences of the failure

of this assumption, which we deem likely to arise with real data.

5.1 Consequences of Heterogeneity on Coverage Rates

We first consider the case where the true DGP for expenditure includes not only an EA fixed

effect, but also a small area fixed effect, as in (6). We assume that there is no heterogeneity in the

slopes β, an assumption that we will relax in the next subsection. For simplicity, we also assume

homoskedastic errors. The DGP for expenditure of household h is cluster c in small area a is now

assumed to be described by the following:

yach = 10 + 2xach + ηa + ech + εach, (18)

x ∼ N(5, 1) ηa ∼ N(0, σ2
η) e ∼ N(0, σ2

e) ε ∼ N(0, σ2
ε). (19)

Note that in this case welfare estimates will depend on the area fixed effect ηa. For instance, letting

z denote a fixed poverty line, the head count poverty ratio in a given small area a becomes

P (yAch ≤ z | A = a) = P (2x + ech + εach ≤ z − 10− ηa) = Φ

(
z − 20− ηa√
σ2

e + σ2
ε + 4

)
,

where the last expression follows from the normality of the errors and of the covariate x. As in

the previous Monte Carlo, we consider small areas of 15,000 households split among 150 equally

sized EAs. However, to introduce heterogeneity in the population, we assume that the region

from which the auxiliary data set is drawn is composed of 25 small areas characterized by the

same distribution of x but different values of the area fixed effect. To avoid the (albeit unlikely)

possibility of an unusual draw of area fixed effects, which are assumed to be generated from a

normal distribution with variance σ2
η, we set the 25 area fixed effects equal to τη,pi , i = 1, ..., 25,

pi = 0.01+(.98/24)× (i− 1), where τη,pi is the pi-quantile of the assumed distribution of η, so that
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P (η ≤ τη,pi) = pi. Hence, for instance, when i = 1 the area has ηa equal to the first percentile of

the assumed distribution, when i = 13 the fixed effect is equal to zero (the median and mean of

the distribution), and when i = 25 it is equal to the 99th percentile. When the area fixed effect

becomes larger, we should expect the performance of both estimators to worsen, with coverage

rates decreasing towards zero.

Monte Carlo results for three alternative models based on 200 replications are displayed in Table

3. Each ELL estimation is obtained with 200 simulations. In each model, we keep σε = 2 while

we experiment with different values of ση and σe. In each replication, an artificial sample of 1000

households is generated from the DGP in (18) and (19). We draw four EAs from each one of the 25

small areas, and then we draw 10 “households” from each EA. For each DGP, the object of interest

is the head count ratio calculated for a poverty line corresponding to the 25th percentile of the

overall distribution of y in the whole region. In both models the predictor x has good explanatory

power, with an R2 approximately equal to .50.

Because the DGP assumes that the errors are homoskedastic, the ELL estimator can take

a simpler form than described in Section 4.2. The first step is unchanged, and consists of the

estimation of model (18) using Ordinary Least Squares, followed by the calculation of the empirical

distribution of cluster specific and idiosyncratic residuals. At each simulation, an intercept and

a slope are drawn from their respective estimated sampling distributions. Then each EA and

each household in the artificial population is matched to a cluster-specific fixed effect drawn at

random (with replacement) from the corresponding empirical distribution, while no adjustment for

heteroskedasticity is necessary in this case. We obtain the results for the projection estimator using

the same two-step methodology used for poverty head counts in the previous Monte Carlo.

The top half of Table 3 shows a first set of results, where the DGP implies moderately large

intracluster correlation (.11) and inter-cluster correlation (.06). Both the projection estimator

(columns 1-4) and ELL (columns 5-8) perform well in predicting the poverty counts when the area

fixed effect is zero, in terms of both bias and coverage (row 1A). The performance of both estimators

worsens considerably when a small area fixed effect is present. If the small area includes a fixed

effect equal to .329 (the 75th percentile of the distribution of η, and less than 2 percent of the

mean value of the “expenditure” variable y), the coverage rate for both estimators remains below

10 percent, and is actually very close to zero in several cases (row 1B, columns 4 and 8). The results

in row 1C show that when the area fixed effect is .818 (the 95th percentile of the distribution of

η) the coverage rate decreases to zero for both estimators. Consistently with the results in Section

3, the decline in coverage is caused by the increase in bias associated with the presence of the area

fixed effect. While in row 1A virtually all MSE derives from the standard error of the estimator

(because the bias is close to zero), in rows 1B and 1C the standard error becomes only a fraction of

the MSE, and so the estimated confidence intervals provide misleading information about the true

poverty head counts.
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In columns 9 to 12 we show results obtained again with ELL but calculating the standard

errors using the conservative approach described in Section 4.2. In this case, in each of the 150

simulations required to complete one of the 200 Monte Carlo replications we assign the same

cluster fixed effect to all households within the same area. This modification should lead to very

conservative confidence interval, because it assumes that the correlation between two units from

two different EAs within the same cluster is the same as the correlation between two units from the

same EA.9 In fact, this modified methodology leads to standard errors which are approximately

ten times as large as those estimated in column 6. The increase in the standard errors now leads

to confidence intervals which always include the true value, so that coverage rates are equal to one

in all cases, even when the area fixed effect is relatively large (row 1C). However, the confidence

intervals are now so wide to become barely informative. For instance, “standard” ELL produces a

confidence interval of width 0.049 (0.0125× 1.96× 2), while “conservative” ELL produces intervals

of width .416 (.0.10615× 1.96× 2).

