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Introduction

Almost all the tools of econometric analysis that have been used in empirical
work in economics in general have also been applied to the specific problems of
economic development. My choice of topics in this review is therefore to some
extent arbitrary, although I have been guided by three considerations. First,
there are a number of methods that are so widely encountered in the
development literature that they demand some coverage, even when their use
raises no issues beyond those encountered in a good standard text. Second, I
have been led by the first section of the chapter, on data questions, since
discussion of data frequently leads naturally into econometric technique. Third,
I have followed much of the recent general econometric literature in emphasiz-
ing robustness of inference and estimation. Much recent theoretical work has
been devoted to methods that allow applied workers to dispense with
unnecessary supporting assumptions, so that, for example, standard errors can
be calculated even when standard textbook assumption fail, simultaneity and
selection bias can be allowed for without making arbitrary and often incredible
assumptions, and key effects can be measured with minimal assumptions about
functional form. In keeping with the balance of the development literature, I
have chosen to emphasize microeconomic more than macroeconomic applica-
tions, although I have included a section on recent results in time-series
analysis and their application to problems of economic development.

The plan of the chapter is as follows. Section 1 is concerned with data, and
Section 2 with tools and their application. However, since many of the data
issues lead directly into the econometrics, I have sometimes found it conveni-
ent not to make the separation, and to include both in Section 1. The first and
largest part of Section 1 deals with household survey data, with survey design
in developing countries, with data collection, with measurement issues, and
with the experience of using such data in econometric analysis. Section 1.2 is
concerned with national income accounts, and with the index number and
other problems that underlie international comparisons of income levels and
growth rates. I also give some attention to the quality of country data, looking
beyond national incomes to demographic, trade, and other measures.

Section 2 turns to econometric tools. There are three main sections. Section
2.1 is mainly concerned with tools for microeconomic analysis, emphasizing the
use of survey data. I work through a range of more or less familiar econometric
topics, illustrating their uses in the development literature, discussing methods
for strengthening the robustness of inference, and trying to identify common
pitfalls and difficulties. Section 2.2 turns to time-series techniques and their
uses in the analysis of development questions. The modern time-series
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literature is very large and is rapidly growing, and I cover only a small selection
of the many possible topics. Section 2.3 provides an introduction to non-
parametric techniques for estimating density functions, regression functions,
and the derivatives of regression functions. Although non-parametric analysis
typically requires a great deal of data, there are a number of questions in
development economics that are susceptible to a non-parametric treatment
using survey data.

1. Data for development economics
1.1. Household survey data
1.1.1. Content and purpose

There are few Less Developed Countries (LDCs) that have not collected
survey data of some sort at some time, and many LDCs have multiple surveys
that are run on a regular and continuing basis, many of which meet the highest
international standards of data collection, editing, and publication of results.
Many (perhaps most) of these surveys have a specific raison d’etre; household
expenditure surveys are used to monitor living standards or to collect weights
for the consumer price index, labor force surveys are used to estimate
unemployment rates, and censuses to estimate total population. Other surveys,
such as surveys of firms or of farms are used to collect production or output
data, and use a unit of observation other than a household. In many countries,
the statutory authority establishing each survey is explicit about its purpose,
and official statisticians design the surveys with these aims in mind. Of course,
once the data are collected they can be used for many other purposes, to which
they may be more or less suited, and to which government statistical offices
may be more or less sympathetic. In the last ten to fifteen years there has been
a great expansion in the use of survey data in development economics — as in
other branches of the profession-much of it a consequence of better
computing facilities, and much of it attributable to the increased willingness of
statistical offices around the world to release their data to researchers.
Ministers and civil servants are realizing that they have relatively little to fear
from econometric analysis, and perhaps something to learn.

The difference between the original statutory purposes of the surveys and
the uses to which the data are put in development economics poses a number
of problems. In the short run, there are various statistical issues associated with
using data for purposes that are different from the original intent and design,
and in the longer run, there is the more fundamental (and much more difficult)
question of how surveys ought to be redesigned for the broader policy and
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analytical purposes for which they are increasingly being used. I shall have
something to say on both of these topics.

1.1.2. Survey data in policy and development

Why should development economists be interested in household survey data?
If the ultimate aim of economic activity is the welfare of individuals, then the
data from household surveys are the measure of its success. Although GDP
and GNP per capita are often used as summary measures of welfare, in many
countries they are derived with the help of household survey data, and even
when this is not the case and consumption is derived as a residual, survey data
provide a cross-check, and in many cases will provide higher quality data. But
even at their best, national income measures can tell us only a very limited
amount about distributional issues, about allocation by region, by ethnic
group, by poor versus rich, or by rural versus urban. As economic develop-
ment expands opportunities, we want to know who is benefiting, and who (if
anyone) is losing. Indeed, as Stigler (1954) has documented, the first explora-
tions of household budgets were carried out by social activists in the late
eighteenth and early nineteenth centuries, and their object was to inform (and
shock) policy makers and to lay the basis for reform. Counting the poor,
documenting their living-standards (including nutritional standards), and
measuring inequality remain important uses of household survey data by
development economists.

Household survey data also yield direct measures of the effects of policy
changes, whether these operate through price changes or through changes in
the provision of public services. They can therefore provide the background
information for informed discussion of possible changes in policy. In particular,
quantities produced and consumed provide a local approximation to the
derivative of welfare with respect to price. To see this in an example, suppose
that a farm (or non-farm) household faces output prices p (labor is an output)
and input prices v, and receives off-farm income y, that its technology can be
represented by the (restricted) profit function 7(p, v; a) where a is a vector of
fixed factors such as land, and that its preferences can be represented by the
expenditure or cost function c(u, p) for utility u, since without loss of
generality, all consumption goods can be taken to be outputs. Then, since
utility must be financed from farm profits or other income, we have

cu, p)=y+a(p,v;2z). (1)

Equation (1) immediately tells us by how much income y would have to be
increased to compensate the household for a change in a price of one of its
inputs or outputs. Since the partial derivatives of the cost function with respect
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to elements of p are the quantities consumed, g, and since the derivatives of
the profit function with respect to output and input prices are quantities of
outputs, z, and (minus) inputs r, respectively, total differentiation of (1) gives

dy=2 (q,—z,)dp, + 2 r,dv, . )

This is the familiar result, that those who are net producers benefit from a
price change, and that those who are net consumers lose, and that, to a first
approximation, the amount of the money-equivalent benefit (or loss) is the net
amount produced (production less consumption) multiplied by the price
change. Hence, the survey data not only identify the gainers and losers of a
price change, but also quantify the sizes of their gains and losses. All this is
obvious enough, but is nevertheless important. In many LDCs, where tax and
welfare instruments are limited in number, there is a wide range of commodity
taxes and subsidies. Many of these are justified on distributional grounds;
imported consumer goods should be taxed because only the rich use them, or
bus services should be subsidized to support the poor. By looking at (2) for
different households, survey data can be used to check whether such claims are
in fact correct, or whether they are simply a cover for special interests.

Provided that we accept the underlying economic assumptions of atomistic
maximizing agents in competitive markets with minimal uncertainty, the
evaluation of (2) requires only the raw data; no econometric model is required.
Of course, there are different ways of presenting the results, and I shall give
examples in Section 2.3 below of how non-parametric techniques can be used
to illustrate the distributional issues in an immediately assimilable form. Note
too that the basic result can be extended in various directions. In particular, (2)
is a local approximation and so cannot safely be used except for small price
changes. For large changes, a better approximation can be made by including
substitution effects, effects that in some circumstances can also be estimated
from the survey data, a topic to which I return in Section 2.1,

Note what happens when the policy involves a quantity change rather than a
price change, as when additional health, education, or agricultural extension
services are provided. If these publicly provided quantities are incorporated
into the cost or profit functions, and a compensation is calculated as in (2), the
result involves the shadow prices of the public goods, prices that can often be
estimated using appropriate behavioral models, [see for example Gertler and
van der Gaag (1990) and the studies reviewed in Jimenez (1987)]. However,
even without such calculations, the survey data frequently tell us who uses the
public goods, and by how much, something that is frequently of direct concern,
even where we do not have estimates of how much the households value the
services.
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Beyond the direct use of survey data for policy, household surveys provide
much of the raw material for modeling and trying to understand household
behavior. I shall discuss a number of such studies and their results as I illustrate
the various techniques.

1.1.3. Survey design and its implications for analysis

I shall use the “typical” household income and expenditure survey as my
example, but many of the arguments can be applied to other types of surveys
too. Such surveys typically collect data on a household basis —a household
usually being defined as a group of people who share the same “cooking-pot™ —
and ask how much was spent over some reference period on a lengthy list of
consumption items; the reference period can be anything from a day to a year,
and sometimes varies by category of expenditure, with shorter recall periods
for high frequency items like food, and longer periods for unusual purchases,
like clothes or durable goods. In countries with near universal literacy,
households can be asked to keep diaries; otherwise enumerators verbally ask
respondents to recall individual purchases. Data are also collected on the
respondents, at the very least covering the numbers, sexes, and ages, or people
in the household. This can be extended to a range of household characteristics,
such as education, occupation, and race. Data are frequently also collected on
quantities consumed as well as expenditures, at least for readily measurable
goods such as food. There will also be data on location, and perhaps more if
the enumerators collect and retain data on the environment, for example on
the size of the village, whether it has a school, and so on. Such surveys are
sometimes carried out on an annual basis [Taiwan, Korea, India until 1973—
1974 and since 1991], but more usually are done at intervals, often quinquen-
nially, on the grounds that consumption patterns and levels of living and
poverty do not change very quickly. The surveys are typically nationally
representative, with each remaining in the field for a year, although there are
also many special purpose surveys that are restricted in geographical coverage,
and which last for a period shorter than a year.

Households are chosen at random, but there is a wide range of designs. The
simplest is where each household in the country has an equal chance of being
selected, but such simplicity is uncommon, if only because there are very
different costs of obtaining data from different types of households. Rural
households are more widely scattered than urban households, and in many
LDCs, there are some households that live in inaccessible (sometimes even
dangerous) areas. Any sample design that minimizes cost for a given degree of
precision (or equivalently maximizes precision at given cost) will therefore lead
to oversampling of urban and under sampling of rural households. Beyond this,
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interview procedures usually require more than one visit to each household.
For example if a diary is kept, there will be an initial visit, a second visit to
check that it is being kept correctly, and a collection visit after seven or
fourteen days. In rural areas, where transport is a major cost of the survey, it
therefore makes sense for the survey to group households into survey
“clusters”, often villages, with typically six to fifteen households in each
cluster. The optimal number of households in the cluster involves a trade-off
between the low marginal cost of drawing another household in a village that is
already being visited, and the relatively low contribution to precision of such a
household, given that it is likely to look rather similar to other households in
the same village. The survey team remains in the village for a week or two,
surveying all households in the cluster, and then moves on to a new cluster.
Such surveys frequently attempt to give each household an equal chance of
inclusion by using a two stage design, in which clusters are selected first, with a
probability of inclusion proportional to size (i.e. the number of households in
the cluster), while individual households are randomly selected at the second
stage. The random selection of clusters and households is made from a
“sampling frame”, often a census. However, censuses are often badly out-
dated, and in some countries are not reliable, either because of political
interference — census returns are typically used to make voter rolls and
sometimes to allocate resources—or because of difficulties of collection.
Problems with censuses can be avoided as in India, where the National Sample
Survey (NSS) selects villages from a village frame, and then lists all households
in the village at a preliminary stage. The final drawing selects a stratified
random sample from their own list, with stratification based on a few variables
collected at the list stage, [see Murthy (1977, Chapter 15)] who also describes
many of the other features of the design of the NSS, or (more generally)
Casley and Lury (1981) for further description.

The relatively simple - and sensible — designs of the previous paragraphs can
be complicated ad infinitum. Adjustments can be made for non-response, and
for the consequences of replacing non-responders by “look-alike” households,
although it should be noted that, unless households are approached at
obviously inappropriate times, like harvests, non-response is typically much
less of a problem in LDCs than in the United States (US). Probabilities of
selection can also be linked to any ancillary information in the sampling frame
or listing, such as occupation, housing status, or landholdings. As a result,
survey tapes usually report for each household a sampling probability, or its
reciprocal, an “inflation factor”, which is the number of houscholds in the
country for which the household stands proxy. In complex designs, the inflation
factors will be different for every household in the survey. Although designs
are often “self-weighting”, whereby in spite of the many strata and levels of
strata each household has an equal chance of being included, refusals or other
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practical problems often frustrate the intention, and inflation factors remain
relevant.

Many survey statisticians, in the US as well as in LDCs, see their role as
producing an optimum design that will estimate the target magnitudes — for
example the weights for the price index —in a way that trades off precision
against cost. From such a perspective, any variable that is observed prior to the
survey and is correlated with the target magnitude is a potential candidate for
stratification. However, the more complex the design, the greater are the
difficulties of using the data for anything other than the original purpose.
Houscholds may be stratified by variables that are endogenous to the processes
that economists want to model, and even when this is not the case, the fact that
samples are not simple random samples raises questions about the extent to
which econometric results can be regarded as nationally representative. If it
were to be widely recognized that household surveys have a wide range of
important uses, then it would also be recognized that complex designs are
dysfunctional, with sometimes quite small gains in precision obtained at the
price of large compromises in the usefulness of the surveys. While there exist
econometric techniques to correct samples for selectivity, as in Heckman
(1976) or Manski and Lerman (1977), it is much better not to have to use
them, sce also the discussion in Section 2.1 below.

Given that development economists only rarcly have control over survey
protocols, there are a number of implications of design that should be born in
mind when using survey data in econometric applications. I focus on three of
the most important: the definition of the household, the measurement of
dispersion, and the effects of designs other than simple random surveys.

1.1.4. The definition of the household

In many societies, people do not live in households that resemble the typical
nuclear families of the US or Europe. Extended families, or members of a
common lineage, may live in close proximity to one another, and only
sometimes share the same cooking pot. The closeness of the group may vary
with economic circumstances, with subunits becoming independent in good
times and reuniting in adversity, see for example Ainsworth (1992) on fostering
in West Africa. Even when there are separate households undertaking separate
economic activities, assets may be held at an extended family level, as with the
chia in Taiwan, [see Liu (1982) or Greenhalgh (1982)]. In many surveys, the
decision whether to count multiple units as one or many households is
essentially arbitrary, and in Thailand, a change from one to the other between
the 1975-1976 and 1980-1981 surveys caused average household size to drop
by about one person per household, [Government of Thailand (1977, 1983)].
Even for identical populations, the survey that distinguishes more households
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will show higher inequality and higher poverty, since combining households
and assuming that each member has the same income or consumption amounts
to a mean-preserving reduction in spread, see Haddad and Kanbur (1990).
Since most surveys retain the same practices over time, trends in inequality and
poverty are unlikely to be misleading, at least for these reasons, but the
absolute levels will be incorrect, and international comparisons will be
compromised.

1.1.5. Measuring means versus measuring dispersion

Surveys are usually designed to measure means, not dispersion, and there is a
wide variety of designs that will measure means accurately, but will give very
poor estimates of inequality, of poverty, or of other quantities that depend
upon higher moments. Consider the measurement of income in an agricultural
society where, to take an extreme case, all agricultural income is received in
the month of the harvest. A design in which one twelfth of the sample is
interviewed in each month and asked to report the previous month’s income
will generate an estimate of average income that is unbiased. But even if every
household has the same annual income, the survey will appear to show that 100
percent of income is concentrated in the hands of 7.5 percent of households,
and that 92.5 percent of households are “absolutely poor”. Some surveys avoid
these problems, at least in part, by revisiting households on a seasonal basis,
but most do not. Once again, international comparisons of inequality and
poverty are rendered meaningless, and in predominately agricultural societies
with variable and weather-affected harvests, there will even be spurious shifts
in apparent dispersion between different surveys in the same country, so that
even the time path of inequality can be obscured.

The variability of income is one reason why many analysts prefer to use
consumption as a basis for measurement. But consumption is not immune to
the problem. Different surveys use different reporting periods, from a day to a
year. Some purchases are made infrequently, and households stock up when
they shop, so that the shorter the reporting period, the larger will be the
apparent dispersion. For example, suppose that everyone has consumption ¢
but that purchases are random, with a fraction p of households buying cp ™'
during the reporting period, and the rest buying nothing. Simple calculation
gives:

Ex)=p.cp”'+(1-p)0=¢c; V(x)=c"(1-p)p~" 3)
where x is reported expenditure. As the reporting period becomes shorter, p

will get smaller, and although the mean is unaffected, the variance will rise.
There is no point in comparing distributions of expenditures from different
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surveys unless we know that the reporting periods are the same. Exactly the
same point arises if we attempt to compare two countries one of which has a
perishable staple that is bought frequently, while the other uses a storable
staple that is bought rarely. Problems over reporting periods and over the
definition of the household are two (of the many) reasons why we know so
little about international comparisons of inequality and poverty; for others [see
Berry (1985) and Fields (1992)].

1.1.6. Estimation of means in stratified samples

When different households have different probabilities of being included in the
survey, unweighted sample means will generally be biased for the population
means. Consider the simplest example where there are two sectors, sector 1,
“urban’ and sector 2, “rural”, and where households in each are sampled with
probabilities 7; and 7,. We are interested in the random variable x, which is
distributed in the populations of the two sectors with means u, and w,. There
arec n observations in total, n, urban households and n,=n—n, rural
households; these correspond to population figures of N, N, and N,, so that
7, =n,N_', s=1, 2. The sample mean is

X =(n, +n2)_' Zx, (4)

with expectation

B ="t +2 (5)
~ n T, M

The population mean, by contrast, is given by

N N, 6
B=3 TN M (6)

so that the sample mean is biased unless either 7, = m,, in which case the
sample is a simple random sample, or u, =pu,, so that the population is
homogeneous, at least as far as the parameter of interest is concerned.
Neither of these requirements would usually be met in practice; for example,
rural households are likely to be both poorer and costlier to sample. To get the
right answer, we do the obvious thing, and compute a weighted mean. This can
be done by defining “inflation factors” for each observation, equal to the
reciprocals of the sampling probabilities, so that here
iEs,s5=1,2. (7)

e =1
6.-‘_'7:"5 ’
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Note that if we multiply each sample observation by its inflation factor and
add, we obtain an unbiased estimate of the population total, something that is
often of separate interest. However, if the inflation factors are scaled by their
total to derive sampling weights w, = 6/2 6,, and we calculate a weighted
mean, when we take expectations we get

<4 -1
nymy g tn,my, gy N+ Now,

i oo = = . 8

E(z wlx‘) nort +nymws N, +N, H (%)

which is the right answer. Similar weighting schemes can be applied to the
estimation of any other population statistic that can be written as an average,
including variances, quantiles, measures of inequality and of poverty. The
simple idea to remember is that each household should be inflated to take
account of the households that it represents but were not sampled, so as to
make the inflated sample “as like” the population as possible.

While the underlying population in these exercises is finite (it is the
population of all houscholds in the country at the time of the survey), and
although much of the inference in the sampling literature is conducted
explicitly from such a perspective, so that expectations are taken over all the
possible samples that can be drawn from the finite population, this is not the
only framework for inference. In particular, the finite population can be
regarded as itself being a ‘“sample” from a “‘superpopulation” of similar
households, households that might have existed or might exist in the future. In
this way, the parameter p (for example) is not the mean characteristic for the
current population, but a parameter that characterizes the distributional law by
which that population was generated. In this way, the superpopulation
approach brings survey-sampling theory much closer to the usual sampling
theory in econometric analysis where we are usually making inferences about
behavioral parameters, not characteristics of finite populations.

1.1.7. Econometric estimation in stratified samples

All this is so familiar and so natural that it seems hardly worth the exposition.
However, the simple weighting of observations is less obviously appropriate
once we move from the estimation of means to even the simplest of
econometric estimates, including ordinary least squares regression. Again,
consider the simplest possible case, where there exists a linear relationship
between y and x, but with coefficients 3, and S, that differ by sector. Assuming
zero means for both variables, write this

yi=x;Btu, s=1,2. (9)
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Suppose that the parameter of interest is B, the population-weighted average of
B, and B,; given the two coefficients, this could be obtained by weighting each
by the inflation factor for its sector. For example, if 8 is the marginal
propensity to consume in each sector, the population-weighted average S
would be the marginal propensity to consume out of a randomly allocated unit
of currency, a quantity that is often of interest in discussions of tax and benefit
reform.