In rows 2A to 3C of Table 3, we show that coverage rates may be far from the nominal 95

percent even in cases where intra-cluster correlation is very small. The DGP in Model 2 implies a

small intra-cluster correlation (.0178), but also implies that most of it is due to the presence of the

area fixed effect, so that the inter-cluster correlation is .0153. As a result, coverage rates decline

rapidly for both ELL and the projection estimator, and when the area fixed effect is moderately

large (row 2C) coverage approaches or equals zero. This result is consistent with the figures in Table

1, where we have shown that when the ratio between inter and intra-cluster correlation is large,

standard errors which do not take inter-cluster correlation into account will seriously underestimate

the true MSE, leading to misleading inference. This is also confirmed in the results reported in the

last three rows of the table, where the intra-cluster correlation is the same as in Model 2, but the

inter-cluster correlation is close to zero (.002). In this case, for areas where the fixed effect is as

large as the 75th percentile of the distribution of η, coverage rates remain close to the nominal 95

percent level. When the area fixed effect is as large as the 95th percentile coverage decrease further

but remain above 50 percent, and the bias is very small.

Overall, disregarding the presence of area fixed effects may lead to severely misleading inference

even when the intra-cluster correlation accounts for less than 2 percent of the total variance of the

error, unless the area fixed effects are very small relative to the EA fixed effects. The overstatement

of precision can be repaired by using ELL’s “conservative” standard errors, but this generates

confidence intervals that are so wide as to render the estimates barely informative. Note also that

we have assumed that unobserved heterogeneity is only present in the intercept, while the slopes are

the same for all observations that belong to the same region. In empirical applications, it is likely

that inference will be further complicated by heterogeneity in the slopes that link the predictors to

expenditure, for example, by spatial variation in the rates of return to physical and human capital.
9This also explains why the mean conservative standard errors reported in column 10 of Table 3 are larger than

the RMSE. The latter is the sum of the true bias and variance as calculated across Monte Carlo simulations.
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In the next section we explore how bias, MSE and coverage rates are affected when heterogeneity

in the expectation of y given X takes the form of heterogeneity in the slopes.

5.2 A Model with Heterogeneity in Slopes

We now assume that the following random coefficient model holds:

yach = 10 + βaxach + ec + εach, x ∼ N(5, 1), βa ∼ N(3, σ2
β), σe = .1, σε = 3. (20)

This model can be re-written as a model with homogeneous slopes and heterogeneity in the het-

eroskedasticity. The DGP is indeed equivalent to one with yach = 10 + βxach + ec + θaxach + εach,

where θa ∼ N(0, σ2
β). Note also that,by construction, this form of heterogeneity generates inter-

cluster and therefore intra-cluster correlation.

As in the previous section, we assume that survey data are available from a region composed

of 25 areas, and that the population of each area is divided into 150 EAs of 100 households each.

The area-specific slopes βa are kept constant throughout all MC replications. As before, we select

the slopes using a “semi-random” approach by setting them equal to σβΦ−1(qi), i = 1, 2, ..., 25,

where Φ(.) is the cumulative distribution function of a standardized normal, and the 25 qis are the

bounds of 24 equally-sized subsets of the interval 0.01-0.99. This procedure ensures that, even if

the slopes are kept constant and are selected according to a deterministic procedure, their value

can be thought of as a “representative” draw from the distribution of βa described in (20). Note

also that, by construction, one of the small areas is characterized by a slope equal to the median

(mean) of the distribution of βa.

In each MC replication, a sample of 500 units is generated from the DGP in (20), drawing one

cluster of 20 observations from each of the 25 areas. We consider the estimation of P0(20), P0(22)

and E(y) in two cases with different degrees of heterogeneity in the slope (σβ = 0.05 or .1). We

only consider the results of the projection estimator, which in the simple setting of the DGP in (20)

allows the flexible estimation of the projection without making explicit assumptions about the form

of heteroskedasticity. The estimation procedure, choice of approximating functions and estimation

of RMSE for the confidence intervals are as in the previous Section 5.1.

The results of 200 Monte Carlo replications are displayed in Table 4. For each parameter

of interest and for each σβ , we estimate bias, RMSE and coverage rates for 95 percent nominal

confidence intervals. We calculate these statistics for a small area where βa = E(βa) = τβa,.50

and for two areas where the slope is respectively equal to τβa,.75 and τβa,.95, where τβa,p is the

p-th quantile of the distribution of βa. Using the DGP in (20), the true values are calculated as

(omitting the subscripts c, h)

P (y ≤ z | a) = P (βax + e + ε ≤ z − 10) = Φ

(
z − 10− βa5√
σ2

e + σ2
ε + β2

a

)
z = 20, 22

E(y | a) = 10 + 5βa.
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Because we are ignoring the presence of heterogeneity in βa, the prediction for the welfare measure

will be the same for all the 25 small areas, given that we assume that the distribution of the

predictor x is the same across different areas. At the same time, we expect the estimator to

perform worse the farther away βa is from its mean value. The results in Table 4 are consistent

with the intuition. For areas where the slope is equal to the mean value the bias is negligible and

coverage is perfect. When the heterogeneity in β is relatively large (columns 5 to 8) the coverage

is even conservative, because the bias adjustment described in (14) becomes large due to the high

intra-cluster correlation induced by area-specific slopes. The results in panel (B) show that even

when the area-specific slope is equal to the 75th percentile of the distribution, coverage is close to

correct, even if in this case the bias becomes larger for larger σβ . For instance, if σβ = .1 the bias

in the calculation of the head count with z = 20 is .016, which is approximately 15 percent of the

true value. When we look at areas with slope equal to the 95th percentile, coverage rates are below

75 percent and the bias increases further.

Overall, then, heterogeneity in slopes may be as problematic as the presence of area fixed effects

for the application of poverty mapping methodologies. Also, in reality this kind of heterogeneity

may take more complex forms, for instance if the area-specific component of the slopes is correlated

with the predictors.

6 An Empirical Evaluation Using Census Data from Mexico

The Monte Carlo experiments in Section 5 have demonstrated that even a relatively small amount of

heterogeneity in the conditional relation between expenditure and its predictors may lead to severe

overstatement of the precision of the resulting estimates. This is our main conclusion. However,

it is useful to consider a more concrete example to illustrate our analysis, even though there is no

reason to believe that the results will apply everywhere. However, if we find that nominal precision

overstates true precision, we know that our general concerns should be taken seriously in practice.

In this section we use census data from Mexico to evaluate the performance of estimators that

match census and survey data using the techniques described in the previous sections. The data

set is a 10.6 percent random extract of the 2000 Mexican Census from the Integrated Public Use

Micro Sample (IPUMS, Ruggles and Sobek 1997). Like most census micro-data, the 2000 Mexican

Census includes many predictors of income/expenditure, such as housing characteristics, household

composition, asset ownership, occupation and education of each household member. Unlike most

census data sets, this census also includes a measure of individual income during the previous 30

days. This allows us to carry out an experiment which can be summarized as follows. First, we

identify relatively large “regions” (the states of Chiapas, Oaxaca and Veracruz) from which we select

a synthetic “household survey” by drawing a random sample of household-specific observations of

income (y) and of a set of predictors (x). We use this sample to estimate the parameters of a model
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for the probability of being poor (that is, of income being below a fixed poverty line z) conditional

on a set of predictors. We then merge these parameters with census information on the predictors

for the whole population in the region. This allows us to calculate point estimates and standard

errors of predictions of income-based poverty measures defined for a list of “small areas” within

the same region. While keeping the census populations constant, we repeat the synthetic survey

sample generation and the two-step estimation procedure a large number of times. For each small

area, we calculate coverage rates of nominal 95 percent confidence intervals as the fraction of times

that the true value of the poverty measure lies within the interval. If the conditional model in each

small area is the same as in the larger region, coverage rates should be approximately equal to the

nominal rates.10 If instead coverage rates are much lower than .95, substantial heterogeneity is

likely to exist, and the variance of estimators based on conditional independence assumptions will

underestimate the true variance of the prediction error. In Demombynes et al. (2007), a similar

exercise is completed to evaluate the performance of ELL, by using data from a complete census

from Mexican areas where the well known welfare program PROGRESA has been implemented.

However, Demombynes et al. (2007) use small areas generated by aggregating villages that are

selected at random, and hence impose by construction the approximate validity of area homogeneity;

in consequence, their results are not likely to be informative about the effects of heterogeneity,

which has been removed by construction. In our case, areas coincide with actual administrative

units (municipios), so that the results of the empirical validation will show the consequences of the

failure of homogeneity for poverty estimates in actual municipios. A validation exercise similar to

the one presented here has been developed independently by Demombynes et al. 2008, who find

that in the context of the Brazilian state of Minas Gerais ELL performs well.

The details of the validation experiment are described in Section 6.1, while the reader only

interested in the results can refer directly to Section 6.2.