As with the case of estimating the population mean, it is immediately clear
that the (unweighted) OLS estimator using all of the data is biased and
inconsistent. Instead, we might follow the principle of the previous subsection,
weighting each household by the number of households that it represents in the
survey, and compute the weighted estimator

~ -1
B= (2 w;"x?)\ (Z wi-"iJ’i) (10)
i i
where w, is the normalized inflation factor. This estimator converges, not to 3,
but to

.= ﬁ+N2N_1ﬁz(m2_m1)m1_1
plim 8= -1 A
1+ NN (m, —m;)m,

(11)

where m, and m, are the (population) variances of x in each of the two sectors.
Unlike the unweighted estimator, this quantity at least has the (limited) virtue
of being independent of sample design; indeed, as is to be expected from the
general argument for inflation factors, it is what OLS would give if applied to
the data from the whole population [see Dumouchel and Duncan (1983)].
However, it is not equal to the parameter of interest 8 unless either B, = ,, or
m, =m,; the former is ruled out by hypothesis, and there is no reason to
suppose that the latter will hold in general.

Of course, the fundamental issue here is not the sample design but the fact
that the regression is not homogeneous within the population being studied. As
such, the problem is not a sampling issue — exactly the same issues arise in
regressions using pooled time-series for a cross-section of countries —but a
heterogeneity issue, and it comes to the fore in the sampling context because it
is heterogeneity that justifies the stratification in the first place. As a result, it is
often plausible that behavioral parameters will differ across strata, just as they
are likely to vary across countries. When this is not the case, and regression
coefficients are identical, then both weighted and unweighted regressions are
unbiased and consistent, and the Gauss-Markov theorem tells us that the
unweighted regression is to be preferred. If instead the regression coefficients
differ by strata, that fact has to be explicitly faced and cannot be finessed by
running regressions weighted by inflation factors. Such recommendations were
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once standard in econometric texts —[see for example Cramer (1969, pp.
142-143)] - but even so, many regressions using survey data are run in
weighted form.

In cases where heterogeneity is suspected, there are several useful strategies.
When there are only a few strata —rural versus urban would be the most
frequent — it clearly makes sense to run separate regressions, and to use
covariance analysis where the homogeneity hypothesis is of separate interest.
When the number of strata is large, with relatively few observations in each,
random coefficient specifications would seem more useful, and, as a result,
analysts should routinely expect heteroskedasticity in OLS regressions. Stan-
dard heteroskedasticity tests can be used, for example that given by Breusch
and Pagan (1979), which in this case would involve regressing squared residuals
on dummy variables for each stratum and comparing half the resulting
explained sum of squares with a y* with degrees of freedom equal to the
number of strata. Heteroskedastic consistent variance covariance matrices
should also be routinely used, see Section 2.1 below.

I should conclude by noting that there is a school of thought that does not
accept the argument against weighted regressions, Kish and Frankel (1974)
being perhaps the most eloquent example. They argue that the stratification in
many surveys is not of substantive interest in its own right, and that the
parameters of a hypothetical census regression are indeed of interest. Others,
such as Pfefferman and Smith (1985) take a view similar to that here, arguing
(among other things) that a complete population is of no great interest since it
is only one of the many possible populations with which we might have been
confronted.

1.1.8. Estimation and other design features: clustering

Even if the regression coefficients are homogenecous across strata, standard
formulae for standard errors may be incorrect depending on the survey design.
Two-stage sampling will induce non-independence between households in the
same cluster if households who live in the same village are subject to common
unobservables, such as weather, tastes, or prices. Under such circumstances,
whether we are estimating means or regressions, standard formulae for
variances are incorrect and can be seriously misleading.

Consider first the straightforward use of survey data to estimate a mean.
Given a set of n observations x,, standard procedures call for the estimation of
the mean and variance according to

"

a=nt 2y 8= -1 X - (12)

1
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If the observations are independent and identically distributed, the variance of
£ is given by

V(i)=n""o? 13)

which can be estimated by replacing o> by its estimate from (12). Consider
now what happens when the x’s are no longer i.i.d., but belong to clusters, and
that within each cluster

E(x, - p)(x; — ) = po’ (14)

for some quantity p, while for two observations in different clusters, we retain
the assumption of independence. Then. as shown by Kish (1965), and as may
be readily confirmed, (13) must be replaced by

V() =n"to"d (15)
where d is the Kish design effect, or “deff”, defined by
d=1+(A.—1)p. (16)

The quantity 7, is the number of households in each cluster when the clusters
are all the same size; more generally it is the weighted average of cluster sizes,
where the weights are the cluster sizes themselves, i.e. n~' 2 n? for individual
cluster sizes n,. An estimate of p can be obtained from the “intracluster
correlation coefficient”

2.2 E;‘#i (. — ﬁ)(x;.: - )
¢*Z.nn.—1)

= (17)

A number of points should be noted. In the presence of positive intracluster
correlations, the number of “‘effective’” observations is smaller than the sample
size. In the extreme case, when p is unity, d is the cluster size, and the
effective sample size is the number of clusters, not the number of observations.
Even when p is 0.5, a high but not unusual figure, the usual formula for the
standard error of a mean is optimistic by a factor of 2.34 (the square root of 5),
a correction that could make a substantial difference to the conclusions being
drawn. Second, although I have illustrated using clusters, the same analysis
might be useful within strata, or regions, or sectors, or any other partition of
the sample for which there is reason to believe that the observations within
each partition are correlated. When the partition is large, p is likely to be
small, but the size of “deff” depends on the product, and might still be large.
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Third, while a similar analysis applies to the residuals in a linear regression.
and while it is still true that standard formulas are likely to underestimate the
standard errors, the formulas are not exactly the same, and I postpone
discussion of the regression case until Section 2.1 below. This is a major issue
that has been much neglected, not only in development economics, but in
other applied fields using survey data.

1.1.9. General measurement issues

I do not believe that there is any reason to suppose that survey data are always
and automatically of lower quality in LDCs, as if “backwardness” were a
condition that applied equally to GDP and its measurement. While statistical
services are sometimes poorly funded and staffed, especially in Africa, survey
data are often relatively cheap to collect in poor countries, and responses are
likely to be accurate where there is a high degree of literacy, and where the
respondents have time to talk to the enumerators. There are also some very
poor countries (such as India) where survey practice is (or at least was) second
to none. Indeed, Indian statisticians have played a leading role in the
development of sample surveys and of sampling techniques; the surveys of jute
production in Bengal by the Indian Statistical Institute under the direction of
Mahalanobis were among the first successful large-scale sample surveys [see
Mahalanobis (1944, 1946)]. It is also true that respondents tend to be much
more patient in LDCs, that they rarely refuse to participate in the survey, and
that they will usually tolerate instruments that take several hours to administer.
The differences in quality of survey data between poor and rich countries
comes, not from survey administration, but from differences in the structure of
income and employment. In particular, difficulties in estimating income arise,
not because of respondent unwillingness or because of fear that enumerators
will pass information to the fiscal authorities, but because a large fraction of
poor people in LDCs are self-employed, mostly in agriculture. Self-employ-
ment incomes are notoriously difficult to estimate in developed economies, and
if income estimates in general are of lower quality in LDCs, it is because
self-employment income is a larger fraction of the total.

The problems are easily seen. Self-employed traders or farmers typically
have no need of any concept that corresponds to economists’ definitions of
income. Direct questions about income or profitability cannot therefore
generate useful answers, especially for individuals whose personal and business
transactions are not clearly separated. Instead, it is necessary for surveys to ask
detailed questions about business or agricultural operations, about sales and
purchases, about quantities and prices, about taxes and transfers, about
multiple business activities, about transactions in kind, and about assets. From
this detailed information, an income measure has to be built up by imposing an
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accounting framework on each household’s activities. This is a very time-
consuming and complex operation, and the value so obtained is likely to be an
extremely noisy estimate of the underlying theoretical magnitude, even
supposing that the theory has any behavioral relevance. For example, an
appropriate accounting framework might well include some allowance for
depreciation of assets, tools, buildings, trees, and animals. Yet unless farmers
actually think in those terms, it is unclear that the measure will be useful in
understanding the farmer’s behavior, however relevant it may be for measuring
welfare.

A further major issue is how to handle autoconsommation, that fraction of
consumption that is produced (or grown, hunted or bartered) by the household
without going through a market. Some societies, for example large fractions of
rural West Africa, are not extensively monetized, and in extreme cases,
non-monetized transactions may account for nearly a half of GDP, [Heston
(1994)], and a good deal more of consumption. The standard survey procedure
is for values to be imputed to such consumption, typically by surveying
quantities, and then by multiplying by some suitable price. The results are
added to consumption purchased in markets, as well as to the value of total
income. Some mechanical and apparently sensible imputation algorithms can
give absurd results. For example, in one comprehensive African survey, values
were imputed for water consumption. Where no price was available for a
particular transaction, imputation was done at the average of the prices
reported by those households who did make monetary purchases. However,
the only observed prices for water were for bottled water in the main city, so
that rural households were credited with very high levels of total consumption
and income, much of it “Perrier” from the local river. Such extreme cases are
rare, but the problems are not.

The choice of prices for imputation is rarely obvious; selling prices differ
from buying prices, and there are often quality differences (perhaps better,
perhaps worse) between goods sold and those retained for home consumption.
In extreme cases, where monetization is the exception rather than the rule,
autoconsommation is the tail that wags the dog; not only is most of consump-
tion measured by making essentially arbitrary assumptions, but there must be
legitimate doubts as to the usefulness of imposing a market-based accounting
framework on a household or village economy in which markets play little part.
Even if all these problems are solved (or ignored), it should always be borne in
mind that any errors of imputation will be common to both consumption and
income — and perhaps other variables, such as landholdings, or agricultural
output — and the communality must be taken into account when the effects of
measurement error are being explored.

Note finally that the decision of what to impute is largely arbitrary. By
convention, home produced goods are included, but most home produced
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services are excluded. Meat and vegetables from the home farm are added to
both consumption and income, but no similar allowances are made for the
value of work in the home, child-minding, or the preparation of meals. While
there is a good deal of agreement on the desirability of including these services,
and while it is clear that there are systematic biases from failing to do so — the
failure to value leisure understates the relative poverty of single parents who
have very little of it — there is little agreement on how to value time. If labor
markets are sufficiently well-developed so that everyone can work as many
hours as they wish at the market wage, then that wage would be the
appropriate price for imputing time. But if people have limited opportunities
for work, as is often the case for women in many parts of the world, the
appropriate rate would be less, perhaps very much less. The mislabelling of
unemployment as leisure is injury enough, without adding the insult of
labelling the unemployed as wealthy on the basis of their enforced leisure.

1.2. Panel data
1.2.1. Data collection

Most household surveys, in both developed and developing countries, draw
new households for each new survey, so that it is generally impossible to track
any given household through successive surveys. In a few cases however, most
notably the World Bank’s Living Standards Surveys (LSS) in Cote d’'Ivoire and
Ghana, the ICRISAT data from six villages in southern India, and in data
collected in Pakistan and the Philippines under the auspices of the Internation-
al Food Policy Research Institute, have individual households been revisited on
a systematic basis at intervals of a year or more. The Living Standards Surveys
have a rotating structure, with half of the households from the previous year
retained and half replaced, so that data are obtained from each household on
two occasions separated by a year. There have been a few other cases where
houscholds from a previous survey have been revisited, even though the
original survey was not designed to be a panel. The National Council for
Applied Economic Research (NCAER) in Delhi revisited a sample of Indian
households after a ten year gap, Bevan, Collier, and Gunning (1989) used
follow-up surveys in Kenya and Tanzania, and Smith, Thomas and Karoly
(1992) report on a 1990 follow-up survey of the households in the 1978
Malaysian Family Life Survey. In all these cases, a large fraction of households
or household members was found, nearly three-quarters of the latter in the
Malaysian case, which is presumably a much higher fraction of those who are
still alive and still resident in the country. Since the fractions reinterviewed
would presumably have been higher had the resurvey been planned from the



1802 A. Deaton

start, these experiences do not support any general supposition that panel data
are more difficult to collect in LDCs, because households are “hard to find” or
because of attrition in general.

Unlike cross-sections, panel surveys yield data on changes for individuals or
individual households. Individual changes are of interest in their own right; we
want to know how individual living standards change during the development
process, the “who is benefiting from development” question, and we want to
know whether poverty and deprivation are transitory or long-lived, the income
dynamics question. Even beyond the individual, a panel design will allow more
precise measurement of aggregate changes if the variable being measured is.
positively autocorrelated in the individual data, [see for example Hansen,
Hurwitz, and Madow (1953, pp. 268-272) and Ashenfelter, Deaton, and Solon
(1986, pp. 44-51)] for formulae. These results suggest that, even for general
purpose surveys, and even when we are interested in levels as well as changes,
it will generally be undesirable to replace all households from one survey to the
next.

Changes over time in the behavior of individuals can also reveal regularities
that may be obscured by individual heterogeneity in the cross-section. For
example, the cross-section relationship between age and wages usually has a
humped shape, with wages rising early in the life cycle, and falling later.
However, older workers may be systematically different from younger work-
ers; they may be less educated or have less experience in working with modern
techniques, and their wages may have been lower throughout their lives. If so,
the cross-section age-wage profile will be quite different from the profile that
would result from following an individual or a cohort of individuals through
time, something that is possible with panel data. By making comparisons for
individuals with their own earlier behavior, each individual is effectively acting
as his or her own control. There exists an extensive econometric literature that
exploits this insight using panel data, and the techniques are frequently used in
work on economic development. I shall return to the topic in Sections 2.1 and
2.2 below.

1.2.2. The Living Standards Surveys

The general usefulness of panel data in LDCs is an issue that is unlikely to be
decided for some time, but our knowledge has recently been much expanded
by the experience of the World Bank’s Living Standards Surveys. These
surveys have sometimes been independent cross-sections, but rotating panel
data have been collected in Cbte d’Ivoire, from 1985 through 1988, and in
Ghana, from 1987 on a continuing basis. The LSS was originally seen as a
device for monitoring poverty and inequality, and the project was begun in the
‘Bank in response to the then (as now) extremely unsatisfactory situation in
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respect of international comparisons of poverty and inequality. In one example
that was key at the time, it was essentially impossible in the late 1970s to
deduce what had happened to distribution in Brazil during the “economic
miracle’” of the 1960s, whether the poor had benefitted from the income
growth, or whether the benefits had flowed to a narrow wealthy group, see the
original analysis by Fields (1977) and the criticism by Ahluwalia et al. (1980).
Although a set of international comparisons of inequality had earlier been
produced within the World Bank by Jain (1975), these were simply compila-
tions of survey data that happened to be available within the organization at
the time, with no attempt to allow for differences in definition, or to correct for
non-comparabilities between countries. (Given the difficulties, Jain’s figures
are not a sound basis on which to make international comparisons, and results
that rely on them should be viewed with great skepticism, [see for example
Anand and Kanbur’s (1993) critique of Ahluwalia (1976)], although the lesson
is widely ignored in the recent political economy literature, for example
Persson and Tabellini (1990) and Alesina and Perotti, (1992).

However, by the time the first LSS surveys were ready to be implemented,
as a cross section in Peru in 1984, and with a rotating panel in Cote d’Ivoire a
year later, the emphasis within the World Bank had shifted away from poverty
more towards a household modelling approach. Influenced by Beckerian
models of household behavior, by their extension to integrated farm-household
models as in Singh, Squire, and Strauss (1986), as well as by previous
experience with RAND’s Malaysian Family Life Survey, the philosophy was to
collect data from a relatively small number of households, but to attempt to be
comprehensive, covering consumption, all income generating activities, agricul-
ture, labor supply, business activities, gifts and transfers, as well as education
(including parents’ education), migration, demographics, health, and fertility,
as well as some limited measurement of anthropometrics. The Ivorian data, for
example, come from 1600 households, selected as a simple random sample, 800
of whom were retained as panel members, with a new 800 added each year.
The 50 percent rotation pattern comes from a desire to collect at least some
panel data combined with doubts about the feasibility of running a much longer
panel in Africa, and from the ever present need to produce results relatively
quickly.

One of the most impressive achievements of the LSS is its demonstration
that microcomputer technology can be used effectively in collecting data in
LDCs. A full description of the methodology is given in Ainsworth and Munioz
(1986). Responses were quickly taken to local headquarters, and entered into
PCs, and then immediately run through editing programs, so that cross-checks
and corrections could be carried out on subsequent visits. The rapid data entry
and editing programs also mean that data are available very quickly at the end
of the survey, and the teams produced preliminary survey reports within a few
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months of leaving the last household. The data are thus immediately available
for policy analysis, an enormous improvement over previous practice, where
survey results were in most countries available only years — in some cases many
years — after the end of the survey.

To the extent that it is possible to tell from internal evidence, the LSS data
are typically of good quality, although the breadth of the survey clearly carries
some price in terms of depth and in the ability to monitor subpopulations. For
example, the agricultural modules typically do not produce the sort of reliable
harvest estimates that could be obtained from sample crop-cutting in an
agricultural survey. But this was by design, and in many applications is offset
by knowing the farmer’s other activities, his and his parents’ education levels,
his migration history, ethnic group, and so on. The retrospective questions
appear to have worked well, so that, for example, it is possible to use the
fertility questions to construct reasonable estimates of changes in infant
mortality over time, [see Benefo and Schultz (1993) for estimates for Ghana
and Cote d’'Ivoire].

Like .most surveys, the LSS surveys are designed to collect data, not to
experiment with survey methodology, so that it is difficult to use their results to
come to general conclusions. The surveys have certainly been expensive
relative to most established surveys in LDCs, with costs per household per year
ranging between $100-$200 at 1990 prices, although it could be argued that
high costs reflect the set-up costs of a new product.

One lesson from these surveys is that in countries where economic develop-
ment is slow or non-existent, as in much of Africa, and where survey measures
of living standards are error prone, as in Africa and elsewhere, measures of
change, at both individual and aggregate levels will be dominated by measure-
ment error. Over short periods, living standards in agriculture are variable in
any case, so that short panels of a year or two are unlikely to give useful
measures either of income dynamics or of the change in living standards,
except possibly in the most rapidly developing countries. This is even true for
“straightforward™ concepts such as household size; in West Africa there is a
great deal of genuine mobility among both adults and children —see par-
ticularly Ainsworth (1992) — but even here there appears to be a good deal of
measurement €rror.

A second lesson is that it is very difficult to maintain new surveys in the field
for any length of time. In the Ivorian case, personnel changes in the World
Bank led to a loss of interest, and the survey ceased after 1988 apparently
without leaving any permanent enhancement of Ivorien survey capability. This
was particularly unfortunate because, in the face of collapsing world prices,
procurement prices of cocoa and coffee —the main cash crops in Cote
d’Ivoire — were cut by a half, the first such cut since independence. Had the
panel been in place, the survey could have observed the process of adaptation
as smallholders reacted to the cuts, but the opportunity was lost.
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Third, while the computer technology has been successfully applied to the
collection of data, it has been much less used for its rapid analysis, particularly
in a policy context within the countries themselves. The data are now widely
analyzed in academia and in international organizations, but neither analytical
capacity nor software exists to make survey data rapidly available to support
domestic policy making. As a result, there is less local interest in continuing
surveys than is warranted by their potential utility. There have also been
difficulties over setting up proper mechanisms to allow access to scholars and to
the policy community. The World Bank is an operational entity, not a research
foundation, and there are also legitimate interests of countries that have to be
protected. Nevertheless, there would have been great benefits to constructing
adequate access agreements before any data were collected, agreements that
provided for public-use versions of the data at marginal cost.

Fourth and finally, I suspect that if there is a real payoff to panel data,it is
over relatively long time periods, five or ten years, or even longer. Perhaps the
most interesting and important work using the PSID has come from looking at
income changes over long periods of time, or of comparing incomes and
consumption patterns of parents and their children [Behrman and Taubman
(1990), Solon (1992), Zimmerman (1992), Altonji, Hayashi and Kotlikoff
(1989) and Hayashi, Altonji, and Kotlikoff (1991)]. Even here, some of the
results are identical to those obtained earlier using recall data, see Sewell and
Hauser (1975), and this much cheaper alternative may not be inferior for many
applications. Even at best, economic development is far from instantaneous, so
that changes from one year to the next are probably too noisy and too
short-term to be really useful. It 1s hard to imagine nationally representative
panels being maintained for ten or twenty years, and international organiza-
tions and foundations do not have the attention span nor the ability to commit
resources over such periods. Perhaps the most promising line of research is one
in which one time surveys are designed with at least the possibility of a revisit
at some unspecified future date, so that ad hoc panel data can be collected on
an opportunistic basis. We also need more evidence on the reliability of recall
data for different kinds of information; [again see Smith, Thomas and Karoly
(1992) who compare reports of the same migration events obtained in two
surveys twelve years apart]. Alternatively, national survey programs might
usefully incorporate some panel element, either by deciding in advance to
revisit some subsample of households quinquennially or decennially, or by
adding a small component of shorter period rotating panel households to their
pre-existing surveys.

While there is likely to be some payoff to further experiments with panel
data, it is important not to overstate the potential benefits. The PSID in the
United States has generated a great deal of important methodological work in
econometrics, but it is hard to point to any substantive conclusion that depends
on the existence of these data. Attrition problems, especially in the early years,
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and the continuing presence of measurement error have made it difficult even
to describe the “facts” of dynamic household behavior. Beyond that, the use of
the PSID in the more ambitious research programs on life-cycle labor supply
and consumption can only be described as a disaster, [see Card (1991) for a
review of the labor supply literature and Deaton (1992a, Chapter 5) for the
work on the intertemporal allocation of consumption].

1.2.3. Panels from a series of cross-sections

Many countries carry out their household surveys on a regular basis, often
using the same instrument over time, in which case there will exist a time-series
of cross-sections. Such data can be used for many of the purposes to which
panel data are put, and in some respects provide a superior database.
Consider, for example, the Surveys of Personal Income Distribution that
have been carried out in Taiwan every year since 1976. While it is not possible
to track individuals or households from 1976-1991, it is perfectly feasible to
track cohorts of individuals. If for example, we are interested in how individual
earnings have changed in any economy experiencing very rapid growth, we can
follow the mean earnings of the same group through time by looking at the
members of the group who are randomly selected into each survey. If our first
cohort is those born in 1951, who were 25 years old in 1976, we use the 1976
survey to calculate average earnings —or average log earnings, if that is the
variable of interest —for all 25 year-olds, the 1977 survey for the average
earnings of 26 year-olds, and so on, up to the average earnings of 40 year-olds
in 1991. Figure 33.1, taken from Deaton and Paxson (1994a), shows the results
for every fifth cohort; the connected lines track the behavior of each cohort.
The figure shows a life-cycle pattern in earnings, together with strong cohort
effects, with the younger cohorts earning more. As a result, it is the youngest
groups whose earnings have grown the most rapidly; the average 55 year-old in
1976 had relatively little earnings growth over the subsequent fifteen years.
Such data cannot be used to look at income dynamics; even if the
membership of the cohort is constant, we can estimate only the marginal
distributions of income in each year, whereas estimation of income dynamics
require us to observe the joint distributions, which can only come from panel
data. That case apart, time-series of cross-sections can perform many of the
other functions of panel data. Linear regressions with individual fixed effects
can be averaged to give cohort relationships with cohort fixed effects, and can
be consistently estimated by differencing the cohort level data or by using
within estimators. Note too that, since we start from the individual data, the
aggregation can be done over whatever function of the data is prescribed by
the theory: averages of logs or of powers are as easily calculated as averages of
levels. Since the cross-sections draw new households in each survey, there is no
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Figure 33.1. Annual earnings of seven age cohorts, Taiwan 1976-1990.

attrition bias as there is in genuine panel data, although with older cohorts,
there will be (typically non-random) attrition through death, and immigration
and migration will change cohort membership at all ages. The averaging will
also yield less measurement error in the cohort than in the micro data provided
that, as is plausible, misreporting is sufficiently uncorrelated across members of
the cohort. Of course, unless the cohorts are very large, observed cohort
means will estimate population cohort means with a sampling error, but the
size of the error can be estimated and the appropriate corrections made using
what are essentially error-in-variable estimators [see Deaton (1985) and Tan
(1991) who applies these methods to life-cycle labor supply in Korea]. I shall
return to the theory of these estimators when I come to the econometrics of
measurement error in Section 2.1 below.

1.3. National income and other data

I have discussed household survey data at some length because, in that case, it
is possible to go beyond ritual complaints about quality and quantity, and to
think constructively about the effects on econometric practice of data collec-
tion, design, and measurement error. However, a great deal of econometric
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work in development uses non-survey data. Indeed, there has been a recent
explosion of empirical work on economic growth, [see for example, Barro
(1991), Barro and Sala-i-Martin (1992), Mankiw, Romer, and Weil (1992), and
Levine and Renelt (1992) for four leading examples]. Most of this work is
based on (and to some extent inspired by) the internationally comparable
national accounts data constructed by the international price comparion project
at the University of Pennsylvania, [Kravis, Heston, and Summers (1978)], and
whose latest incarnation is the Penn World Table, Mark V, [Summers and
Heston (1991)]. Many researchers also use the World Development Indicators,
published annually by the World Bank, and which contain, in addition to a
large number of social and other indicators, a competing set of national
accounts — converted at official exchange rates rather than purchasing power
parity exchange rates —and which, like the Summers—Heston data, are con-
veniently available on diskette. The Bank, the International Monetary Fund,
the United Nations, and the International Labor Office all produce a wide
range of other data relevant for development work, on trade, on ‘debt, on
international finance, on labor, and on social and demographic indicators.

Any sort of evaluation of this multiplicity of sources would quickly fill the
whole of this Handbook. I confine myself to (a) a discussion of some of the
index number problems that underlie international and intertemporal com-
parisons of income and output, and (b) a brief review of quality issues, the
latter drawing on a recent set of conference papers on the topic.

1.3.1. Index number problems and international comparisons

Before looking at the practical quality issues, it is worth reviewing the
conceptual index-number problems that underlie international comparisons of
income and output. The actual Penn World Tables are a good deal more
complex than the examples here, which are chosen to illustrate only the main
points. Current price local currency GDP for country c at time ¢ can be written
as the sum of its component goods and services, or

Yer = Ek‘l prk.'qul ? (18)

where p’s are prices, ¢’s quantities, and y is income or output, Since GDP is an
aggregate of value added, not of output, we must assume that there is some
quantity or quantity aggregate that represents value added, something that
requires suitable separability assumptions on the structure of production [see
Sims (1969) and Arrow (1974)). However, my main concern here is with
different index number problems.

Suppose that there is some base country b, say, and prices are collected for
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each good in each country — and this is the main task of an international price
comparison project —so that GDP can be repriced, using period s prices in
country b as

yo = % PoksYeri (19)

If country b is, for example, the US, and s =1, then y’! is country ¢’s GDP at
US prices, and the ratio of y,, to y”' is the purchasing power parity (PPP)
exchange rate of country ¢’s currency in terms of US dollars. If the PPP
exchange rate were equal to the official exchange rate ~ which is not usually the
case — GDP at US prices could be obtained without collecting price data simply
by conversion, as is done for the data reported in the WDR. For measuring real
economic growth, we need constant price series, so that, in addition to a base
country, we need a base year with a base set of relative prices. Alternatively,
as in the recommended and most commonly used series in the Penn World
Table, the base can be updated year by year to construct a chain index of GDP.

The problem of choosing base prices- and a base country, like all index
number “problems”, is a conceptual and not a practical one. In principle, there
is no reason other than convention to use US prices rather than Korean,
Kenyan, or Chilean prices, and since they measure essentially different things,
the ratio (for example) of Indian to Chinese GDP will differ depending on the
choice. When making comparisons of GDP over time within a single developed
country, the same conceptual difficulties arise, but because relative prices
change slowly over time, the growth rate of GDP is hardly affected by the
choice of base period. For those LDCs where a large share of GDP is
concentrated in one or two primary commodities, this is not true, and even
comparisons over time become hazardous. These difficulties are perhaps most
severe for non-diversified oil exporters, although there are many other
commodities (e.g. copper, cocoa, coffee) that have highly variable prices, and
that make up a large fraction of GDP for some countries.

Figures 33.2 and 33.3 illustrate the time-series and cross-section implication-
sof the choice of base prices. Figure 33.2 shows real GDP in Nigeria from 1965
to 1985 using two different Summers—Heston measures; according to both sets
of estimates, GDP rose until the late 1970s, and has been declining since. The
terms-of-trade corrected measure of GDP on the vertical axis allows for the
effects on national income of changes in commodity exports and imports, while
the chain measure on the horizontal axis does not. Nigeria is a major oil
exporter and so has much greater growth using the terms-of-trade corrected
measure. Since the Summers—-Heston measures are equal by construction in
1985, Nigeria’s GDP is very much lower in the earlier years when relative
commodity prices are continuously adjusted; in 1965, the adjusted GDP
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estimate is only 77 percent of the chain estimate. Figure 33.3 shows both
estimates for 1970 for all the African economies in the Penn World table. Most
countries are close to the 45-degree line, but there are many exceptions: the
ratios of adjusted to unadjusted GDP were 69 percent for Algeria, 80 percent
for Lesotho, 79 percent for Nigeria, 62 percent for Uganda, and 128 percent
for Zambia (the price of copper was lower in 1985 than in 1970.) Although
some of these differences reflect the difference between output and income
measures of GDP-commodity price changes have no (direct) effect on physical
output although they make the country richer or poorer —these examples
should illustrate the conceptual difficulties of making international comparisons
in a many commodity world. (Note that I am not concerned here with
measurement error, but with what is essentially an aggregation problem. The
Penn World Table take their inderlying data from the national accounts of the
countries themselves, and these data are repriced, not corrected.)

Although these difficulties are real enough, they are minor compared with
those in making comparisons across space. International differences in relative
prices are both large and systematic, so that the choice of base country makes a
large difference to the estimates. Because labor is relatively cheap in poor
countries, the relative price of non-tradeables to tradeables rises with economic
development, so that, for example, services and government tend to be
relatively cheap, and investment relatively expensive in poorer countries.
There are associated substitution patterns in both production and consumption
which give rise to the standard biases associated with fixed weight or current
weight index numbers. Using American wage rates to revalue Indian labor
costs will tend to overstate Indian relative to American GDP, because Indian
GDP is (or should be) more specialized in labor-intensive activities, a
substitution effect that is turned into apparently high income by applying the
prices of a labor-scarce economy. In India, servants—both domestic and
civil — are cheap and widely used, so that, at American prices, the real size of
the domestic service sector in India is exaggerated. For the same reasons,
making comparisons in American prices will bias down the estimated growth
rates of the poorer countries, since rising real wages will narrow the relative
price differentials, and progressively reduce the exaggeration of GDP in
LDCs.

Once we go beyond output measures to interpret GDP as a measure of living
standards, then we also have to face the question of whether it makes sense to
treat preferences as identical across countries, or at the very least, whether
international differences in climate and the conditions of production do not
severely compromise international welfare comparisons. The problem of
calculating the comparative costs-of-living for an American diplomat in
Karachi or Reykjavik is well-defined and calculable to some degree of
approximation. It is more of an open question whether it makes sense to
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compare the living standards of a Nepalese peasant and a Taiwanese fisher-
man, let alone those of an American lawyer and a Namibian bushman.

1.3.2. Quality issues in development data

This brief review section is based on a set of papers from a conference on
databases for development. I have benefitted particularly from the overview
paper by Srinivasan (1994), as well as those by Bouis (1994) on nutrition, by
Chamie (1994) on demography, by Evenson and Pray (1994) on agriculture, by
Rozansky and Yeats (1994) on trade, by Heston (1994) on national income and
growth rate comparisons, and by Behrman and Rosenzweig (1994) on labor
force and education data. The interested reader should consult these papers;
only a few highlights are summarized here.

There are a number of other important practical issues in international
national income data. Heston (1994) points out that the share of non-monet-
ized subsistence in GDP can be greater than 40 percent in the poorest
countries, that its measurement is fraught with difficulties, and that the
solutions are far from uniform across countries. Many LDCs estimate GDP
growth using growth rates of physical indicators, with benchmark weights that
are frequently seriously outdated. Given GDP, consumption is obtained as a
residual by subtracting net exports from trade flows, government expenditure,
and investment in plant and machinery. Over-invoicing of imports and under-
invoicing of exports are common methods of transferring funds abroad in
countries with exchange controls and overvalued exchange rates, and such
practices compromise not only the trade data, but will lead to overstatement of
consumption and understatement of saving. In largely agricultural societies,
estimation of physical output is difficult, and evidence [in Srinivasan (1994) and
Evenson and Pray (1994)] suggests that discrepancies between household
survey and national accounts estimates of food consumption and production in
India may come more from the national accounts than from the surveys. This is
an important lesson with implications beyond India, since national income
estimates of income and consumption are nearly always given more weight
than survey estimates when there are discrepancies between the two, a practice
that has little justification in general.

There have also been suggestions that estimates of GNP are manipulated for
political ends. It is certainly true that one of the more widely noted ratios, the
relative per capita GDP of India and China is a number about which it is hard
to obtain reliable estimates. The Penn World Tables Mark 5 estimate that in
1985 international prices, China’s GDP per capita at $1,883 was 2.71 times that
of India in 1985. The previous version (Mark 4) of the same tables gives the
ratio, again for 1985, at 3.26, now calculated in 1980 prices. Srinivasan (1994)
quotes the 1992 WDR figures of $350 for India and $370 for China in 1990, and
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points out that the respective growth rates over 1965-1990 (in the same
publication) are 1.9 percent and 5.5 percent, If these figures are correct, in
1965 GNP per capita in China was only 44 percent of that in India, a statistic
that defies belief.

Counting people, births, and deaths is also problematic. Chamie (1994)
points out that there are a number of LDCs who have yet to carry out their
first census, that only a third of LDCs have had a census since 1985, and that
27 percent of countries have a latest census that was conducted prior to 1975.
Recent, reliable data on life-expectancy (infant mortality) are available for
only a half (a quarter) of LDCs, and two-thirds of African countries have
collected no data on life-expectancy since 1970. Many of the figures published
in the World Development Report and the UN's Human Development Report
are estimates and projections, not measurements.

There are also puzzles and discrepancies in data on health, education, and
nutrition. Self-reported health data in LDCs typically show a positive correla-
tion between living standards and ill-health, something that is usually attribu-
ted to better-off people reporting a larger fraction of health problems. Recent
work at RAND appears to have made real progress on this issue [see Strauss,
Gertler, Rahman, and Fox (1992)]. Questions about ADLs (Activities of Daily
Living, such as walking and eating) and IADLs (Instrumental Activities of
Daily Living, such as shopping) ask respondents whether, for example, they
would find it easy, difficult, or very difficult, to perform a set of specified tasks
(climbing stairs, fetching water) that are relevant to everyday life. The results
of these questions reveal more sensible, richer, and interesting patterns of
health with income and age than do the previous self-reported measures.
Education data often exaggerate enrolments, by reporting attendance on the
first day of school, or by expressing total enrollments, including those of adult
students and grade repeaters as a fraction of the normal age groups for those
grades, so that enrolment fractions greater than unity are possible [see
Behrman and Rosenzweig (1994)].

Nutritional data are usually obtained from survey data on household
purchases of food, and less often from 24-hour food consumption recall data.
The latter generate much lower income elasticities of calories and of foods than
do the former, Bouis (1994). Bouis argues in favor of the lower figures, on the
grounds that traditional food elasticities imply implausible weight patterns. If
the food (and calorie) elasticity is 0.4, say, then people in the top decile of the
income distribution, who are perhaps six times as well off as people in the
bottom decile, consume more than twice as much food and calories as those in
the bottom decile, and ought therefore to weigh more than twice as much,
something that we do not observe. Not everyone would accept the existence of
such a reliable and simple relationship between calories and weight, even in the
long-term, nor is it clear that the purchase method of calculating nutrition is
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necessarily worse than the more invasive and detailed recall surveys. The
problem cannot be attributed to imputation biases in the survey data along the
lines discussed above [see Bouis and Haddad (1992) and Subramanian and
Deaton (1992)]; the latter paper also rules out functional form problems.
However, it is possible, as Bouis argues, that there is a very high income
elasticity of food wastage and of food gifts to servants, relatives, and even
animals, thus reconciling the purchase with the intake data.

Finally, there is an excellent discussion of the quality of international trade
data by Rozansky and Yeats (1994) who look for inconsistencies (a) across
different sources, particularly the U.N., the Fund, and the Bank, (b) between
trading partners, comparing recorded imports of A from B with recorded
exports from B to A, (c) between trade totals over commodity groups and their
component sums, and (d) across revisions of SITCs, for those groups not
affected by the reclassifications. The results are far from encouraging, and by
all criteria, trade data from LDCs show more and greater discrepancies than
data for OECD countries, with discrepancies apparently worsening over time.
To take just one example, comparisons under (b) show that only 2-3 percent
of US or French trade gets “lost”, compared with more than 50 percent for
South Africa (not surprisingly), Venezuela, Seychelles, and Bahrain. The IMF’s
estimate of Venezuela’s 1982 exports is 20 times larger than that compiled by
the UN.

1.3.3. Some implications

The news from this section is dismal. National income and growth comparisons
across countries are plagued by conceptual index number problems, and by
immense practical difficulties. Many frequently used data from LDCs are of
poor quality, or only pretend to exist, having their only reality in the mind of
bureaucrats in New York or Washington. And while the Penn World Table,
which provides probably the best and certainly the most heavily used set of
national income data, has provided a great step forward in producing data at a
common set of prices, it cannot be better than the raw (and uncorrected) data
from the individual countries on which it is based.

What then should be done? Researchers should obviously be encouraged to
be critical of the data, and to take every opportunity to explore the conse-
quences of measurement error for their analysis. However, when the data are
of such low quality that it is difficult to establish any results — as with much of
the official macroeconomic data for Africa — it is difficult to pinpoint specific
problems, or to know where to press for improvement. It is also clearly
sensible to press for more resources to be devoted to data collection, and it
would be a notable improvement if international agencies were to advertise
their data more precisely, so that, for example, projections and estimates were
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clearly separated from genuine measurements. There have been questions as to
whether the international organizations have any real interest in improving
data collection. Skeptics have argued that the World Bank (or at least its loan
staff) is interested in the guantity of loans, not ultimately in their guality, and
that without an interest in the latter, there is little chance that the necessary
resources will be committed to the improvement of the data either on its own
account, or by helping to improve data collection by its member countries. In
defense, it must be remembered that international organizations are respon-
sible to their members, and in many cases are limited in the extent to which
they can correct, question, or criticize the data that are provided by the
member countries. Unless policy makers can be persuaded that the quality of
their decisions are being compromised by poor data, they are unlikely to find
the resources to improve matters.

2. Econometric tools for development analysis
2.1. Econometric analysis of survey data

In this second part of the review, I discuss a series of econometric techniques
that are particularly appropriate for or are widely used in the analysis of
development questions. In this first of three sections, I shall be concerned
mostly with techniques used in the analysis of survey data, although a good
deal of the material applies more generally. Subsequent sections deal with
time-series and non-parametric issues respectively. My focus is on develop-
ments in econometric practice over the last ten or fifteen years, and how they
relate to practice in published work in economic development. In particular, I
attempt to identify a number of topics where best practice is somewhat ahead
of what is readily available in the textbooks. One topic that will occur
repeatedly is robustness. Inferences that rest on arbitrary — sometimes even
incredible — assumptions are hard to take seriously, and there has been a major
effort in econometrics —as in statistics more generally —to find ways of
generating conclusions that are both credible and convincing and that are not
the more or less immediate consequence of arbitrary supporting assump-
tions. )

An important role of econometrics is to substitute for experimentation, and
much of the econometric literature on simultaneity, heterogeneity, selectivity,
omitted variables, and measurement error can be thought of as finding
procedures that can bring the non-experimental results closer to the ex-
perimental ideal. Many of these procedures rest on strong parametric assump-
tions, some of them necessarily so, but others do not, and in some cases it is
possible to obtain results with quite unobjectionable assumptions. When this is
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not so, the fact is in itself important, since it implies that robust inferences are
not possible, and that the assumptions of the investigator are as necessary as
the data for drawing the conclusions.