6.1 Details of the Validation Exercise

The complete IPUMS micro-data extract for Mexico 2000 includes more than ten million observa-

tions, so to keep the validation exercise manageable we limit our analysis to the rural section of

three of the largest Mexican states, that is, Chiapas, Oaxaca and Veracruz. Each state is subdivided

into a large number of municipios, and we treat each state as a separate region, and each municipio

as a small area. To illustrate, the map in Figure 1 shows the subdivision of the state of Chiapas

into municipios according to the 2005 Geo-statistical Census of Mexico.11 Clearly, most areas are

very small, and in practical applications household survey data alone would not be sufficient to

estimate welfare measures with acceptable precision for areas smaller than a state. For instance,

the state-specific rural sample size in the 2002 Mexican Family Life Survey (MFLS) ranged from
10As described in Section 6.1, we assume that the true values are identical to the estimates obtained from the

census extract.
11See http://www.cuentame.inegi.gob.mx.. The subdivisions in 2000 and 2005 were essentially identical.
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47 (Distrito Federal) to 469 (in Michoacán).12 Most municipios are instead not represented at

all in the rural sample, and of 73 municipios included in the survey sample, only two have more

than 54 observations. The actual (census) population size of municipios is very heterogeneous but

relatively large. The median household population size of the rural sector of a municipio is 2790 in

Chiapas, 423 in Oaxaca and 2028 in Veracruz (see Table 5). Hence our choice of using municipios

as small areas.

Because we wish to work with a census, while IPUMS only includes a 10.6 percent extract of the

complete micro-data, we first generate a complete “pseudo-census” with a number of observations

equal to actual census population. For this purpose, we generate a pseudo-census of size analogous

to the complete Census 2000 by expanding the extract. This is done by replacing each observation

in the extract with identical replicates in number identical to the (integer) weight provided in the

data set. The pseudo-census so created is then treated as the actual (non-random) population of

interest. Because the census extract does not include identifiers for separate census EAs, we cannot

include in the analysis cluster means of household-level variables measured in the census. Such

strategy is suggested in ELL to reduce the extent of intra-cluster correlation in the data. As an

alternative, we include among the predictors census means of household-level variables calculated

for each municipio.

We assume that the object of interest is a poverty map for all municipios in the three Mexican

states, but that the researcher has access only to a (pseudo) household survey defined here as ten

observations from each of 50 municipios selected at random without replacement. By construction,

this sampling design leads to different probability of selection for different households, so that

estimation is done after construction of sampling weights. We classify a household as poor if

total monthly income per head y is below a threshold z equal to 200 Pesos.13 Because the census

actually includes income for all households, the true value of the headcount ratio for each municipio

in the “expanded extract” can be calculated as the proportion of individuals who live in households

with per capita income below z. These true headcount ratios can then be compared with the

corresponding estimates obtained using synthetic survey samples and making use of a (possibly

incorrect) conditional independence assumption.

In each of the three states there is considerable heterogeneity in the distribution of the munici-

pio-specific poverty head counts. Table 5 show that Veracruz is the least poor state, with a median

head count equal to .41, while both Chiapas and Oaxaca are poorer, with median poverty rates

close to 70 percent.

We evaluate the coverage of 95 percent nominal confidence intervals via 250 Monte Carlo simula-

tions. We complete independent simulations for the three states of Chiapas, Oaxaca and Veracruz.
12For these calculation we have classified households as rural when they live in communities with population below

2,500.
13 The USD Mexican Peso PPP exchange rate in 2000 was 6.79, so that 200 Pesos corresponds to approximately

one PPP dollar per person per day (Heston et al. 2006).
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Throughout the simulations we treat the pseudo-census generated as described in the previous

paragraph as the true population, and in each replication we draw a different random sample with-

out replacement from such population. Because each sample is represented by a subset of the

census data, assumption MP holds by construction. Table 6 provides a list of the predictors in the

first stage.14 Once the artificial sample has been selected, we calculate point estimates and the

corresponding RMSEs for each municipio using the projection estimator described in Section 4.1.

Finally, we record if the true value of the headcount ratio in each municipio lies within the interval

boundaries.

A few caveats should be kept in mind. First, we reiterate that we do not have access to a full

census but only to an extract. Ideally, a validation would proceed by drawing “survey samples” from

a true census and verifying over a large number of replications whether the true values calculated

from the census lie within the 95 percent confidence intervals. Our choice of working with an

“expanded” extract is a way to recreate a framework close to this ideal, given the data constraints.

Second, the census extract does not report identifiers for census enumeration areas. Hence, in

implementing the projection estimator, we estimate the covariance term in the bias correction in

(14) treating municipios as clusters. Third, the income measures included in the census may not

be as accurate as the income or expenditure measures assessed in household surveys where the

measurement of living standards is often the main objective. For instance, a non-negligible fraction

of households report zero income over the previous 30 days (see Table 5). However, a comparison

between census 2000 and the 2002 MFLS does not show major discrepancies. In rural Oaxaca,

median monthly per capita income in 2002 Pesos was 80.8 Pesos according to MFLS, and 100