Even for standard and well-understood techniques, such as linear regression,
inferences can be made more robust, either by moving away from OLS to
alternatives such as quantile regression, or less radically, by calculating
standard errors in ways that are robust against the failures of standard
assumptions that are common in survey data. I begin this section with these
topics.

2.1.1. Heteroskedasticity and linear regression

As is well-known, the presence of heteroskedasticity in linear regression affects
neither the unbiasedness nor the consistency of OLS estimation. However, the
assumptions of the Gauss-Markov theorem are violated, so that OLS is no
longer efficient, and the usual formula for the variance-covariance matrix of
the parameter estimates is no longer valid. In particular, if the regression
model is, for i=1,..n,

yi=x;8+u; E(u)=0; Eu’)=d,>0, (20)

and the OLS estimator is, as usual, (X’X) X"y, then the variance-covariance
matrix is given by

V=(X'X)"'X'DX(X'X)" (21)

where D is an n X n diagonal matrix whose diagonal is the d’s from (20).
Although V in (21) cannot be evaluated without knowledge of the d’s, it has
been shown by Eicker (1967), Huber (1967), Fuller (1975) and White (1980),
that it can be consistently estimated by replacing D by the diagonal matrix
whose elements are the squared OLS residuals. Note that the consistency here
is of the matrix V, not of D, the number of elements in which increases with the
sample size, and which therefore cannot be consistently estimated. Following
White and MacKinnon (1985), this relatively straightforward calculation can be
modified and extended in a number of ways, some of which are likely to yield
improvements in performance. These methods yield estimates of the variance
covariance matrix that are asymptotically valid, and do not require the user to
know or to specify the specific form of the heteroskedasticity in (20).

As I argued in Section 1, the stratification of surveys is likely to generate
heteroskedasticity, and even without it, experience suggests that residuals are
more often heteroskedastic than not. There are a number of tests for
heteroskedasticity, of which perhaps the most convenient is that suggested by
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Breusch and Pagan (1979), in which the squared OLS residuals are regressed
on variables that are thought to be likely candidates for causing the heteros-
kedasticity, usually including the levels, squares, and interactions of the
original explanatory variables. Indeed, as is easily checked, this is the correct
specification if B in (20) is taken to be distributed randomly in the population.
Under the assumption that the original regression errors are normally distribut-
ed, the null of homoskedasticity implies that the explained sum of squares of
this supplementary regression will be distributed as y” with degrees of freedom
equal to the number of regressors in the supplementary regression. This test is
closely related to the information matrix test proposed by White (1980).

It is clearly good practice to calculate and report standard errors and other
test statistics that are robust to departures from homoskedasticity. Further-
more, my own experience suggests that it is difficult to pass the Breusch—Pagan
test in practical applications, and that heteroskedasticity is usually revealed not
just by this test, but by others, such as the quantile regression techniques
discussed below. That said, the heteroskedasticity-consistent standard errors
and tests are rarely very different from those given by the standard formulas.
An upward correction of about 30 percent to standard errors appears to be
common, and this correction would not normally lead to startling differences in
inference.

2.1.2. Clustering and linear regression

In Section 1 above, I showed that when observations within survey clusters are
correlated, survey cluster sampling requires a revision of the formula for the
standard error of an estimated mean. In particular, the usual variance, which is
the population variance divided by the sample size, has to be multiplied by the
Kish design effect (16), which depends on the average number of observations
per cluster and the size of the intracluster correlation coefficient. Similar
considerations apply to the estimation of linear regressions when there are
grounds for believing that the errors are correlated within clusters. The fact
that the sample is clustered does not in itself imply that there must be a
non-zero intracluster correlation once other explanatory variables have been
taken into account. However, survey clusters in rural areas in LDCs are
typically geographically dispersed villages, so that there are likely to be
unobserved communalities that are shared between households in the same
village, and that differentiate them from those in other villages. Note too that
there may be intrahousehold correlations between households beyond the
cluster levels, for example across provinces or regions, correlations that could
come from ethnic factors, from the way in which markets operate, or from the
way that the government allocates services across administrative areas.

To illustrate the issues, I shall suppose that the survey is clustered, that there
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is a regression model such as (20), and that the residuals are positively
correlated across observations in the same cluster. As is the case with
heteroskedasticity, OLS remains unbiased and consistent, but is inefficient, and
as with heteroskedasticity, our main concern is with the invalidity of standard
formulas for the variance-covariance matrix of the OLS estimator. A useful
result, due to Scott and Holt (1982), is that the Kish design effect is the
maximal correction that is required, and that, in general, the estimated
variances will understate the true variances by a factor that is less than the
design effect. However, the maximum is attained when all the right hand side
variables in the regression are constant within clusters, as would be the case
when the x’s are cluster prices, wages, or variables measuring access to schools,
health clinics or the like [see also Kloek (1981)]. If some x’s vary across
members of the cluster, and are correlated between clusters with the other
variables, the design effect will overstate the correction.

As with heteroskedasticity, there are parametric and non-parametric meth-
ods for correcting the variance-covariance matrix. Among the former would be
to specify a variance components model at the cluster level, the estimation of
which would allow the calculation of the intracluster correlation coefficient,
which can then be used to calculate standard errors. Alternatively, an
intracluster correlation coefficient can be calculated from the OLS residuals
using (17) and the result used to estimate the correct variance covariance
matrix for the OLS estimator. More generally, it is possible to allow for cluster
fixed effects, and to work with deviations from village means. This is a useful
technique in some contexts, and I shall discuss it below, but note that it does
not permit us to estimate coefficients for any regressors that do not vary within
the clusters.

A useful procedure is based on the fact that cluster sizes are typically small
relative to the total sample size, say 10 or 16 houscholds per cluster, so that it
is possible to correct the variance covariance matrix non-parametrically by
using the OLS residuals to “estimate” the variance-covariance matrix of the
residuals in each cluster, just as the squared OLS residuals are used to
“estimate” the variances in the heteroskedasticity-robust calculations. (I use
the inverted commas around “estimate’ because in neither case are we trying
to obtain a consistent estimate of the individual residual variance or individual
cluster residual variance covariance matrix.)

Suppose then that we have estimated the regression by OLS, and that for
cluster ¢ we have obtained the OLS residuals e,. We then calculate a robust
OLS variance covariance matrix by calculating [see White (1984)],

V(B)=x'Xx)" § Xlee X (X'X)™ (22)

where X, is the submatrix of X corresponding to cluster ¢, and C is the total
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number of clusters. Note that in the case where there is only one household per
cluster, (22) is the standard formula for the heteroskedasticity-consistent
variance covariance matrix. Note too that (22) does not require that there be
homoskedasticity, either within clusters or between them, nor that there be a
common intracluster correlation coefficient. It is therefore robust against quite
general forms of intracluster correlations. The equation is implemented in the
software package STATA as part of the huber command, and the corre-
sponding procedure for panel data is described by Arellano (1987).

How much does all this matter? The answer seems to be a great deal,
certainly more than is the case for the more familiar heteroskedasticity
correction. In many applications, the correction is not much less than the
design effect, and in my own work, I have frequently found that the usual
formulas give standard errors that are understated by a factor of two to three, a
much more serious matter than the 30 percent that seems to be common for
the heteroskedasticity correction. The problem is exacerbated by the fact that
in so many development applications, the explanatory variables are constant
within the clusters, the wage, price, and access variables listed above. It would
be invidious to list papers that use clustered data without correction, although
[see Deaton (1988, 1990a)] for two selected examples, but there are hundreds
of papers in development economics looking at labor market questions, at the
demand for commeodities and nutrition as a function of prices, and at access to
education and health services where the true significance levels for t-values
should probably be closer to 6 than to 2. Many of these studies will have to be
redone, and I suspect that there will have to be a good deal of revision of
conclusions. Of course, these problems are not confined to studies of economic
development, and similar considerations apply for example, in labor econ-
omics. Indeed, Moulton (1990) has provided a particularly dramatic example
using American state level data, where a small intrastate correlation coefficient
is combined with large numbers of observations in each state to yield a design
effect of nearly 10.

2.1.3. Quantile regressions

The method of quantile regression is not one that has been much used in
economics to date, perhaps because of computational considerations. These
have now been solved - the greg command in STATA is an example —so that
this extremely useful tool is readily available without the need for special
coding. The basic idea was first introduced into economics by Koenker and
Bassett (1978) and can be described as follows.

Quantile regression, like linear regression, is concerned with the distribution
of a scalar random variable y conditional on a vector of covariates x. In linear
regression, it is assumed that one characteristic of this distribution, its mean, is
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a linear function of x, or at least we attempt to fit a linear function to the
conditional expectation, or regression function. Instead of the mean, we might
choose to work with the median, and to assume that the medians of y
conditional on x are linear in x, or at least to fit a linear function to the
medians. This would be a median regression, or 0.5 quantile regression. In
principle, we can do the same for any other quantile of the distribution, thus
constructing the p-quantile regression, where p is any number between 0 and 1.

Given the idea, why should we be interested, and if we are interested, how
can such regressions be calculated? Start with the former. First, by looking at a
number of different quantile regressions, we can explore different parts of the
conditional distribution. For example, consider the relationship between wages
and schooling; at any given number of years of schooling, there is a (con-
ditional) distribution of wages, presumably reflecting unobserved abilities and
other labor market skills. In general, thereis no reason to require that the rate
of return to an additional year’s schooling should be the same at all points in
the distribution of abilities conditional on schooling, and quantile regression
would pick up the differences, see Chamberlain (1991). Used in this way,
quantile regression is essentially a non-parametric technique that describes the
shape of the empirical distribution without imposing prior restrictions. As such,
it can also provide an indication of heteroskedasticity. If the conditional
distribution changes shape with one or more of the explanatory variables,
quantile regressions at different quantiles will have different slopes, [see
Koenker and Bassett (1982)] for a test that uses this property.

Second, just as the median is less sensitive to outliers than is the mean, so
are quantile regressions more resistant to outliers than are mean (least-squares)
regressions. Median regression is affected by the presence of an outlier, but not
by changes in its position, provided of course that it remains above or below
the median. As such, quantile regression is one of several regression tech-
niques that have robustness properties superior to OLS [see in particular
Huber (1981) and Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. Stan-
dard methods of robust regression typically downweight large residuals iden-
tified from a previous regression, iterating to convergence. Such procedures
require an estimate of the scale of the residuals in order to identify outliers,
and thus are sensitive to patterns of heteroskedasticity that are handled
naturally by quantile regressions.

Third, quantiles are not affected by monotonic transformations of the data,
so that, for example, the median of the logarithm of y conditional on x is the
logarithm of the median of y conditional on x. As we shall see in the next
subsection, this property has useful consequences.

The estimation of quantile regressions rests on extensions of the well-known
result that the median is the point closest to the data in the sense of minimizing
the sum of the absolute deviations. Median linear regression parameters are
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given as the value of the vector S that minimizes
2 |y —xiBl = 2 (05 - 1(y;=x;B))(y: ~x;B) (23)
i=1 i=1

Koenker and Bassett (1978) show that the p-quantile estimator can be
calculated by minimizing a generalization of the second expression in (23),

B = argmin 2 (p— 10y, =x;B)(y;,—x;B) . (24)

Although these expressions do not permit explicit solutions, the parameters
can be obtained quickly by linear programming methods.

2.1.4. Zeros: probits and Tobits

In development applications, as elsewhere in economics, many variables of
interest have limited ranges, either a set of discrete values, or are continuous
but limited to some interval. The most frequent example of the latter is when a
variable is restricted to positive values; a farmer can produce nothing or
something, but cannot grow negative amounts, a consumer may or may not
smoke, but cannot sell tobacco, and so on.

Binary discrete choices are typically modelled by using probit or logit
models, and often less formally using the linear probability model, in which a
dichotomous dependent variable is regressed on the covariates. Provided the
standard errors of the linear probability model are corrected for the hetero-
skedasticity that is inevitable in such a specification, there is no good reason
not to use it, especially when sample sizes are large enough so that computa-
tional costs of probit and logit are non-trivial. The fact that linearity is an
inappropriate functional form for a probability is unlikely to be problematic
provided the bulk of the data are in the range where predicted probabilities are
far from either zero or unity.

Cases where the data are a partly discrete and partly continuous are harder
to handle. The most common case is where a continuous response is censored
at zero, for which the standard model is the Tobit, viz.

y,=max(0, B'x; +u,); E(ul|x,)=0; Eul|x)=0c". (25)

The model is also interpreted as one in which x' 8 + u, is a latent variable,
observed when zero or positive, but censored to zero, i.e. replaced by zero,
when it would otherwise be negative. A more general version of this model, in
which the censoring is controlled by a second latent variable, will be discussed
in the subsection on selection below. Estimation is usually done by assuming
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that the (conditional) distribution of «; is normal, and following Tobin’s (1958)
original procedure of estimating the parameters by maximum likelihood. The
log likelihood function for this problem is globally concave, so that it is a
routine problem in non-linear estimation, typically no more time consuming
than the estimation of a probit. Note also that if (25) is correct, OLS will be
inconsistent for the parameters B. The regression function is

w

E(yb)= (1~ F-x,plo)xiB +a | ~dF() (26)

—x; B/

where F(.) is the distribution function of o 'u,. (26) will generally not be
linear in x,.

Tobin’s maximum likelihood method works well when its assumptions are
satisfied. However, the estimates will typically be inconsistent if normality fails,
or perhaps more seriously, if there is heteroskedasticity [see Arabmazar and
Schmidt (1981, 1982) and Goldberger (1983)]. This is more than a technical
problem, and it is straightforward to construct realistic examples with heteros-
kedasticity where the maximum likelihood estimates are worse than OLS.
Particularly in survey data, where heteroskedasticity is endemic, there is no
reason to suppose that Tobit will give estimates that are any better than OLS
ignoring the censoring. With heteroskedasticity and censoring, neither tech-
nique is likely to give satisfactory estimates.

There are two approaches that make sense in practical applications. The first
is to abandon this way of thinking about the problem. The standard approach
starts from a linear model, and then complicates it to allow for censoring,
treating the linearity as a maintained structural hypothesis. In the standard
linear regression, this makes sense, because the structural regression coincides
with the regression function, and is readily recovered from the data. In many
cases, this structural assumption of linearity is merely a convenience, and there
is no particular reason to believe that the underlying relationship is genuinely
linear. When this is so, the standard procedure for dealing with censoring is not
an attractive one, because the original linearity assumption has nothing to
support it but convenience, and the convenience is lost with the censoring. The
regression function (26) is not a convenient object to handle, and a more
suitable alternative would be to start, not from the structure, but from some
suitable direct specification for the regression function. Given the presence of
the zeros, linearity might not be plausible, but some other flexible functional
form might do perfectly well. I shall discuss one particular non-parametric
procedure in Section 2.3 below.

The second approach is less radical, and makes sense when there is good
reason to retain the linear structure. In this case, it is desirable to use an
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estimation technique that will deliver consistent estimates in the absence of
normality and homoskedasticity. There are a number of these in the literature,
all more or less experimental. One that is relatively straightforward to compute
is Powell’s (1984) censored least absolute deviations estimator, which can be
implemented given a program (such as STATA) that allows quantile regres-
sion.

Powell’s estimator rests on the previously noted fact that medians are
preserved by monotone functions. Hence, if g5,(y,|x;) is the median of the
conditional distribution of y,, then from (25)

qso(yilx;) = max{0, g5,(x; B + u;)] = max(0, x; B) (27)

since max(0, z) is monotone in z, and where the last equality rests on the
assumption that the median of u, is zero. Given (27), consistent estimates of
the parameters can be obtained by running a nonlinear median (50th percen-
tile) regression, or equivalently by minimizing

Z |y; — max(0, x 8)| . (28)

Buchinsky (1994) suggests a simple - if not necessarily efficient — computation-
al strategy is to run a median regression of y on x, to calculate predicted values
and discard any that are negative before rerunning the regression. Repetition
of this procedure, if it converges, will lead to the parameters that minimize
(28). In my own — admittedly limited — experience, this works quite satisfac-
torily even if terminated after five cycles. As is to be expected from a robust
procedure, the estimates are a good deal less efficient that Tobit when Tobit’s
assumptions are correct, and the technique is probably not suitable for a small
number of observations. Nevertheless, it is certainly worth trying on survey
data, and given large enough samples is likely to be safer than either OLS or
Tobit.

2.1.5. Regression bias

Censoring is only one of many cases where the model of interest does not
coincide with the regression function, the conditional expectation of y on x.
There are a wide range of circumstances where the explanatory variables are
correlated with the disturbance, so that least squares regression does not yield
consistent estimates of the structural parameters. Omitted variables, simul-
taneity, heterogeneity, measurement error, and sample selection are all
capable of rendering OLS inconsistent, and a great deal of effort in the
development literature has gone towards developing techniques that will
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deliver consistent estimates for a range of specific problems. Some of these
techniques draw on panel data when available, and many others rely on one
form or another of instrumental variable estimation. In the next few subsec-
tions, I review a number of specific topics that illustrate the use of these
techniques and some of the issues associated with them.

2.1.6. Agricultural production functions: heterogeneity and panel data

The estimation of farm production functions is a problem that often arises in
development applications, whether we are simply attempting to relate physical
outputs to physical inputs, or whether we are concerned with more elaborate
models of farm-households and the associated integrated models of consump-
tion and production [see for example Singh, Squire, and Strauss (1986)].
Production functions are one of the oldest topics in econometrics; many of the
issues reviewed by Marschak and Andrews in 1943 are still relevant, and
Mundlak’s (1961) paper on agricultural production functions is the first — or at
least one of the first — to use fixed effect estimators with panel data as a remedy
for unobserved heterogeneity. The simultaneity and omitted heterogeneity
problems in this case arise in many other related applications.

A good starting point is the “obvious’” procedure, which is to regress outputs
on inputs, as for example in

In(q/A)=B,+BInA, +B,Inh,+ B, Inz, +u (29)

where A, is land, so that g,/A, is the yield per hectare of farm i, A; is labor
input, and z; is some other input, such as fertilizer, or perhaps the farmer’s
education. The sign of B, is relevant to the question of whether large or small
farms are more “productive”, the coefficient B, tells us about the marginal
productivity of labor on family farms, and the size of B; might tell us whether
inputs are being efficiently used, since a very large marginal product of
fertilizer relative to its costs might be used as an argument for intervention in
distribution or extension services.

The problem is that OLS estimation of (29) will tell us none of these things.
The finding that B8, >0, that smaller farms have higher yields, is the traditional
one since Chayanov’s (1925) findings for Russian farmers, and has been widely
observed elsewhere [see for example Sen (1962) for India, and Berry and Cline
(1979)] for a review of other research. There are many interpretations of the
result; that higher output per head is an optimal response to uncertainty by
small farmers [Srinivasan (1972)], that there are dualistic labor markets, [Sen
(1966, 1975)], or that hired labor requires more monitoring than family labor,
[Feder (1985)]. Perhaps the simplest explanation is that (29) omits unobserved
heterogeneity, in this case land quality, and that this omitted variable is
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systematically correlated with the explanatory variables. Farms in low-quality
marginal areas (semi-deserts) are typically large, and farms in high-quality land
areas are often much smaller. That a garden adds more value-added per
hectare than a sheep station does not imply that sheep-stations should be
reorganized as gardens. The omitted quality variable is negatively correlated
with A, and so causes the estimated coefficient to be downward biased, from
the true value of zero to the observed negative value. Indeed there is some
evidence that controlling for quality either reduces or removes the effect [see
Bhalla and Roy (1988) and Benjamin (1993)).

Similar arguments apply to the other variables in the production function.
For example, it is sometimes found that the returns to fertilizer use, estimated
from regression coefficients, are many times larger than would be consistent
with productive efficiency [see for example Benjamin and Deaton (1988) for
Cote d’Ivoire and Bevan, Collier, and Gunning (1989) for Kenya and
Tanzania]. Should fertilizer use be encouraged, and extension services ex-
panded? Not if what we are seeing is that the farms with the higher quality
land, or with the most go-ahead farmers, are also those who adopt new
technologies. Output is high, not because of the return to inputs, but because
of unobservables, land and farmer quality, that are correlated both with inputs
and outputs.

Omitted heterogeneity induces correlations between explanatory variables
and the error term in a way that has the same consequences as simultaneity
bias. Indeed, the production function is likely to suffer from genuine simul-
taneity bias even in the absence of heterogeneity; inputs, like outputs, are
under the control of the farmer, and can have no general claim to exogeneity.
The combination of genuine simultaneity and heterogeneity has the further
effect of ruling out the use of lags to remove the former; while it is true that
seeds have to be planted before the crop is harvested, heterogeneity across
farmers will mean that seeds are not exogenous for the harvest, a problem that
I shall return to in Section 2.2 in the context of using predetermined variables
with panel data. The result of all these considerations is that the regression
function of physical output conditional on physical inputs will rarely be
informative about the underlying technology.

There are a number of possible econometric solutions to these problems.
Note first that, under the standard neoclassical assumptions of the farm-
household model, the appropriate exogenous variables for production are not
inputs, but the prices of inputs, and the appropriate estimation technique is
either instrumental variables applied to the physical production function, or the
estimation of a dual specification, in which the technology is specified as a
profit function whose derivatives are the demand functions for inputs and the
supply functions of outputs, all functions of prices.

There are two problems here, one theoretical and one practical. First, many
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development economists are comfortable with physical relationships between
inputs and outputs, but are unwilling to commit themselves to a neoclassical or
“capitalist” view of agriculture in LDCs. Although it is easy to make fun of
such “‘engineering” as opposed to “economic” approaches, there are many
cases where misgivings have a real basis. Some markets are not well-de-
veloped, and farm inputs are sometimes allocated in ways other than through
competitive markets with paramefric prices. Second, and consistent with these
views, it my impression that it is much more difficult to estimate satisfactory
relationships in which inputs and outputs are functions of prices, rather than of
each other, where the omitted heterogeneity will often guarantee a good if
entirely spurious fit. This practical problem will be exacerbated in those cases
where there is relatively little price variation across farms. Certainly, it is rare
for researchers to report first-stage regressions of inputs on input prices.

When panel data are available, the heterogeneity can be addressed by
assuming that it takes the form of additive fixed effects in (29). Consistent
estimates of the parameters can then be obtained by OLS applied to differ-
ences across periods, or to deviations from individual means. Hence, if (29) is
rewritten in standard regression form with i denoting the farm, i=1, .., n, and
t the time period, t=1, .., T, we have for the differenced estimator

Ay, = B"Ax;, +uy — Uy (30)
fort=1,..,T—1, while for the within-estimator, we have
Y=Y =B~ x)tu,—u (31)

where the suffix {i.} indicates the time mean for farm i. Mundlak’s (1961)
original application of (31) to Israeli farms was designed to remove the effect
of “management bias”, the heterogeneity that arises from some farmers being
better farmers than others.

The ability to deal with heterogeneity does not come without cost, and
indeed many of the most important difficulties are recognized in Mundlak’s
paper. First, the technique depends on the specific functional form for the
heterogeneity, that it take the form of an additive fixed effect. There are often
good theoretical reasons why this will not be the case, and there is no
straightforward way of dealing with fixed effects in nonlinear models. Second,
the differencing or demeaning loses n observations, so that if 7 is small, as is
often the case, there will be a substantial loss in precision. Third, when the x’s
are positively correlated over time, differencing or demeaning reduces vari-
ation, so that once again precision is lost. In the extreme case when some of
the x’s are constant, there is zero precision, and the parameters are not
identified. In the agricultural production case, farm size will usually change
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little or not at all over short periods, which thus precludes any attempt to
resolve the “small farms are more productive” question by using fixed effect
estimators. Fourth, and perhaps most serious, in the presence of white noise
measurement error in the explanatory variables, demeaning or differencing of
positively autocorrelated x’s will not only reduce the variability of the signal -
variability in the true x’s — but it will inflate the ratio of noise to signal in the
regressors. In the standard case where measurement error induces attenuation
bias, the attenuation will be worse using the difference or within estimator.
The combination of loss of precision and increased attenuation bias often
erases in the difference or within estimates effects that were significant in the
cross-section, even when the model is correctly specified and there is no
heterogeneity bias. Such results provide no indication that heterogeneity bias is
an issue in the cross-section. It clearly makes sense to use Hausman (1978)
tests to check whether the estimates from the difference or within estimates are
indeed significantly different from the cross-section estimates, although when
significant differences are found, further information is needed to discriminate
between measurement error or heterogeneity bias as an explanation.

2.1.7. Panel data in practice

Perhaps for the reasons given in the previous paragraph, it is difficult to use
panel data — especially short panel data - to generate convincing conclusions
and it is particularly difficult to disentangle measurement error from omitted
heterogeneity. In particular, it is clear that panel data are no panacea, and that
there is no guarantee that difference or within estimates will be preferable to
OLS on a cross-section. Even so, panel data have allowed investigators to
consider alternatives that could not otherwise have been explored, and to relax
previously maintained assumptions.

The techniques that were originally developed for agricultural production
functions have been widely applied to other sorts of “production™, from the
production of health in terms of health inputs — where exactly the same issues
of simultaneity and heterogeneity arise — as well as to wage equations, where
earnings are a function of schooling and heterogeneity arises because econo-
metricians cannot control for unobserved ability. Such studies are extensively
reviewed by Behrman and Deolalikar (1987) and by Strauss and Thomas in this
volume. At their best, these studies are sensitive to the difficulties, and much
can be done to interpret results by using prior information about the likely size
of measurement errors, so that changes between cross-section and within
estimates can plausibly be explained. Investigators have also been creative in
using the panel data idea, not just for differences over time, but in other
applications. A number of studies, for example Behrman and Wolfe (1984,
1989) on education, and Rosenzweig and Wolpin (1988) on child health, use
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data on siblings to allow for family fixed effects, and to estimate within-family
regressions. Fixed effects can also be associated with the villages from which
survey clusters are selected, so that village means can be swept out from all the
households in each cluster, thus allowing consistent estimation of the effects of
quantities that vary within the village in the presence of arbitrary inter-village
effects [see for example Deaton (1988) and the further discussion below].

Other studies [Rosenzweig and Wolpin (1986, 1988) and Pitt, Rosenzweig,
and Gibbons (1993)] have used panel data to approach the important problem
of using regression analysis to aid project evaluation. For example, Pitt et al.
look at (among other things) the effects of grade-school proximity on school
attendance in Indonesia combining survey with administrative data. One
potential problem is that the placement of the schools is unlikely to be
random —indeed the whole point of project evaluation would be to avoid
random allocation — and that allocation may be influenced by unobservable
local factors that themselves have a direct effect on outcomes. The simplest
example would be when the government allocates schools to areas with poor
attendance, so that an ultimately successful program would be one in which
school attendance is the same everywhere, and where a regression analysis
would show no effect of school proximity on attendance. (It is also possible
that already successful areas are better at getting resources, for example
through influential politicians, or by being able to turn money into votes.)
Although the Indonesian data are not panels, the same administrative units
(kecamatans) show up in successive surveys, so that it is possible to compute a
difference estimator at kecamatan level, a procedure that is closely related to
the panel data from cross-sections methodology discussed above. This differ-
ence estimator shows much larger effects of school location on school
attendance than are visible in the cross-section.

2.1.8. Latent variables and measurement error

Instrumental variables and panel data are only two of the possible ways of
dealing with unobserved heterogeneity. In some cases, a more direct approach
is available in which the data provide enough information to identify the effects
of interest even in the presence of latent variables. These cases fall into the
class of multiple indicator and multiple cause, or MIMIC models, which are
related both to factor analysis and to models of measurement error [see in
particular Goldberger (1974) and Joreskog (1973)]. Rather than discuss the
general case, I look at two particular applications from the development
literature.

The first is the model of imperfect fertility control of Rosenzweig and Schultz
(1983), used again in Rosenzweig and Schultz (1987) and in Rosenzweig
(1990), and in a somewhat different context by Pitt, Rosenzweig, and Hassan
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(1990). A skeletal form of the model can be written as

Yu= oyt Byy+ %2y i tuy,

(32)
Y=+ %2yt 0 tuy,

where y,, y,, and y, are endogenous variables, z, and z, are vectors of
exogenous variables, u,; and u,, are error terms, and g is unobserved
heterogeneity. In the Rosenzweig and Schultz papers, the first equation
explains the number of births in terms of the endogenous contraceptive effort
y,, so that wu, is couple-specific fecundity. The second equation is used to
explain various characteristics of child health which are also influenced by
latent fecundity. In the Pitt, Rosenzweig and Hassan paper, which is concerned
with nutritional status and consumption, the first equation relates weight for
height to calorie consumption (the two endogenous variables) and an in-
dividual “endowment” . In this case, y; =y,, which is calorie consumption,
and the parameter # measures the extent to which the household reinforces
(6 > 0) or offsets (# <0) natural endowments in the intrahousehold allocation
of food.

As always with MIMIC models, the major issue is identification, and strong
assumptions are required to be able to recover 6. Provided that the B’s and y’s
are identified — which poses no non-standard issues — # is identified from the
covariance matrix of the residuals provided that u, and u, are orthogonal -
which requires that there be no common omitted variables in the two
equations — and provided the instruments are orthogonal to the unobservable
m’s, a set of conditions that would seem to be indefensible in any real
application. In practice, (32) is usually estimated by applying instrumental
variables to the first equation and then using the residuals as a regressor in the
second equation, with some allowance for the “measurement error’” that comes
from the presence of u; in the first equation. (Note also that without
correction, such a two-step procedure will not generally lead to valid standard
errors.) An alternative (and more direct) procedure would be to substitute for
# in the second equation from the first, and to estimate the resulting equation
by instrumental variables.

A second example comes from my own work on estimating price elasticities
of demand using the spatial price variation that is revealed in cross-sectional
household surveys when respondents report, not only how much they have
spent, but also the physical quantity bought, so that for each household we can
construct a unit value index. This unit value index reflects both local prices and
the quality choices of individuals, with unit values usually higher for better-off
households who purchase more expensive varieties, even of relatively homoge-
neous goods. A stripped-down version of the model can be written as follows,
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see Deaton (1988):

Yie=oy+BInx, +6lnp +f +uy

Iny.=a+ B Inx, +¢lnp, +uy =2
where I is a household, and c is the cluster or village in which it lives. The first
equation explains y, , the demand for the good — for example the logarithm of
quantity or the budget share of the good-in terms of household total
expenditure x, the unobservable price p, and village fixed effect f, and a
random error term. The price is assumed to be the same for all households in
the village and is therefore not indexed on i. The fixed (or random) eifect is
uncorrelated with the price, but can be correlated with x or with any other
included variables that are not constant within the cluster. The unobservable
price also manifests itself through the unit value » which is the dependent
variable in the second equation. The parameter f, is the elasticity of unit value
to total expenditure, or quality elasticity — Prais and Houthakker (1955) -
while ¢ allows for possible quality shading in response to price changes. If
price and unit value were identical, ¢ would be unity and 8, would be zero,
but quality effects will make B, >0 and ¢ =1.

Once again, identification is a problem, and as is intuitively obvious from
using the second equation to substitute out for the unobservable log price, only
the ratio 6/¢ can be estimated. The B-parameters can be estimated by a
within-estimator in which village effects are swept out, a procedure that also
provides estimates of the variances and covariances of u, and u,. Given the B’s
from the within-village estimates, construct the corrected village averages

Zlc=y,c'_éllnx.c’ er:h.l P.c-_ﬁzlnx.c' (34)
At the second stage, we calculate the estimate

cov(z,2,) — nc-_l 4P

¢ var(z,) = n; ' 6y, oY
where the covariances are taken over villages, where n, is the number of
households per cluster, and the ¢’s are estimated from the first stage variance
covariance matrix of the residuals. Using (33), it is straightforward to show
that (35) is a consistent estimate of the ratio 6/i.

Note that (35) is a standard errors-in-variables estimator in which the OLS
estimator, which is the ratio of the covariance to the variance, is corrected for
the component that is attributable to measurement error. The standard error
for ¢ can be obtained from first principles by application of the ‘“delta
method”, or by adapting the formulas in Fuller (1987) for the effects of the
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first-stage estimation. The model can also be extended to allow for other
covariates both within and between villages, it can be expanded into a system
of demand functions with many goods and many prices — [Deaton and Grimard
(1992)] - and a simple theory of quality shading can be appended to the model
so as to allow # and ¢ to be separately identified, [Deaton (1988)].

2.1.9. Selection models

Selection bias occurs in many different forms; one very general formulation is
due to Heckman (1990) and is useful for thinking about a number of issues that
arise in development practice. Heckman’s formulation has three equations, two
regression equations, and a switching equation that governs which of the two
determines behavior. The regressions are:

yUfoéiﬁu+uo;a Vi =Xy By +uy; . (36)
The dichotomous switch variable d; takes values 1 or 0 and satisfies
d;=1(z}y +uy,>0) (37)

where the “indicator function” 1(.) is defined to take the value 1 when the
statement in brackets is true, and 0 otherwise. The dependent variable y, is
thus determined by

yi=d;yo + (1—d)yy; . (38)

There are several cases in the development literature that use the model in
essentially this form. In van der Gaag, Stelcner, and Wijverberg (1989) and
Stelener, van der Gaag and Wijverberg (1989), (36) are wage equations for the
formal and informal sectors in Peru, while (37) is the equation determining
choice of sector. Pitt and Sumodiningrat (1991) look at the adoption of high
yielding versus traditional variety rice in Indonesia, so that the equations (36)
are variety specific profit functions, and (37) is the profit maximizing choice
between them. Bell, Srinivasan and Udry (1992) model credit markets in the
Punjab using a demand equation, a supply equation, and a condition that
enforces a ration whenever the supply is less than the demand. In the
appropriate notation, all of these fall within the general framework of the
previous paragraph. Various special cases of Heckman’s model occur even
more frequently in development practice.

Consider first setting both g, and the variance of u, to be zero in the second
equation in (36). Given this, we have the Tobit model when the right hand side
of the first equation in (36) coincides with the argument of the indicator
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function in (37). When the two quantities are different, we have the important
case generalizing Tobit where the censoring is determined by different factors
than determine the magnitude of the dependent variable when it is not
censored. This would be the correct model (for example) for the demand for
fertilizer if what determines whether a farmer uses fertilizer at all - perhaps the
existence of a local extension agent —is different from what determines how
much is used conditional on use — perhaps the price of fertilizer, land quality,
or the anticipated price of output.

For this generalized Tobit model, (36) and (37) imply that, if we condition
on y being positive, the regression function is

E(ylx;, z;, y;>0) =x; B+ Azly) (39)
where I have suppressed the zero suffix and where
Mziy) = E(ugluy; = —zy) - (40)

Equation (40) can also be applied to the case of truncation. In contrast to
censoring, where we see zeros when the observation is censored, with
truncation, the observation does not appear in the sample. In this case,
although (40) holds, and although the switching equation (37) still explains the
truncation, we cannot use it to estimate the switching parameters in the
absence of the information that would have been contained in the truncated
observations. We have only (40) to work with, and it is clear from inspection
that identification, if it is to be achieved at all, will require strong supple-
mentary assumptions. In cases where truncation cannot be avoided, it will
rarely be possible to make a convincing separation between the truncation
variables and the variables in the structural equation. With censoring, we have
both (37) and (40) and, as we shall see below, identification is easier.

Heckman’s general formulation can also be used to analyze the ‘“‘policy
evaluation” or “treatment” case that was discussed in the context of hetero-
geneity. In (36), set u, = u, and B, = B, except for the constant term. Equation
(38) then becomes

y,=a+6d +x;8+u (41)

where the parameter @ is the difference between the two constant terms and
captures the effect of the policy on the outcome. Given the structure of the
model, and the determination of d, by (37), the policy indicator will generally
be correlated with the error term in (41) so that the policy effect cannot be
consistently estimated by least squares. This is simply another way of looking
at the same problem discussed above, that when we want to estimate the
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effects of a policy or a project, we must take into account what determines it,
and having done so, we will usually find that we cannot discover its effects by
standard regressions. The basic issue here is the correlation of explanatory
variables with the error term, and it matters less whether we think of that
correlation as coming from simultaneity, heterogeneity, selection, or omitted
variables.

The fully general model (36) through (38) can be estimated as it stands by
using maximum likelihood once some joint distribution - typically joint
normality —is specified for the three error terms u,, u,, and u,. Given
normality, the special case of generalized Tobit can be estimated using a
short-cut technique that avoids the need for maximizing a custom built
likelihood function. In a famous paper, Heckman (1976) proposed what has
come to be known as the “Heckit” or Heckman’s probit, by analogy with Tobit
or Tobin’s probit. At the first stage, the y-parameters in (37) are estimated up
to scale by probit applied to a dichotomous variable that is 0 when y is
censored and 1 otherwise. The results are then used to calculate the A-function
in (40), which under normality takes the form of a Mill’s ratio, which can then
be used on the right hand side of (40) to estimate the B’s. This technique is
very widely used in the applied development literature, although (notably) not
in the study of wage equations among Panamanian males by Heckman and
Hotz (1986).

The role of the distributional assumptions in these models has come under
increased scrutiny in recent years. As we have already seen, maximum
likelihood estimation of the Tobit model is inconsistent when homoskedasticity
fails. In the general model, even identification can hinge on the distributional
assumptions on the error terms, a situation that is practically little different
from lack of identification altogether. The identification of the general model
under minimal distributional assumptions has been addressed in papers by
Manski (1988), Chamberlain (1986) and Heckman (1990). The identification of
the switching equation (38) is straightforward, provided of course that we
normalize the variance to unity. The identification of the structural equations
in the absence of knowledge of the joint distribution of u,, u,, and u, requires
that there is at least one variable in the switching equation (37) that is absent
from the structural equations, although this in itself is not sufficient; for
example, at least one of the variables unique to the switching equation must be
continuous.

Finding variables that affect switching but are absent from the structure is
closely akin to the general problem of finding instruments, and is frequently as
difficult. In the paper that introduced selection effects into applied econo-
metrics, Gronau (1973) found that women’s wages were systematically higher
when they had small children. The implausibility of children directly increasing
labor market productivity led to a model in which children acted as selection
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variables, with higher reservation wages required to bring women with children
into the labor force. But this sort of clear separation appears to be rare in
practice, and in cases where there are no grounds for excluding the selection
variables from the structure, there is little point in pursuing the selectivity
through a normality-dependent correction, as opposed to estimating the
regression function without any attempt to separate structure from selection.

When the models are identified, it is still desirable to pursue estimation
strategies that do not rest on normality. There exist a number of robust
techniques for various special cases of the general model. For the “policy
evaluation™ model given by (37) and (41), the obvious technique is instrumen-
tal variables — although see the earlier discussion on heterogeneity — which is
dealt with in the next subsection. Robust techniques for dealing with general-
ized Tobit are still in the experimental stage, and there is little practical
experience upon which to draw. However, one straightforward method is given
by Newey, Powell, and Walker (1990), who generalize the Heckit to make it
robust against departures from normality. At the first stage, they estimate a
non-parametric version of probit using the kernel techniques discussed in
Section 2.3 below. Alternatively, if we are not too concerned with the role of
normality in the probit, the first stage of Heckit can be retained to provide an
estimate of the index z'y. Indeed, the linear probability model is also a
competitive technique for the first stage. At the second stage, Newey, Powell
and Walker suggest that the index be entered into the regression, not through
the Mill’s ratio, but as a polynomial that will mimic the unknown and
distribution dependent A-function in (39). This procedure avoids having to
specify a joint distribution for the two error terms, and will force us to confront
the lack of identification where it exists. For example, the procedure will break
down if the x and z variables are the same.