Pesos according to census 2000. In the state of Veracruz, the MFLS median was 233.3 Pesos, while

the census estimate was 263.15

6.2 Results of the Validation Exercise

The predictors listed in Table 6 have moderately good explanatory power is each of the three

states. Using all complete observations from the census, the pseudo-R2 is .1886 in Chiapas, .1684

in Oaxaca, and .1652 for Veracruz.16 For each state, we display in Figure 1 histograms of coverage

rates. Each observation shows, for a given municipio, the fraction of Monte Carlo replications for

which the true value of the poverty headcount ratio lies within a nominal 95 percent confidence
14 Including a large number of regressors may lead to overfitting. We have attempted an alternative procedure

where, for each sample, the set of predictors is chosen using the following criterion. First, regressors are sorted

according to the pseudo-R2 of univariate logit regressions. Then we determine the set of the first k regressors to

include in the model, where k maximizes a Bayesian Information Criterion (Schwarz 1978). This alternative procedure

worsens coverage considerably, so we do not include the results here.
15The Consumer Price Index increased from 100 to 111.7 between 2000 and 2002 (data extracted on 2008/02/20

from http://stats.oecd.org/wbos). We do not report on a comparison for Chiapas because this state was not

separately identified in MFLS 2002.
16 The full estimation results are available upon request.
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interval. Because assumption MP holds by construction, deviation of the coverage rates from the

nominal ones likely indicates failure of the homogeneity assumption AH.

The histograms in Figure 2 show that while coverage rates for most areas are not far from

the nominal 95 percent, there is a large fraction of areas where coverage rates are well below the

nominal level. This indicates the existence of heterogeneity across municipios which an estimator

that relies on the area homogeneity assumption AH ignores. The fraction of municipios where

coverage remains below .75 is .33 in Chiapas, .50 in Oaxaca and .48 in Veracruz. In all the three

states coverage rates are below 50 percent in approximately 10 percent of municipios. Although

the estimated confidence intervals appear to systematically overstate the precision of the estimator,

they are relatively wide. The mean width of a confidence interval is .33 in Chiapas (minimum .19

and maximum .60), .41 in Oaxaca (minimum .23 and maximum 1.92) and .36 in Veracruz (minimum

.20 and maximum .83). It should be noted that poor coverage is not a product of our area sizes

being smaller than the ones that would typically be used in poverty-mapping. First, poor coverage

rates do not arise only in the smallest areas. Second, Monte Carlo results show that when—as in

our validation exercise—the size of the survey sample is not very large, confidence intervals have

actually better coverage for small areas (see Appendix B). So there is no reason to suppose that

coverage would be better if we had chosen larger areas.

These findings suggest that heterogeneity in the conditional distribution of income given the

predictors is a condition which may arise in empirical settings, and is not just a complication

of theoretical interest. Of course the results discussed in this section do not imply that similar

heterogeneity will be present elsewhere (any more than would the absence of heterogeneity have

meant that it is absent everywhere), although the plausibility of spatial heterogeneity in intercepts

or in rates of return suggests that, at the least, it would be unwise to assume it away. Indeed, even

in the context of this empirical exercise we find a certain degree of variation in the distribution of

coverage rates across municipios among the three different states. Specifically, Oaxaca is the state

where the distribution appears to be more skewed to the left, that is, with low coverage rates for

a larger fraction of municipios.

7 Conclusions

Large household expenditure survey data are not suited for the construction of precise welfare

estimates for small areas, because at most a handful of observations are usually available from

geographical entities of limited size. However, the recent years have seen an increasing availability

of “poverty maps” for small areas in developing countries. These maps are usually constructed

using a methodology developed in Elbers et al. 2003, which exploits the possibility of merging

data from a census and a household survey to improve precision of estimates for small areas.

Such methodology is deemed able to allow for the estimation of welfare estimates for areas of less

than 20,000 households as precise as those otherwise obtainable with survey data alone only for
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populations hundreds of times larger. In this paper we argue, first, that there is no general reason

to suppose that the conditions that are necessary to match survey and census data will hold in

practice. Second, we argue that estimates based on those assumptions may severely underestimate

the variance of the error in predicting welfare estimates at the local level (and hence severely

overstate the coverage of confidence intervals) in the likely presence of small-area heterogeneity

in the conditional distribution of expenditure or income. The presence of area heterogeneity is

apparent in an empirical experiment carried out with data from the 2000 Mexican census.

This experiment shows that our theoretical concerns can be important in real examples, though

we do not argue that they will be so in every case, as the results in Demombynes et al. 2008

show. Overall, we believe that efforts to calculate welfare estimates for small areas merging survey

and census data are worthwhile, but we also believe that the current literature has not sufficiently

emphasized enough the limitations of the current methodologies and the strong assumptions that

they require in order to permit meaningful inference. Such limitations should be stressed, and the

precision of the estimates should be judged accordingly. Policy makers that make use of poverty

maps to allocate funds and improve targeting of welfare programs should be aware that such maps

may be subject to more uncertainty and error than has been claimed in the literature on poverty

mapping and take into account the misallocation of funds that will follow the misindentification of

their targets.
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APPENDIX A - PROOFS

Proof of equation (5):

0 = E[shg(yh;W0) | h ∈ H(A)] = E {E [shg(yh;W0) | Xh, h ∈ H(A)]}

=
∫

X
E [shg(yh;W0) | Xh, h ∈ H(A)] dF (Xh | h ∈ H(A))

=
∫

X
E [shg(yh;W0) | Xh, h ∈ H(R)] dF (Xh | h ∈ H(A))

where the last step follows from AH, and MP guarantees that the correlates in the census and in

the survey are measured in the same way.

Proof of equation (8):

V ar(µ̂y) = V ar(µy − µ̂y) =

(
1∑C

c=1 mc

)2

V ar

(
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mc∑
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uch

)

=
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σ2 +
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mc∑
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 C∑
c′=1,c′ 6=c
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ρaσ
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+
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mc∑
h=1
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ρcσ
2


=

(
σ∑C
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C∑
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mc +
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c=1

mc∑
h=1

 C∑
c′=1,c′ 6=c

mc′ρa

+
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mc(mc − 1)ρc


=

(
σ∑C

c=1 mc

)2


C∑
c=1

mc +
C∑

c=1

C∑
c′=1,c′ 6=c

mcmc′ρa +
C∑

c=1

mc(mc − 1)ρc

 .

APPENDIX B - Bias correction

In Section 4.1 we have explained that the parametric projection estimator in (12) would in general

be different from the true head count (11) even if the first-stage parameters γ were known. The

difference between the two quantities, which we refer to as bias must be taken into account in

the construction of the MSE. In this appendix we derive an expression for the bias which can

be estimated using the survey data and we describe a Monte Carlo experiment to evaluate the

performance of the estimator under a variety of conditions.

Let ph(γ) ≡ P (yh ≤ z | Xh; γ) and let ph denote the value of ph(γ) evaluated at the true value

of the parameters. By definition, the bias for a given area A is:

bias
(
Ŵ
)

= E

 1
NA

∑
h∈H(A)

ph(γ̂)

− 1
NA

∑
h∈H(A)

1 (yh ≤ z)

=
1

NA

∑
h∈H(A)

[E(ph(γ̂))− 1(yh ≤ z)] .
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This quantity is unknown and depends on the specific small area being considered. If we approxi-

mate E(ph(γ̂)) with its true value ph we have

bias2
(
Ŵ
)

≈

 1
NA

∑
h∈H(A)

(ph − 1 (yh ≤ z))

2

=
1

N2
A

∑
h∈H(A)

∑
h′∈H(A)

[ph − 1 (yh ≤ z)] [ph′ − 1 (yh′ ≤ z)]

=
1

N2
A

∑
h∈H(A)

[ph − 1 (yh ≤ z)]2

+
1

N2
A

∑
h∈H(A)

∑
h′∈H(A),h′ 6=h

[ph − 1 (yh ≤ z)] [ph′ − 1 (yh′ ≤ z)] . (21)

Both terms on the right-hand side of (21) include the value of yh for all observations in the area

and are therefore unknown. Expression (14) follows from simple manipulation after replacing the

elements in the summations with sample estimates of their expected value. Note that while the

first term in (14) goes to zero when the size of the area increases, the second term does not.

B.1 - Monte Carlo Experiments

Assume that expenditure can be modeled as:

yah = 20 + βXah + ηa + εah,

Xah ∼ N (5, 1) , εah ∼ N(0, 1), ηa ∼ N
(
0, σ2

η

)
where X, η and ε are independent. The DGP mimics the framework relevant for the pseudo-

validation exercise with Mexican data in Section 6. We experiment with different models where

we vary both the size of the small area and the magnitude of the R2 and of the intra-cluster

correlation coefficient ρ = σ2
η/(σ2

η + σ2
ε). Given that σ2

ε is kept equal to one, the choice of ρ

uniquely determines the value of σ2
η. Finally, the choice of ρ and R2 uniquely determines the value

of β, which completes the DGP. This last result follows noting that R2 = 1−var(ηa+εah)/var(yah)

and β =
√

R2(1 + σ2
η)/(1−R2).

We experiment with values of R2 and ρ in a range consistent with the poverty mapping literature.

We set R2 ∈ {.20, .60} and ρ ∈ {0, .02, .05, .10}. For each combination, small areas have size

NA ∈ {100, 500, 5000, 15000}. Each coverage rate is calculated over 1,000 Monte Carlo replications.

In each replication, we first generate a small area drawing a single ηa from its distribution, and then

we generate a synthetic sample drawing either 10 units from 50 different areas (that is, drawing

a different ηa for each area), or 20 units from 1000 areas. Hence, the first-stage estimation is

implemented with either 500 or 20,000 observations. In all simulations, the poverty line z is set at a

value equal to the 25th percentile of the distribution of y when the area fixed effect ηa is zero, that is,

z solves P (20 + βx + ε < z) = .25. The assumed DGP implies that z = 20+5β+Φ−1 (.25)
√

β2 + 1,
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where Φ−1 indicates the inverse of the cumulative distribution function of a standard normal. We

show the results in Table 7. It is apparent that if the bias is not taken into account (columns 1, 3,

5 and 7) the projection estimator systematically underestimate the true prediction error, so that

coverage rates are almost always below .95, often by a substantial amount. Even with no location

effects (column 1), coverage rates are not correct unless the area includes a large number of units.