2.1.10. Instrumental variables and natural experiments

The “policy evaluation” model (37) and (40) is only one of the many
regression models where the technique of instrumental variables can be useful.
Indeed, whenever there is a correlation between an explanatory variable and
the error term, whether induced by heterogeneity, simultaneity, measurement
error, omitted variables, or selectivity, instrumentation can be used to generate
consistent estimates provided that it is possible to find instruments that are (at
least asymptotically) correlated with the explanatory variable and uncorrelated
with the error terms. Of course, the variance of IV estimators will be larger
than OLS, so that even when the latter is inconsistent, there is no guarantee
that the IVE will be closer to the truth; as usual, the price of greater generality
is decreased precision, and as usual, it is important not to interpret an
insignificant estimate from IVE as evidence that the OLS estimate is spurious.
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Once again, the Hausman test is useful for checking whether the IV estimates
of the parameters of interest are significantly different from OLS.

In this subsection, I have two points to make in addition to what is contained
in any good textbook treatment of instrumental variable estimation. The first
concerns the policy evaluation model and the role of “natural” experiments.
The second is concerned with some aspects of the finite sample distribution of
instrumental variables estimates that are important for the interpretation of
results in practice.

Perhaps the best environment for policy evaluation is where the ‘“treatment™
is randomly allocated, so that the effects of the policy can be assessed by
post-experimental comparison of outcomes for treatment and controls. For
obvious reasons, projects and policies in LDCs are typically not allocated
randomly, although there is occasional scope for randomization when there are
more suitable individuals or localities that would like to be treated than there
are funds to support them [see Newman, Gertler, and Rawlings (1993)]. There
is also scope for genuine experimentation prior to policy evaluation, something
that has been carried furthest in the US [see Grossman (1993) for a review],
but is also of increasing interest in LDCs [see again Newman et al.]. When
experimentation is not possible, or simply was not done, the question arises as
to whether and in what circumstances econometric technique is a substitute.

A good deal of recent attention has been devoted to “natural” experiments,
situations where there is no experimental intent, but where the design or
implementation of a program has features that allows the construction of good
instruments, or of groups of experimentals and controls where it can be
convincingly argued that selection into each group is effectively random. Good
examples of this technique are provided by papers on veteran status and wages
by Angrist (1990) and by Angrist and Krueger (1989). Angrist studies the
effects of Vietnam veteran status on wages using the fact that selection for the
draft was at least in part random through the allocation of lottery numbers.
The comparison of wage rates between those who received high and low lottery
numbers reveals the veteran effect without contamination by other omitted
variables because the latter cannot be correlated with the selection. Angrist
and Krueger note that in the last years of World War II the selection
procedures into the military generated a (weak) correlation between the
likelihood of induction and the position of an individual’s birthday within the
year, with those born earlier more likely to be drafted. Using a sample of
300,000 individuals from the 1980 census, Angrist and Krueger show that the
positive association between World War I veteran status and wages is reversed
when birth dates are used as instruments, and that the subsequent negative
wage effect is consistent with the negative effect on wages of having been a
veteran of the Vietnam War.

These are impressive studies, and they show how to make good use of
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natural experiments. However, it is important to note the features of these
examples that are responsible for the credibility of the results. In one case,
randomization is actually present, so that we are quite close to a genuine
experiment. In the other, the birth date effect comes from an accidental
feature of the program. In cases where the element of natural experiment
comes from deliberate choice by an individual or an institution, the othogonali-
ty between the instrument and the error terms can be much harder to defend.
In particular, differences in government policy between areas or individuals
can rarely be treated as experimental, and indeed one of the achievements of
the political economy literature has been to stop economists automatically
treating government behavior as an exogenous explanatory variable. Differ-
ences in educational policy between two otherwise “‘similar” countries such as
Kenya and Tanzania may provide useful insights on educational outcomes,
since at least some hard to observe features are automatically controlled for
[see Knight and Sabot (1990)], but the policy differences are neither random
nor accidental, and the comparison can hardly be labelled a natural — or any
other kind of — experiment. Technological change, such as the green revolution
in India — Rosenzweig (1990) — can plausibly be taken as exogenous to Indian
farmers, but that is a different matter from the adoption of the technology,
which is always likely to be correlated with farm-specific features that make it
appear more likely to succeed. Some components of fertility can be thought of
as random, such as Rosenzweig and Wolpin’s (1980) use of the birth of twins as
a natural experiment, but when differences in “the intercouple variation in the
biological propensity to conceive” can only be measured as the residuals from a
regression, again see Rosenzweig (1990), the validity of the instruments
requires that the residuals be uncontaminated by other omitted factors,
something that will often not be credible. Even regional price variation, which
is routinely treated as exogenous—as in my own work in spatial demand
analysis that was discussed above — will not provide valid instruments in the
presence of regional taste variation [see Kennan (1989) and Deaton (1994,
Chapter 2)].

The natural experiment methodology works best when, as in the Angrist and
Krueger examples, it focusses on some detail of the program that is plausibly
random. While there is no guarantee that all programs will have this sort of
feature, it is possible that a detailed examination of administrative procedures
can yield a useful instrument. Although major program outlines are set by
politicians or administrators who are well aware of the consequences of their
actions, the microstructure of the implementation is often undertaken by
bureaucrats who are allowed administrative discretion, whose motivation is no
more than completing their task, and whose actions may sometimes be close to
random, as when decisions are influenced by birthdates or alphabetical order.

Even in these favorable cases, there are serious econometric problems
associated with instrumental variables. Even in the best cases, where samples
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are large enough to make asymptotic theory useful, the variance covariance
matrix of the IV estimator exceeds that of OLS by a positive definite matrix, so
the removal of bias —if it is present — comes at the price of precision. But the
greatest practical difficulties relate to the finite sample properties of IVEs, and
to the fact that practical inference is inevitably based on large-sample
distributions that often give very little idea of the true behavior of the
estimates. Although general results are available on the finite sample dis-
tribution of instrumental variable estimates — see Phillips (1980) — the formulae
are not readily calculated and are thus of limited value for applied researchers.
Even so, a good deal is known. The finite sample distributions of IVEs can be
thick-tailed, so much so that IVEs possess finite sample moments only up to
the degree of overidentification [see Davidson and McKinnon (1993, 220-224)
for discussion and references]. Thus in the (fairly common) case where there is
exact identification, the IVE does not possess a mean. Hypothesis testing in
such circumstances is obviously hazardous, especially when asymptotic stan-
dard errors are used to compute t-values. Even when there is sufficient
overidentification to guarantee the exitence of the moments, IVEs are biased
towards OLS in finite samples [see Nagar (1959) and Buse (1992)]. In the
extreme case, where the first stage regression has no degrees of freedom and
fits perfectly, OLS and IVE are mechanically identical. There is therefore a
tradeoff between having too many instruments, and risking the close replica-
tion of the biased OLS estimates, or of having too few, and risking dispersion
and apparently extreme estimates.

Special cases of small sample distributions of IVE have recently been
investigated by Nelson and Startz (1990a,b) and by Maddala and Jeong (1992).
Nelson and Startz analyze the simplest case of a linear regression with a single
right hand side variable and a single instrument. They show that the asymptotic
distribution of the IVE will often be a bad approximation to the true
distribution when the instrument is a poor one in the sense of being only
weakly correlated with the explanatory variable. In particular, there is no
guarantee that a “poor” instrument will necessarily result in insignificant
estimates when the instrument is used. Indeed, Nelson and Startz produce
examples where the opposite occurs, and where apparently significant esti-
mates are generated spuriously by the use of a weak instrument. The moral is
that it is important to present the results of the first-stage estimation in
two-stage least squares —a practice that is far from routine — and that little
credibility should be given to instrumental estimates where the predictive
power of the first stage has not been established. Although Nelson and Startz’s
analysis covers only the univariate case, the natural extension would be to
check the joint significance in the first-stage regression of the identifying
instruments, for example by calculating an F-test for the variables not included
in the structural equation.

Buse’s results are also concerned with finite sample bias and with the fit of
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the first-stage regressions. Using Nagar approximations to the moments of the
estimator —a technique that will only be valid in those cases where enough
moments exist — Buse asks how the finite sample bias changes as the number of
instruments is increased. In the case where there is one endogenous right hand
side variable, Buse’s formula implies that one additional instrument will
decrease the approximate bias if

R}-Ri>(L,-2)"'(R1 - Ry) (42)

where L, >2 (the asymptotic approximations are not useful for smaller values)
is the number of instruments before the addition, R}, is the fit of the regression
of the endogenous right hand side on the exogenous variables included in the
structural equation, and R’ and R; refer to the same regression but with the
addition of L, and L, +1 instruments respectively. Not surprisingly, it is
possible for poor instruments to increase the bias, but according to (42) the
bias can be exacerbated even by the addition of an instrument that makes a
substantial contribution to the fit. These results, like those of Nelson and
Startz, underline the importance of examining the first-stage regression in
two-stage least squares.

2.1.11. Test statistics

The construction and interpretation of test statistics follows the same general
principles in development practice as in the rest of econometrics. The “trinity”
of likelihood based tests, Wald, likelihood ratio, and Lagrange Multiplier tests
are widely used in the development literature as elsewhere [see Engle (1984)
for a review]. Many of these tests are based on the normal distribution, so that
in parallel with the increased focus on robust estimation techniques, there has
been a move towards robust test statistics. In particular, and as we have
already seen, Hausman (1978) tests are frequently useful, since they provide a
general framework for comparing efficient estimates obtained under restrictive
assumptions with more robust estimators whose consistency is more generally
guaranteed but that are less efficient under the conditions that justify the
original estimator. The generalized methods of moments (GMM) estimators
introduced by Hansen (1982) also provide an integrated framework for
estimation and inference. Although GMM estimators are perhaps most
frequently used in a time-series context for the estimation of rational expecta-
tions models, they also provide a wseful way of thinking about many of the
techniques discussed above, since it is often the case in development practice
that estimation is based on conditional moment restrictions.

For example, suppose that we generalize the instrumental variable models
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discussed above by writing the structural model in the form

f(yoxi, B)=u, (43)
and appending the & conditional moment restrictions

E(ulz;)=0, j=1,..,k. (44)

The sample analog of (44) is the condition n 'Z'u=0, and the GMM
estimator of 8 is given by making the quantity as small as possible, or

B =arg;nin wZwZ'u (45)

where W is a suitable positive definite weighting matrix. Hansen shows that the
optimal choice for W is the variance covariance matrix of the vector Z'u, Z'02Z
say, in which case the criterion function in (45) is

wWZ(Z'0Z) ' Z'u . (46)

Under the null that all the instruments are valid, (46) will have an asymptotic
x~ distribution with degrees of freedom equal to the number of instruments in
excess of the number required to identify the parameters. Hence (46) is often
referred to as an overidentification test, and it can be used to good purpose in
most of the situations described above that involve the use of instrumental
variables. In practice, the matrix (2 is not known but is constructed from the
residuals analogously with the heteroskedastic and cluster effect models
discussed above, see equations (21) and (22) above. Following Newey (1986),
we can also estimate the model using a subset of instruments and calculate a
Hausman test by comparing the value of the criterion function with that
obtained using the full set. As we shall see in the next section, this framework
also provides a useful way of addressing a number of important issues in the
analysis of macroeconomic and panel data.

When standard test procedures are applied in the context of large scale
surveys, the issue often arises as to whether critical values should be adjusted
for sample size. In time-series work, including most applied macroeconomics,
sample sizes do not vary widely from one application to another, and the issue
does not arise. But in survey based econometrics, the number of data points
can vary from a few hundred to a few million, and there are arguments that
suggest that it is inappropriate to use the same critical values at all sample
sizes. In particular, when working with very large sample sizes, investigators
often find that standard statistical procedures lead to hypotheses being rejected
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“too frequently”, and that even when the null hypothesis seems like a good
approximation, f-tests and F-ratios are large relative to conventional signifi-
cance levels.

The intuitive argument is that no one believes that hypotheses are literally
true, so that when we say B = 0, we really mean that 8 is close to zero. With a
small sample size, B will not be very precisely estimated, so that an estimate
close to zero will not lead to a rejection of the null. However, if 8 is being
consistently estimated, the sampling distribution will tighten as the sample size
increases so that even very small values of B8 can be associated with very large
t-statistics when we test the hypothesis that it is zero. Of course, if we literally
believe that 8 =0, standard test procedures give the right answer, and the
t-test will reject the null 5 percent of the time whatever the sample size.

There are deep issues of statistical philosophy here, which it is not
appropriate to rehearse here. Many economists are adherents of classical
inference, while others believe that it is inherently nonsensical to test point
nulls, and reject testing altogether in favor of estimation. The Bayesian point
of view has been eloquently argued by Leamer (1978). He points out that if we
hold the probability of Type I error fixed as the sample size increases — which is
the classical prescription — all of the increased precision of estimation from the
additional observations is being devoted to reducing the Type II error. If B is
not zero, the probability of failing to detect the fact may be large with 100
observations, and infinitesimally small with 200,000. The classical procedure,
by holding fixed at S percent (say) the probability of Type I error, is one that
commits us to lexicographic preferences or loss functions over the two types of
error; lower Type I error is always preferred, independently of Type II errors.
Although classical statisticians emphasize the asymmetry of Type I and Type II
errors, as well as the care that should be taken in formulating the null, it is still
hard to see why we should subscribe to such preferences, rather than trading-
off the two types of error as the sample size increases.

Recognizing the persuasiveness of Leamer’s argument is a good deal easier
than doing something about it. From the Bayesian perspective argued by
Leamer, the solution is to choose models based on posterior probabilities. For
example, if we want to test that a parameter or subset of parameters is zero,
we compare the posterior probability of the restricted and unrestricted models,
and select whichever is the larger. As shown by Schwarz (1978), in sufficiently
large samples this rule leads to a simple adjustment to the likelihood ratio test.
In particular — see Chow (1983, pp. 300-302) for an exposition — the posterior
probability of each of the models is dominated for large enough sample sizes by
terms of the form

InL(B) - %m n (47)

where B is the maximum likelihood estimate, k is the number of parameters,
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and n the sample size. Hence, standard likelihood ratio tests can be trans-
formed into large sample Bayesian posterior probability tests by comparing
twice the log likelihood ratio, not with a x* distribution with g degrees of
freedom, where g is the number of restrictions, but with ¢ multiplied by the
logarithm of the sample size. For a standard F-test, which in large samples is ¢
times the x”, the Schwarz procedure calls for the restrictions to be rejected
when the F is larger than the logarithm of the sample size.

While the use of such criteria should ultimately depend on the philosophy of
inference, I have frequently found in my own work that the Schwarz criterion
gives sensible answers. As far as it is possible to tell on other grounds, it seems
to discriminate between what I intuitively think of as “large” and ‘“‘small”
violations of the null; accepting the null according to these sample dependent
criteria rarely leads to untoward consequences, while its rejections are ignored
at one’s peril. However, it should also be emphasized that some of the large
test statistics that are frequently encountered using survey data may be
attributable to some of the other considerations discussed in this section, such
as a failure to treat heteroskedasticity or to allow for cluster effects, and these
may provide more mundane explanations for the apparent frequency with
which sensible nulls are rejected.

2.2. Econometric issues in time-series

The way that econometricians think about time-series data has undergone
major changes in the last ten to fifteen years. Much of the change has come
from macroeconomics, and its relevance to development economics lies largely
but not exclusively in that area. In this section, I provide a brief introduction to
the modern language of time series analysis, and to some of the major issues
that have been debated in recent years, particularly those associated with unit
roots. I begin with univariate descriptions of time series, and with alternative
methods of handling trends. I use illustrations from my own and others’ work
on modelling commodity prices, one of the leading time-series topics in
economic development. Commodity prices are extremely variable, arguably
trending, and their behavior generates major problems of macroeconomic
stabilization and growth for the large number of LDCs that are dependent on
exports of primary commodities. Adequate univariate time-series representa-
tions of commodity prices would be a considerable aid to the design of
macroeconomic policy in much of the world. The second subsection turns from
univariate to multivariate time-series analysis and considers the problems that
arise in regression analysis when the variables are trending. These two sections
can do no more than scratch the surface of what has become an immense topic.
For readers interested in pursuing these questions further, Campbell and
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Perron (1991) provide an accessible discussion as well as an excellent synthesis
and guide to the literature.

Time-series issues are important not only in statistical description and
regression analysis, but also in modelling behavior, particularly when in-
dividuals are assumed to behave as dynamic intertemporal optimizers. Such
approaches have had a considerable impact on the way we think about saving,
and the recent literature on saving and development has begun to make use of
the tools of dynamic optimization. I discuss Euler equation approaches to the
econometric analysis of these models, as well as the more elaborate structural
estimation strategies that have recently made their appearance in development
and elsewhere.

The final subsection returns to the topic of panel data, and to the time-series
issues involved in its use. Although many of the applications here are again
macroeconomic, particularly to the analysis of growth using time-series data
from a cross-section of countries, the same issues arise in many microeconomic
applications where there are dynamic features, such as lagged dependent or
predetermined variables.

2.2.1. Univariate time-series models

For many purposes it is useful to have a simple descriptive model of a time
series. Although such models rarely have a direct behavioral content, they can
encapsulate the stylized facts about a time-series, whether or not it has a trend,
its autocorrelations at different lags, and how long-lived are the effects of
unanticipated shocks. In the case of commodity prices, the existence or
otherwise of a downward trend in the terms of trade of LDCs has been a topic
of debate in economic development since Prebisch and Singer in the 1950s.
Similarly, sensible macroeconomic stabilization in the face of shocks to
commodity prices is greatly eased if it is possible to come to some sort of
understanding of what a given shock means for future prices. In principle,
univariate time-series analysis can cast light on these questions.

A useful starting point is the familiar ARIMA formulation of Box and
Jenkins (1970). For a univariate time series y, this can be written

A(L)A%, = B(L)s, (48)

where L is the lag operator, A(L) and B(L) are ﬁmtc degree polynomials, A is
the backward difference operator (1 — L) so that A? indicates differencing d
times, and ¢, is an independently and identically distributed or “‘white noise”

process. The roots of the polynomlals A(L) and B(L) are assumed to lie
outside the unit circle, so that the series Ay, is stationary. Since the quantity e,
is white noise, it — or at least the deviation from its mean — is not predictable
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and is therefore frequently referred to as a shock or innovation. The basic idea
of (48) is first to difference the series to induce stationarity, and then to use
low order autoregressive and moving average polynomials to capture the
autocorrelation structure of the differenced process. If the series is stationary
to begin with, d will be zero. However, in many macroeconomic applications,
the change or the rate of growth of the series is more naturally thought of as
stationary, and there are some cases, such as perhaps the level of prices, where
even the rate of growth will be non-stationary, requiring twice-differencing to
generate a stationary series. A non-stationary series that has to be differenced
d times to induce stationarity is said to be integrated of order d, or I(d), so that
a quantity such as GDP would typically be /(1) - or difference stationary —
while the price level could be I(2) and unemployment rates or interest rates
either I1(0) or I(1).

When the parameter d in (48) is greater than 0, then we say that the series y,
has a unit root; the term comes from noting that the left hand side of (48) can
be written as A(L)(1— L)? which is a polynomial with d unit roots. The
simplest case of a unit root model is the random walk with drift, which is
written

Ay, =g=n+u, (49)

where 7 is the mean of ¢ and is the average rate at which y increases in each
period. Other more general unit root models come from treating u, in (49) as a
general stationary process, although the restriction in (48) that the roots of
B(L) lie outside the unit circle rules out the case where u, is itself the first
difference of a stationary process; otherwise we could write any stationary
process — including white noise —in the form (49).