As expected, coverage rates throughout the table are lower when the intra-cluster correlation is

large. Increases in population size do not lead to systematic improvements in coverage, because all

observations within the same area share the same fixed effect η, which therefore does not average

out. Note also that coverage worsens when the synthetic sample becomes larger. This is because

confidence intervals in columns 1, 3, 5 and 7 are calculated taking into account only the component

of the MSE that derives from estimation error, so that the fraction of the MSE accounted for by

the bias (and disregarded in the calculation of the confidence interval) becomes larger moving from

the top to the bottom panel of the table. The results in columns 2, 4, 6 and 8 show that coverage

rates improve dramatically when the bias correction is taken account. When n = 100, coverage

rates are always almost identical to the nominal ones. This is also always true when the synthetic

sample is large. When the sample is small (top panel), ρ > 0 and population size is large (500

or above), coverage rates remain in the .80-.88 range, so that the bias adjustment systematically

understates the MSE, even if not by much. This is likely due to the fact that, when the sample size

is small, the calculation of the covariance term in (14) sometimes results in a negative number even

if the covariance is actually positive. This has the effect of reducing the estimated RMSE, even if

the covariance should contribute to its increase. Indeed, the results in the bottom panel show that

coverage rates are essentially identical to nominal ones when the synthetic sample becomes large,

in which case the covariance can be estimated precisely.
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Figure 1: Map of Municipios in the State of Chiapas (Mexico)
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according to the 2005 geo-statistical census of Mexico.
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Figure 2: Distribution of Coverage Rates by state, Poverty Head Counts
Source: authors’ calculations from IPUMS Mexico 2000 Census extract. An observation indicates,
for a given municipio, the fraction of Monte Carlo replications for which the true value of the
poverty headcount ratio lies within a nominal 95 percent confidence interval.
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Table 1: Effect of Inter-cluster Correlation on root-MSE

(1) (2) (3) (4) (5) (6)
ρa = 0.1

C = 10 C = 150 C = 500
η = τη,.75 η = τη,.90 η = τη,.75 η = τη,.90 η = τη,.75 η = τη,.90

(a) ρc = 0.2 1.6 2.9 5.8 10.9 10.5 19.9

ρa = 0.01
C = 10 C = 150 C = 500

η = τη,.75 η = τη,.90 η = τη,.75 η = τη,.90 η = τη,.75 η = τη,.90

(b) ρc = 0.02 1.5 2.5 4.9 9.1 8.8 16.6
(c) ρc = 0.05 1.3 1.9 3.5 6.5 6.2 11.8
(d) ρc = 0.20 1.1 1.3 2.1 3.6 3.4 6.4

ρa = 0.005
C = 10 C = 150 C = 500

η = τη,.75 η = τη,.90 η = τη,.75 η = τη,.90 η = τη,.75 η = τη,.90

(e) ρc = 0.01 1.4 2.2 4.2 7.9 7.6 14.4
(f) ρc = 0.02 1.3 1.9 3.5 6.5 6.2 11.8
(g) ρc = 0.05 1.1 1.5 2.6 4.6 4.5 8.4
(h) ρc = 0.20 1 1.2 1.6 2.6 2.5 4.6

Notes: For each combination of intra-cluster correlation (ρc), inter-cluster correlation (ρa), number of clusters in

each small area (C) and area fixed effect (η) the figure represents the ratio between the (correct) standard error of

the prediction error of mean expenditure and the (incorrect) standard error calculated assuming ρa = η = 0. All

calculations assume that each cluster includes 100 households. Given a probability distribution function f(η) for the

area fixed effect η, the value τη,p is the p-th percentile of the distribution, so that P (η ≤ τη,p) = p. The coefficients

β in the conditional expectation of y are assumed to be known.

Table 2: Monte Carlo Simulations - No Inter-cluster Correlation

(1) (2) (3) (4) (5) (6) (7)
Projection Estimator ELL

True Value Bias RMSE Coverage Bias RMSE Coverage

P0(24) 0.0979 0.0007 0.0092 0.976 0.0015 0.0079 0.988
P0(25) 0.3323 -0.0026 0.0148 0.984 -0.0031 0.0129 0.972
P0(26) 0.6732 -0.0053 0.0150 0.964 -0.0056 0.0128 0.968
P1(24) 0.0023 -0.0000 0.0003 0.940 0.0000 0.0003 0.972
P1(25) 0.0103 0.0000 0.0006 0.972 0.0001 0.0006 0.988
P1(26) 0.0292 -0.0000 0.0009 0.980 0.0000 0.0010 0.988

Notes: 250 Monte Carlo replications. The synthetic census population is composed of 150 enumeration areas of 100
households each. The sample drawn in each replication includes 1000 households selected from 100 equally-sized
clusters. The Bias is calculated as the mean values deviation of the estimates from the true value over the 250
simulations. The RMSEs are the squared roots of the same deviations squared. Coverage rates are calculated for 95
percent confidence intervals.
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Table 5: Mexico 2000 Pseudo-census: Summary Statistics