Equation (49) is an example of how ARIMA models deal with a trend. With
or without additional serial correlation, such models often provide a natural
and straightforward method of summarizing the behavior of a series. However,
integrated processes are not the only way of modelling trends. The most
important competitor is the standard deterministic trend, whereby, instead of
differencing the series to induce stationarity, we first remove some determinis-
tic function of time. As we have seen, an I(1) series that is stationary in
first-differences is called difference stationary. When y, — f(¢) is stationary for a
deterministic function f(¢), then we say that y, is trend stationary. Since 0 is a
deterministic function of time, trend-stationary series include stationary series
as a special case. For the typical upward trending macroeconomic series, f(t)
will usually be linear or exponential, although there is nothing to rule out other
possibilities. Note that a series that is stationary about a deterministic linear
trend will have a first difference that appears to satisfy (49) (or equivalently
(48) with d =1). That it cannot in fact be written in this unit root form follows
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from the fact that the associated polynomial B(L) would have a unit root,
which is ruled out by the definition of (48).

The distinction between trend stationarity and difference stationarity can
sometimes be made in terms of econometric convenience, but it is often a good
deal more. The long-term behavior of the series and our ability to forecast it
depends a good deal on which one is correct. If a series is trend stationary, it is
tied to its deterministic trend from which it can never stray too far. However
autocorrelated it might be in the short run, and however slowly it comes back
to its anchor, come back it must. As a result, once we know the parameters of
the process, and once the effects of the original position of the series relative to
trend have worn off, our long-term forecasts will be forecasts of the trend. And
since the trend is deterministic, there is no more uncertainty about its position
in the far distant future than there is in the short or medium term.

For a difference stationary series, the position is quite different. Although
the average rate of change per period is fixed, just as it is in the trend
stationary case, there is nothing that ties the series to a particular position or
particular trend line. For example, the random walk with drift in (49) increases
at i per period on average, but in any given period it will increase by more or
less depending on the random shock u,. But once the new position has been
attained, the series will increase at an expected rate of 5 per period from that
new position, whatever was the route by which it got there. In particular, there
is no non-stochastic trend to which the series is tied, and the series will
eventually depart as far as we like from any that we try to delineate. As a
result, even when we know the parameters of a difference stationary process,
the uncertainty about its future position will grow steadily as we look further
into the future. Put another way, because the series is an integrated process,
the effects of shocks never wear off; disturbances have permanent effects.

The distinction between trend stationarity and difference stationarity means
that in practical work it is necessary not only to estimate the parameters of a
given type of model, but it is also necessary to choose a modelling strategy, and
to decide which type of model to use. A number of test statistics have been
developed to help make the choice. To take the simplest example, suppose that
v, is a trending series and that we consider the model

Ay, =at+bt+my,_, +u,. (50)

When b=m=0 (50) is a random walk with drift; alternatively, y, is a
stationary AR(1) around the linear trend (1 — #)~'(a + bt). The random walk
with drift model can therefore be treated as the null hypothesis in (50).
However, and although the parameters in (50) are consistently estimated by
OLS, conventionally calculated F-tests of the hypothesis that b and 7 are
jointly zero do not have the F-distribution, even asymptotically. Special
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distributions must therefore be used, and in the case of (50). the appropriate
critical values have been calculated and tabulated by Dickey and Fuller (1981).

Although the random walk with drift is a leading special case, we more
frequently need to test for a unit root, which requires us to allow for the
possibility that y, is serially correlated even after first-differencing. To do so,
(50) is augmented to read

k
Ay,=a-+bt+my,_,+2 64y, +u, (51)
i=1 :

where k is selected — typically by some model selection procedure — to be large
enough to account for the serial correlation in the differences under the null.
Once again, the unit root null can be tested by calculating a standard F-test,
and once again the results must be checked against the critical values tabulated
by Dickey and Fuller.

The recent literature on unit roots contains a large number of tests that are
similar in purpose to those outlined above. There are a variety of different
types of trends that can be used, from no trend at all, through polynomials in
time, to nonlinear or “breaking” trends. Even in the cases given here, we
could consider simply the f-test on # in place of the F-statistic on b and
jointly. These and other possibilities are reviewed by Campbell and Perron
(1991) and by Mills (1990). However, the Dickey-Fuller tests shown above
illustrate the general principles, and are sufficient background for me to discuss
a number of practical implications.

The first point to note is that these tests take the unit root hypothesis as the
null, so that if the test results in an acceptance, we have only failed to reject
the unit root hypothesis, and we cannot legitimately claim that we have
rejected trend stationarity. It is not possible to use these unit root tests to
prove that time series have unit roots. The second issue is one of power. In
most cases of interest, the data can be equally well represented by both
difference stationary and trend stationary formulations. If # in (51) is nonzero
but small, which is what the parameter estimates frequently show, it will be
difficult to reject the hypothesis that there is a unit root, even though the series
is in fact trend stationary. With enough data, it will always be possible to tell
difference stationary and trend stationary models apart, but the distinction
hinges on the long-run behavior of the series, behavior that can be very
difficult to establish in finite samples.

It has become standard practice among some time-series econometricians
and macroeconomists to accept the unit root hypothesis when it cannot be
rejected, and then to follow the standard Box—Jenkins prescription of estimat-
ing a parsimonious (i.e. low-order) ARMA for the differenced series. In many
cases, this will be a sensible descriptive strategy, but it is important to
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recognize it as such, and to note that there are cases where it can be quite
misleading. Commodity prices again provide some instructive examples. When
deflated by some suitable price index, such as the US consumer price index or
an index of imports of manufactures by developing countries, the series are
quite volatile but show relatively little trend over long enough periods. (What
trends there are are typically negative as suggested by the Prebisch-Singer
hypothesis [see for example Grilli and Yang (1988) and Ardeni and Wright
(1992)]. The series also display very high first-order autocorrelations, typically
0.9 or higher even in annual data [see for example Deaton and Laroque
(1992a) and Cuddington (1992)], and these autocorrelations typically decline
only very slowly at higher orders. Such autocorrelation patterns are typically
regarded as symptoms of non-stationarity, and indeed it is entirely plausible
that commodity prices should be non-stationary over periods long enough to
see changes in the technology of material use in production and consumption.

Even so, it comes as somewhat of a surprise to discover to what simple
conclusions the unit root methodology leads. Cuddington (1992) looks at 26
commodity prices using long-run annual data, and find that unit roots cannot
be rejected for half of them, and that in some cases, such as beef, copper, and
rubber, a simple random walk with drift cannot be rejected. Looking at more
recent data but at a monthly rather than annual frequency, Deaton (1992b)
also finds that low-order unit root models provide an excellent fit to the data
for cotton, copper, cocoa, and coffee prices. But these models make neither
statistical nor economic sense. The price of annual crops like cofton are
influenced by weather shocks that are known to be stationary, so that a model
that asserts that all shocks are permanent is essentially absurd. Even with tree
crops, where a frost may generate a price increase that can last for several
years, the frost is not permanent and the trees will grow again, so that there is
no reason to suppose that there will be any long term effect on the price. Nor
do the data suggest that there are such long term effects, and in spite of the
very high levels of volatility, the real prices of many commodities are
remarkably close to what they were at the beginning of the century. What
seems to be the case is that commodity prices are in fact tied to slowly evolving
trends, perhaps deterministic but perhaps also stochastic with low volatility,
and that the mechanism that brings them back to their trends operates only
very slowly. Because the trend-reversion is small enough in any given month or
year, the tests are unable to reject the unit root, and the first-differences of the
series are well-approximated by low order autoregressive or moving average
processes. But the statistical procedure has effectively discarded all the long-
term information in the data, and the fitted process has quite different
long-term properties from the data. For policy purposes, such errors can be
very serious. If the copper price is a random walk, the income boom that
accompanies a price boom can be treated as permanent, and it is appropriate
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for policy makers to engineer a consumption boom by the full amount of the
income boom. But if prices are ultimately trend reverting, the income is
ultimately transitory, and can support only a fraction of itself in permanently
increased consumption.

A debate along these lines has characterized the estimation of unit roots
using American macroeconomic data, where Campbell and Mankiw (1987)
found that quarterly data on GDP showed persistence of macroeconomic
shocks, while Cochrane (1988) found much less persistence using longer run
annual data. Out of these debates came a useful and more direct measure of
persistence that can be calculated with minimal parametric assumptions.
Suppose that Ay, is the (demeaned) first difference of the series, and that we
write its moving average representation as

Ay,=C(L)e, =&+ 2 ¢&; - (52)
j=1

Note that (52) does not commit us to either trend or difference stationarity, or
indeed to nonstationarity at all; if y, is white noise, for example, C(L)=1—L.
Campbell and Mankiw (1987) propose that y defined by

y=C(1)=1+§:c}. (53)

be used as a measure of persistence. Note that when the series is stationary or
trend stationary, the C(L) polynomial will have a unit root and y will be zero.
If the series is a random walk, y will be unity, if positively correlated in first
differences greater than unity, and so on. Note also that if the series is slowly
trend reverting, with positive low order autocorrelations that are eventually
succeeded by individually small negative ones, the infinite sum C(1) will be
much smaller than the sum of its first two terms.

Campbell and Mankiw’s persistence measure is closely related to Cochrane’s
(1988) variance ratio, and both are closely related to the spectral density at
frequency zero of the difference Ay,. This opens the way for the estimation of
persistence based on the standard range of non-parametric (window) estimates
of the spectral density [see Campbell and Mankiw, Cochrane, and Priestly
(1981) for the details]. In the work on quarterly measures of GDP, Campbell
and Mankiw’s calculations support the persistence measures that are estimated
by low-order ARMA processes. However, in the commodity price case, the
non-parametric persistence estimates are very much lower than those obtained
from the parametric models, and in most cases are not significantly different
from zero [see again Deaton and Laroque (1992a)]. Standard unit root
modelling of models that are slowly trend reverting will generate a misleading
picture of long-run behavior.
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2.2.2. Multivariate issues in time-series models

The time-series issues associated with the presence of unit roots arise not only
in univariate modelling, but also when we construct models containing several
trending regressors. The issue arises most sharply in macroeconomic work,
where there is a range of estimation and inference problems associated with the
use of regression analysis to estimate relationships between trending variables.
In this section, I give only the barest outline of the topic; I am unaware of any
issues that are specific to development questions, and fuller treatments are
readily available elsewhere [see again Campbell and Perron (1991) and Stock
and Watson (1988)].

A useful starting point is a standard linear regression using time-series data,

Ye=Bx tu,. (54)

When all the variables in (54) are stationary, there are no non-standard issues
of inference or estimation, so that we suppose some or all of the variables are
non-stationary as indeed will be the case in most macroeconomic applications.
The knowledge that there can be difficulties with such an apparently innocuous
regression goes back to Yule (1926), with later refinements by Granger and
Newbold (1974) and Phillips (1986). This is the literature on spurious
regression, which is what happens when two essentially unrelated variables are
regressed on one another, and appear to be related because, over the period of
the sample, they exhibit trend-like behavior. Yule illustrated the point with the
correlation at high frequencies of a sine and cosine wave that are orthogonal
over frequencies longer than a complete cycle, while Granger and Newbold
work with two independent random walks. They show that when two in-
dependently generated random walks are regressed on one another, a situation
in which the OLS estimate of 8 converges to zero, there will often be spurious
significance with apparently significant values of the z-statistic and of R?. The
very low Durbin—Watson statistics that typically accompany such regressions
should indicate that something has gone wrong, although it is not hard to find
examples in the literature where it is simply interpreted as evidence of positive
autocorrelation, rather than of more fundamental difficulties. Even when
investigators are more alive to the dangers, spurious regressions provide a good
example of how standard distributional theory can break down in the time-
series context.

A central concept in the multivariate analysis of trending variables is
cointegration, introduced by Engle and Granger (1987). A vector of non-
stationary variables z, is said to be cointegrated when there exists at least one
linear combination, y'z, say, that is stationary. Clearly, if the regression (54) is
to make sense, with u, a zero mean stationary process, the composite vector



Ch. 33: Data and Econometric Tools for Development Analysis 1849

(y,x,) must be cointegrated with cointegrating vector (18). By contrast, two
independent random walks are clearly not cointegrated, and their failure to be
so is part of the problem in spurious regressions. The idea behind cointegration
1s that two (or more) variables are tied together in the long run, so that while in
any given period the cointegrating relationship will never exactly be satisfied,
the deviation is always within the bounds defined by a stationary distribution.
Indeed, Engle and Granger show that when variables are cointegrated, there
exist “error correction’ representations of the relationships between them. In
the case of two variables, this can be written

Ayr:aﬂ+a1Ax:+a2(yr--1_ﬁxr—!)+u: (55)

where B is the cointegrating parameter, and y, — Bx, is stationary. In many
cases, (55) can be interpreted as a causal mechanism running from x to y,
whereby y adjusts both to changes in x and to the previous “disequilibrium” in
the long-run relationship. However, because (55) is a general consequence of
cointegration, there can be many other interpretations.

The error-correction representation is also important because it highlights
the consequences of a strategy that used to be recommended by time-series
analysts, which is to difference non-stationary variables prior to regression
analysis, so that standard inferential procedures can be applied. Equation (55)
shows that when variables are cointegrated, a regression in differences ignores
the long-run information in the data, and will generate results that do not
reflect the long-run behavior of the series. This is analogous to the discussion in
the previous section of what happens when a slowly trend-reverting series is
modelled by applying a low-order ARMA to its difference. In both cases, the
long-run behavior of the series is lost. The same result also applies to the
analysis of a set of trending variables among which there may be one or more
cointegrating relationships. The dynamics of such systems are often investi-
gated in an atheoretical way by estimating vector autoregressions or VARs,
where each variable is regressed on its own lags and those of the other
variables. The long-run relationships will be lost if the VAR is estimated using
differences.

Given the concept of cointegration, we need procedures for estimation and
for inference. Tests for cointegration versus spurious regressions are typically
based on the residuals from estimating the cointegrating regression by OLS. In
the example of equation (54), we would first estimate by least squares, and
then test whether the residuals have a unit root as would be the case if there is
no cointegration and the regression is spurious. The recommended way of
doing so is to use the augmented Dickey-Fuller test as described above, see
equation (51) but without the time trend, and using the Dickey—Fuller tables
to test whether the coefficient on the lagged residual is zero. Note once again
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the structure of the null and alternative hypotheses. Acceptance means that we
cannot reject that the residuals have a unit root, which means that we cannot
reject the null that there is no cointegration. A significant value of the test
leads to the conclusion that the variables are cointegrated. Although the
Durbin-Watson statistic may be helpful in indicating the possibility of a
spurious regression, it should not be used as a formal test in place of the
procedure outlined above.

There remains the question of how inference should be done in relationships
like (54) and (55) given cointegration. In general, although OLS will yield
consistent estimators, the distributional theory is non-standard, so that it is not
possible to rely on the standard normal and x* asymptotic theory. There are a
number of alternative approaches. The first was suggested by Engle and
Granger and relies on first estimating the cointegrating parameters in a levels
regression ignoring any serial correlation in the errors, and then estimating the
error-correction equation treating the cointegrating parameters as if they were -
known. Standard inference applies asymptotically to this second regression in
spite of the fact that the cointegrating parameters are estimated not known, a
result that hinges on Stock’s (1987) proof that the parameters in the first stage
regression converge at a rate proportional to 1/T rather than the usual 1!\/%‘.
Unfortunately, this procedure does not give a way to make inferences about
the cointegrating parameters themselves, nor does it appear to give satisfactory
results for the other parameters in the sample sizes usually encountered in
macroeconomic applications even in the US, let alone in LDCs, where macro
data are often only annual and of relatively short duration.

Several theoretically superior methods are discussed by Campbell and
Perron, although it seems that none of these have gone beyond the experimen-
tal stage into standard econometric usage. However, it is often possible to
avoid the problems altogether. In a number of cases, the cointegrating
relationships are ‘‘great ratio” relationships, so that a transformation to
logarithms gives a cointegrating parameter of unity. If by this or some other
argument the cointegrating parameters are known in advance, estimation is
straightforward, using for example the error-correction representation. There
are other contexts in which non-standard distributions can be avoided, and
these have been explored by West (1988) and by Sims, Stock, and Watson
(1988). In particular, even in the presence of cointegrating relationships,
standard distributional theory applies to OLS estimates of parameters attached
to stationary variables, or to parameters that could be attached to stationary
variables in an appropriately rewritten regression. This is clearer in an example
than it is to state. Consider the regression

}';:ﬂ+6y,..1+w;+')’1x1_1+u; (56)

which with y as consumption and x as income could be an old-fashioned
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consumption function as included in innumerable macroeconometric models.
This equation can be rewritten in either of the two forms

ye=a+ By, + whx, + (% +n)x_, tuy, (57)
or
y£=a’+;8y:-—l+(%]-+ 71)xr_'7’lef+ut' (58)

If x, is I(1) so that its first difference is stationary, then (57) and (58) show that
both of the y-parameters can be attached to stationary variables, and that
hypotheses concerning either or both can be tested using standard test
procedures. Note however that in this example it is not possible to treat 8 in
the same way.

2.2.3. The econometrics of dynamic programs

One of the many recent research programs in macroeconomics has been the
use of representative agent dynamic programming models to characterize the
economy. Although there is clearly scope for disagreement as to whether it
makes sense to model the economy as a fully optimized system — indeed such a
program would seem not to leave much scope for traditional development
economics — the work has generated a good deal of new econometric tools
including techniques for modelling aggregate time-series data. At the same
time, there has been an increased interest in using dynamic programming
models to help understand microeconomic data. In this section, I briefly review
both topics with a focus towards applications in the development literature.

One topic that has been studied at both the macro and micro levels is saving,
something that has always been seen as central to the understanding of the
development process. Recent papers in development that interpret either
micro or macro data using an explicit intertemporal optimization model include
Giovannini (1985), Rossi (1988), Corbo and Schmidt-Hebbel (1991), Raut and
Virmani (1989), Morduch (1990), and Atkeson and Ogaki (1990). Review
papers that cover at least some of this work are Gersovitz (1988) and Deaton
(1990b). Deaton (1992a) covers the literature from developed and developing
countries, and develops the arguments below at much greater length.

Since the macroeconomic data are often modelled in terms of a single
representative agent, we can use the same model to discuss both macro and
micro applications. The usual version starts from an intertemporal utility
function, whose expected value is the quantity that the agent seeks to
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maximize. This is typically written as
Eu,=E, 2 (1+6)*v(c,.,) (59)
k=1

where E, indicates the mathematical expectation conditional on information at
time ¢, & is the rate of time preference, and the representative agent is assumed
to live for ever. Ultility is maximized subject to a budget constraint, convenient-
ly written in terms of the evolution of a single asset

Au-l:(l+rt+l)(Ar+yt_c:) (60)

where y, is labor income — income excluding income from assets — and r,,; is
the rate of interest on funds carried from ¢ to ¢+ 1 and is assumed not to be
known in period t. A necessary condition for intertemporal optimality is the
Euler equation which for this problem takes the form

V(e) = E| 5 v (61)

A good deal of econometric expertise has been devoted to estimating the
parameters of (61) including the parameters of the marginal utility functions,
as well as to testing ifs validity on both aggregate and microeconomic data.

There are several different econometric approaches to the analysis of Euler
equations. One of the most straightforward is to select a functional form and to
approximate the expectation by taking the first few terms of a Taylor series
expansion. The leading example for (61) is to assume isoelastic utility so that
the marginal utility is ¢, ”, in which case we can obtain the approximation, see
for example Deaton (1992a, p. 64)

Er..—8& var(Alnc,.,—p 'r,.
E:AIDCH_I‘: rr; +p r( f2+1 4 ul)

(62)
so that, if the last term is small, as is plausibly the case for aggregate (but not
micro) data, the Euler equation can be tested by regressing the change in
consumption on the real interest rate. The term E,r,, can be replaced by r,,,
but should then be instrumented using instruments dated period ¢ or earlier, a
technique first suggested in the rational expectations literature by McCallum
(1976). Variants of (62) are tested on aggregate consumption data for various
LDCs by Rossi (1988), Giovannini (1985), and Raut and Virmani (1989).