Chiapas Oaxaca Veracruz

Extract size (no. households) 58,358 120,934 96,826
Pseudo-census hhs. population size 398,347 402,098 621,609
Pseudo-census individual population size 2,052,071 1,897,684 2,834,599
no. of municipios 118 562 210
Mean no. of hhs. in a pseudo-census municipio 3,375 715 2,960
Median no. of hhs. in a pseudo-census municipio 2,790 423 2,028
Fraction of households reporting zero income .185 .223 .142
Fraction of individuals with missing income .018 .017 .016
Mean monthly income per head (2000 pesos) 487 297 407
Median monthly income per head (2000 pesos) 99 90 235
Poverty Head Count Ratios (Line 200 Pesos day/person)

Mean .67 .64 .43
Median .70 .69 .42
Standard Deviation .18 .21 .19
5th percentile .33 .21 .14
95th percentile .90 .92 .76

Source: authors’ calculations from Mexico 2000 Census IPUMS extract (rural only). See Section 6.1 for details
about the construction of the pseudo-census. The statistics for the head count ratios refer to the distribution of the
municipio-specific ratios in each state.
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Table 6: Mexico 2000 Pseudo-census: Variables used as predictors

Head is literate
Access to electricity
Owns refrigerator
Owns TV
Owns radio
Number of rooms
Access to toilet within dwelling
Age of head
Head belongs to indigenous group
Main cooking fuel is wood
Dwelling has dirt floor
Primary dwelling material is brick/stone
Primary roof material is masonry/concrete/tile
Speaks only indigenous language
Speaks both indigenous language and Spanish
Head is working
Head works in Agriculture/Fishery/Forestry/Mining
# household members ages 0-12 (and its squared)
# household members older than 65 (and its squared)
# male members ages 13-65 (and its squared)
# female members age 13-65 (and its squared)
Head is a woman

municipio-level means:
Head is literate
Years of schooling of head
Access to electricity
Owns radio
Access to toilet within dwelling
Dwelling has dirt floor
Primary dwelling material is brick/stone
Primary roof material is masonry/concrete/tile
Speaks only indigenous language
Head works in Agriculture/Fishery/Forestry/Mining

Source: IPUMS Mexico Census 2000. List of variables used as predictors for a binary variable equal to one if

household monthly income per head is below the poverty line.
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Table 7: Coverage of Projection Estimator

(1) (2) (3) (4) (5) (6) (7) (8)

ρ = 0 ρ = .02 ρ = .05 ρ = .10

s.e. Bias s.e. Bias s.e. Bias s.e. Bias
Only Correction Only Correction Only Correction Only Correction

10 hhs from 50 Areas
n = 100
R2 = .20 0.62 0.98 0.48 0.93 0.38 0.89 0.31 0.92
R2 = .60 0.60 0.96 0.55 0.95 0.43 0.90 0.42 0.90

n = 500
R2 = .20 0.83 0.97 0.56 0.85 0.43 0.84 0.31 0.88
R2 = .60 0.83 0.96 0.63 0.88 0.52 0.84 0.44 0.86

n = 5000
R2 = .20 0.93 0.96 0.61 0.80 0.47 0.80 0.32 0.87
R2 = .60 0.93 0.96 0.65 0.84 0.52 0.80 0.41 0.84

n = 15000
R2 = .20 0.94 0.95 0.59 0.80 0.45 0.81 0.35 0.87
R2 = .60 0.95 0.96 0.68 0.82 0.53 0.82 0.40 0.82

20 hhs from 1000 Areas
n = 100
R2 = .20 0.13 0.96 0.08 0.94 0.06 0.95 0.05 0.95
R2 = .60 0.12 0.94 0.08 0.94 0.09 0.95 0.08 0.96

n = 500
R2 = .20 0.24 0.97 0.11 0.94 0.08 0.95 0.06 0.95
R2 = .60 0.23 0.98 0.13 0.94 0.10 0.96 0.08 0.95

n = 5000
R2 = .20 0.61 0.98 0.12 0.93 0.08 0.96 0.06 0.96
R2 = .60 0.63 0.98 0.14 0.93 0.10 0.95 0.06 0.94

n = 15000
R2 = .20 0.81 0.98 0.12 0.94 0.08 0.95 0.06 0.95
R2 = .60 0.80 0.97 0.12 0.92 0.09 0.96 0.08 0.94

Notes: Figures are coverage rates for 95 percent confidence intervals, calculated over 1000 Monte Carlo
replications. Confidence intervals are calculated either taking into account only the standard error of the
estimator (“s.e. Only”) or including also an estimate of the bias squared (“Bias Correction”). The DGP
is yah = 20 + βxah + ηa + εah, x ∼ N(5, 1), ε ∼ N(0, 1), η ∼ N(0, σ2

η). In each replication, the estimated
parameter is P (yah ≤ z), where z is the 25th percentile of the distribution of y when the area fixed effect η
is zero. In each cell, the parameters β and σ2

η are uniquely determined by the values of ρ and R2 relevant
for that cell (see Appendix B for details). The parameter n indicated the size of the small area population,
which is generated in each replication as a random draw from the DGP. * refer to the number of areas from
which a given number of synthetic households is drawn.
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