A more formal estimation and testing technique avoids the approximation by
using generalized methds of moments (GMM), an approach pioneered in this
context by Hansen and Singleton (1982). Once again, use the isoelastic form
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for utility and rewrite (61) as

) B _
1+51 crfl -_ct p=7?;+1 (63)

where 7,,, is the difference between the outcome and its expectation, or
innovation and as such is uncorrelated with any information dated ¢ or earlier.
In particular, if we have k such variables z,,, we have k conditional moment
restrictions E(7,,,|z;, =0), whose sample counterparts are the k conditions,
j=1,...k,

1% s . _
lf?; ;'[ 1+61"=+ﬂ1_"'p]=0‘ (&%)

If k =2, so that there are only two instruments, the parameters & and p can be
estimated in order to satisfy (64): otherwise, the model is overidentified, and
the parameters are estimated by minimizing the quadratic form

d'(zDz)™'d (65)

where D is a diagonal matrix with the estimated 7> on the diagonal, cf. (45)
and (46) above.

The theory of GMM estimation requires that both sides of (63) be
stationary, something that will typically require some form of detrending prior
to estimation. The method also involves nonlinear estimation, which in some
cases will make it less attractive than techniques based on the approximations.
However, the technique is a clean one that is closely tied to the economics
underlying the model, and since the criterion (65) is asymptotically distributed
as x° with k—2 degrees of freedom (there are k instruments and two
parameters), GMM offers not only estimates, but a natural way of testing the
overidentifying restrictions. However, it is not difficult by approximating (64)
to show that GMM is closely related to the informal procedure, enforcing very
much the same restrictions, and its overidentification test can be regarded as a
test of whether the rate of growth of consumption is unpredictable except by
variables that predict the real rate of interest.

The final approach to the Euler equation (61) is through a different set of
assumptions, that the real rate of interest is constant and equal to the rate of
time preference §, and that preferences are quadratic, so that the marginal
utility functions are linear. Together with (61) these assumptions imply that
consumption is a martingale, so that the change in consumption is itself an
innovation, unpredictable by earlier information

AC sy = My - (66)
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The interest rate question has now been removed from consideration, but (66)
can still be tested by finding out whether the change in consumption is in fact
predictable by information available in period ¢, particularly information that is
capable of predicting the change in income. This is the approach adopted by
many writers in the US, and by Corbo and Schmidt-Hebbel (1991) for a range
of Latin American countries together with Ghana, Pakistan, the Philippines,
Thailand, and Zimbabwe. However, it is important to note that (66) is not
rejected by finding that Ac, ., is correlated with the contemporaneous change in
income Ay, , since the latter will typically contain new information, and thus
be correlated with the innovation 7,.,. An appropriate procedure, as with the
interest rate in (62), is to regress the change in consumption on the contem-
poraneous change in income by instrumental variables using as instruments any
variables dated ¢ or earlier that help predict the next period’s income change.

I have discussed these three methods in some detail, partly because the
consumption issue is of such great importance, but also because these or
similar techniques can be applied to a range of similar problems that generate
stochastic intertemporal optimality conditions. Real business cycle models of
macroeconomics provide one example; another occurs in finance, where
arbitrage conditions are often interpretable as Euler equations, something that
will happen quite generally when optimal intertemporal allocations are de-
centralizable by speculative behavior. For example, Deaton and Laroque
(1992a) use GMM to estimate (a subset of) the parameters for the arbitrage
conditions for speculative storage of primary commodities.

There are also a number of difficulties with these methods, some of which
are general, and some of which are specific to the consumption example.
Perhaps most serious is the inherent absurdity of modelling aggregate con-
sumption as the optimal solution to a representative agent problem. Aggrega-
tion conditions for these type of models have been discussed (for example) by
Grossman and Shiller (1982) and the conditions require (a) that people live for
ever, (b) linearity in functional forms, and (c) that information about aggregate
macroeconomic variables is known to everyone. In an economy of finitely-lived
agents, it is possible for each person’s consumption to grow (or to decline) in
each year of life, but for aggregate consumption to be constant because the
high (low) consumption levels of the old are constantly being replaced by the
low (high) consumption levels of the young. The dynamics of individual
consumption tells us nothing about the dynamics of aggregate consumption,
and vice versa. There is some evidence from developed countries that
functional form issues are important in aggregation, Attanasio and Weber
(1991), and it is straightforward to use the failure of (c) to construct examples
where the Euler equation is rejected at the aggregate level even though each
agent in the economy is behaving as prescribed, see Pischke (1991) and Deaton
(1992a, Chapter 5).
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Aggregation problems are avoided by working with individual data, and
there is a literature that looks at whether Euler equations like (61) describe the
behavior of individual households, or whether there are deviations from (61) in
the direction that would be predicted if households were credit constrained.
One of the best known (and best) studies for the US is that by Zeldes (1989),
and similar work has been undertaken for the South Indian ICRISAT
households by Morduch (1990). At least to this writer, these studies make a
good deal more sense than do the macroeconomic representative agent models
discussed above. However, they are not without technical difficulties. First,
these models typically require panel data, and their dynamic structure poses a
number of delicate econometric issues that complicate both estimation and
inference, see the next subsection. Second, because panel data are typically of
short duration, it is impossible to apply the orthogonality conditions that
identify these rational expectations models and provide the stuff of hypothesis
tests. For example, equation (64) relates to a time average that will not be
adequately estimated by two or three observations. In consequence, the panel
data studies are forced to replace the time averages in (64) by cross-sectional
averages across households or individuals. But the theory has no predictions
for the cross-section averages, and in the presence of macroeconomic shocks
that are common to many households, the theory can be rejected even when it
is correct. Third, it is possible for consumers to be liquidity constrained but for
the Euler equation to hold in almost all periods. In Deaton (1990b, 1991) I
construct a model of a farmer in an LDC who faces 1.i.d. income shocks, and
who cannot borrow, but for whom the Euler equation (61) will fail only on the
rare equations when it is optimal for him to spend down all his assets. In such
circumstances, tests based on the failure of the Euler equation will lack power.

While Euler equations are necessary for optimality, they are not sufficient,
so that estimates and tests based on them are less efficient, powerful, or
informative than tests based on a complete characterization of behavior. In a
few cases, such as the third example above where consumption is a martingale,
explicit solutions are available, but this is exceptional and is purchased only at
the price of strong assumptions. Recent work in empirical applications of
stochastic dynamic programming has taken up this challenge, and attempts to
solve for the functions that characterize behavior, not analytically, but
numerically. The easiest way to see how this works is to look at an example,
and to generalize from it. Since we have the notation at hand, the consumption
example is a convenient one.

The basic idea is to have the computer work through the solution to the
stochastic dynamic program, mimicking the possibilities that the agent will
face. As always with dynamic programming, this is done by starting from the
last period and working backwards. Consider then the consumption problem
given by (59) and (60), but with a terminal period T. In this final period, since
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there is no bequest motive, there is an obvious solution to the consumption
problem, which is to spend everything. Hence

cr=8(Artyr)=Ar+yr. (67)

We can think of this (trivial) solution as period 7’s decision rule, by which the
decision variable ¢, is related to the current state variables, here the sum of
assets and labor income. This is a clumsy way to describe this obvious result,
but the language is useful later.

Given last period behavior, we can begin to work backwards using the Euler
equation. In period T —1, (61) implies that

1+r
v'(crq) =Er—1[ 1+ 3T V(yrt A +rp)(Ar Yy~ o 1))] . (68)

In order to solve (68) for consumption, we need an explicit functional form not
only for the marginal utility function but also for the joint distribution of one
period ahead interest rates conditional on information at 7 — 1. For example, if
this conditional distribution depends only on current values of income and
interest rates, the solution to (68) will be of the form

Cro1=8r1(Ar_y, Yro1, Fr-13 B) (69)

where B contains parameters of both preferences and the distribution function
of interest rates and income. The solution (69) could contain more variables if
for example income and interest rates are not first-order Markovian, or if
utility depends on variables other than consumption, or less variables, if
income and/or interest rates were i.i.d. In any case, there will usually not be
an analytical solution for (69), although it will be possible to find it numerically
given values of the state variables and of the parameters.

As we pursue the recursion back through time, the equations and the
calculations become more complex, but the general principle remains the
same. For any period ¢, there will exist some solution

¢, =8/(s;; B) (70)

where s, is a vector of state variables, for this problem, current and lagged
values of income, assets, and interest rates, plus anything else that appears in
preferences. There will also be a set of “updating’ equations that relate the
state variables to their earlier values; the budget constraint (60) is one, and
others will represent the dynamic structure of the exogenous or forcing
variables, here income and interest rates. Equation (70) is the “policy
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function” for time ¢, and is the equation that forms the basis for the
econometric analysis of the relationship between consumption and the state
variables. In some cases, the functions g may converge to a period in-
dependent or stationary policy function; this will typically require stationarity
of the environment together with restrictions on preferences, conditions that
have to be determined on a case by case basis.

This framework, together with a discussion of empirical applications has
recently been reviewed by Rust (1992). Most of the empirical work, including
Rust’s (1987) own path-breaking study of engine replacement at the Madison,
Wisconsin bus depot, has been concerned with cases where the choice is over a
finite number of alternatives. In such a case, the econometric analysis proceeds
as follows, Starting from a parametric form for preferences and for the laws of
motion of the exogenous state variables, and a set of trial parameters, the
computer first solves the decision problem. In the stationary case, and with
discrete state variables, this essentially involves tabulating the function (70) for
all possible values of its arguments conditional on the trial parameters. These
solutions require iterative methods, and can be (extremely) computationally
expensive for large problems with many choices and many state variables.
Onmnce the tabulation has been done, the actual values of the state variables can
be inserted and the predicted choices compared with actuals. To avoid point
predictions, at least one unobservable state variable is introduced, the dis-
tribution of which will induce probabilities on each of the outcomes, so that a
likelihood function can be constructed in the usual way, the maximization of
which is the outer loop of the estimation procedure.

Examples of the use of these techniques in the development literature
include Wolpin’s (1984) model of fertility using the Malaysian Family Life
Survey, and Rosenzweig and Wolpin’s (1993) examination of bullocks and
pump-sets using the ICRISAT data. The latter study displays both the
strengths and weaknesses of the general approach. The strength is the model’s
close links to the theoretical structure, especially the fact that solutions are
genuine solutions of the dynamic problem rather than ad hoc intertemporal
allocation rules whose costs and benefits are largely unknown. In principle,
functional forms for preferences and distributions can be chosen for their
plausibility and suitability to the problem at hand, here the agroclimatic and
production conditions in the Indian semi-arid tropics. However, the costs are
also high. Even with the use of supercomputers, it is necessary to keep down
the number of state variables and to restrict the heterogeneity of individual
agents, restrictions that can compromise the realism of the model. For
example, Rosenzweig and Wolpin are forced for essentially computational
reasons to have only a single asset, bullocks, so that all intertemporal
transactions have to pass through the bullock market. There is no money, no
jewelry, and no other assets. Note also that these models, by their heavy
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reliance on parametric functional forms, are extreme examples of the detailed
structural specifications that are being increasingly discarded in other applica-
tions.

At least in simple cases, it is possible to implement dynamic stochastic
programming models where the choice and state variables are continuous. An
example is provided by Deaton and Laroque (1992b), who formulate and
estimate a model of speculatively determined commodity prices. Under the
assumptions that the commodity is an agricultural one whose harvests are i.i.d.
from year to year, that demand is a linear function of price, that speculators
will store the commodity whenever its one-period ahead expected price
exceeds the current price by the costs of storage, and that storage cannot be
negative, it is possible to write price as a function of the amount on hand,
defined as this year’s harvest plus any storage from the previous year. The
observed price is thus a function of the unobserved state variable, the amount
on hand, which is itself updated by the amount of the new harvest less
consumption and the amount taken into storage by the speculators. In
consequence, price follows a stationary but nonlinear first-order Markov
process. As in the discrete case, estimation is done by nesting two sets of
calculations, one to calculate the functions, and one to do the estimation. The
function relating prices to the amount on hand can be characterized by a
functional equation, the solution of which can be obtained by contraction
mapping techniques for any given set of parameter values. The practical
difficulty here is that instead of filling in a table, as in the discrete case, we
have to solve for a continuous function, and much of the work is concerned
with finding suitable discrete approximations that allow us to tabulate the
function with interpolation methods (cubic splines) used to fill in the other
values. Once the function has been obtained, the Markov process for prices is
determined, and likelihood techniques are used to match outcomes to the data,
with the results used to modify the parameters.

While these techniques are currently at the frontiers of computational
complexity, they are no more difficult than were the now standard nonlinear
estimation calculations when they were first explored twenty years ago.
Calculations that require supercomputers now will be undertaken on notebook
computers in only a few years. I suspect that the limitations to these methods
lie not in the computation, but in their reliance on strong parametric
assumptions. Robustness issues for both identification and estimation remain to
be explored.

2.2.4. Time-series issues in panel data

In this final subsection, I return to the topic of panel data, and to the special
problems that arise in using them to examine dynamic issues. I have two sets of
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applications in mind. The first is those studies that pool time-series from a
cross-section of countries to explore the political and economic determinants of
economic growth, see for example the references at the beginning of section
1.2. The second is provided by microeconomic studies of household or farm
behavior, such as those using the ICRISAT panel data. The difference between
the two lies less in methodology than in sample sizes. The country data usually
have 20 to 30 years of observations, combined with a cross-section size of
between 20 and 120, depending on how many countries are selected into the
study. However, many authors work with five or ten year averages of growth
rates, so that the time dimension is often reduced to three or four observations.
The micro panel studies usually have many more observations in the cross-
section but with a smaller number of years. The ICRISAT data, which covered
240 households in six villages for 10 years, have fewer observations and more
time periods than is typically the case.

When panel data are used to confront dynamic issues, such as whether
countries with low initial levels of GDP will subsequently grow faster, whether
political changes cause economic changes or vice versa, or how assets affect
current consumption, the regression equations will contain lagged dependent
and predetermined variables. A useful model is the following:

Yu=a+ Py, +Y'x,+n+ s, (71)

where the x’s are covariates whose degree of exogeneity and predeterminate-
ness will be discussed, ; is an individual (or country) specific effect that might
or might not be correlated with the x’s, and g, is an error term that will be
treated as uncorrelated both across individuals and over time, assumptions
than can be relaxed in special cases.

There is a substantial econometric literature on the estimation of (71) [see in
particular Chamberlain (1984), Holtz-Eakin, Newey and Rosen (1988), Arel-
lano and Bond (1991), and Schmidt, Ahn, and Wyhowski (1992)], the last
three offering particularly clear and accessible treatments that are useful for
practical work. As usual, the basic issue is correlation between right-hand side
variables and error-terms, with the additional complications involved in dealing
with fixed effects by differencing or using within estimators.

Consider first the case where there are no %’s. There is no special problem
with estimating (71) by OLS, and the model can be estimated using all the data
without differencing or sweeping out means. Now suppose that there is
individual heterogeneity, that we treat 7, as random, and that there is no
lagged dependent variable. Provided the x’s are uncorrelated with the random
effects, this is a standard random-effects model of the Balestra and Nerlove
(1966) variety, and estimation should be by (feasible) GLS. The problem here
is that it is often quite implausible that the x’s and the #’s should be
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uncorrelated. In particular, if the x’s are endogenous but predetermined, the
random effects estimator will be inconsistent. For example, if the dependent
variable is almost any aspect of household behavior and one of the x’s is a
measure of assets in any previous period, see for example Rosenzweig and
Binswanger (1993), households with high n’s will have high y’s, and thus high
or low x’s. Because the n’s are present in every period, they determine not
only the current value of the dependent variable, but also all previous values,
so that any feedback between dependent and independent variables will
generate inconsistency, no matter how far lagged are the independent vari-
ables. Consistency of OLS (IVE)-or of the random effects estimator —
requires that the x’s (instruments) be strictly (strongly) exogenous, that they
be uncorrelated with the compound error at all leads and lags. For the lagged
dependent variable, strict exogeneity is logically impossible, so that OLS or
GLS are automatically inconsistent in this case.

If the individual heterogeneity parameters are treated as fixed effects with no
further structure, they must either be estimated —which is equivalent to
sweeping out the individual means — or the data must be differenced to remove
them. The former, whether implemented by estimating individual specific
constants or by sweeping out means, is also inconsistent unless the explanatory
variables are strictly exogenous. To see why, suppose that there is no lagged
dependent variable, and that we sweep out the means from (71):

V=Y =20'Cq—Xp-1) (8, — 8,) - (72)

The fixed effects have been removed, but only at the price of introducing the
average of the &’s. Hence, if there is any feedback from y’s to x’s the x’s will
be correlated with the new compound error term. This is a problem of small
numbers of time periods, since as 7 becomes large the time-average of the &’s
will converge to its limit of zero. However, in many panel applications, the
time dimension is small relative to the cross-section, and large n will not
provide consistent estimates. It certainly makes more sense to use the within-
estimators on cross-country data with 25 observations per country than it does
to use them on a three period cross-sectional panel or on country data that has
been averaged by decade.

How then should (71) be estimated? Holtz-Eakin, Newey and Rosen suggest
that the equation be differenced to give

Vie = Yiem1 = B(Yit=1 = Yir—2) + ¥'Ax;, + (8, — &y-1) (73)

and that the parameters be estimated by instrumental variables using the fact
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that x’s and y’s lagged at least two periods are orthogonal to the differenced
error terms. GMM approaches can also be used and will generate efficient
estimates, see the elegant treatments in Arellano and Bond and in Schmidt et
al. In practice, it may well be difficult to find instruments that are well-
correlated with the right hand side variables in (73); especially in micro data,
changes are often much harder to predict than are levels. In consequence, the
within estimator may be worth considering in spite of its inconsistency,
especially if there are more than a few time-periods.

2.3. Introduction to non-parametric methods

Many policy questions can be illuminated from survey data using only very
straightforward concepts and techniques. In countries where there is little
statistical information, the characterization of univariate and bivariate dis-
tributions from survey data is often extremely useful, in much the same way
that simple unconditional forecasts are useful for time-series. Poverty measure-
ment typically relies on univariate distributions of income and consumption,
while questions of the distributional incidence of price changes depend on the
joint distribution of living standards and net purchases. Simple multivariate
relationships are -often also useful, as when we disaggregate Engel curves by
region or by family type. Basic “facts” such as these are routinely obtained
from survey data using histograms, cross-tabulations, scatter diagrams, and
linear regressions. While there is nothing wrong with any of these techniques,
they are frequently not the best that can be done, particularly given the
richness of survey data, and the typically large sample sizes. The numerical
outputs of cross-tabulations and regressions are harder to communicate to
policy makers or non-specialists than is graphical evidence, yet graphs of
scatter diagrams are not very informative with very large samples, and plots of
linear regressions have the opposite problem of compressing too much
information into one graphic. Non-parametric estimation of densities and
regressions is often useful in these situations, and allows the analyst to extract
and display many more features of the data in a way that is sensitive to sample
size. These techniques come in many varieties and flavors, from those that are
obvious cousins of cross-tabulations and scatters, through non-parametric
regression, to semi-parametric estimation, where a balance is struck between
sample and prior information. There is a large and rapidly growing literature
on these topics, and I only pick out a few development related applications.
Readers interested in following these issues further should begin with the
splendid book by Silverman (1986), and then draw from Bierens (1987),
Hardle (1991), Stoker (1991), Powell (1992) and Hérdle and Linton (1993).
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2.3.1. Estimating densities

A histogram is the standard and most familiar non-parametric method for
representing a univariate density, for example that of incomes in a household
survey. For continuous data, however, the discrete steps in histograms usually
do not have any counterpart in the underlying population, but are arbitrary
artifacts of the selection of the discrete bins into which the observations are
separated.

Instead of using a fixed bin, we might use a “sliding” bin or band, so that at
each point x, say, we count the number of observations that fall in a symmetric
band around x. If the sample points are x,, x,, .., Xy, the estimated density,

f;(x) is given by
F@)=@rN) ' 2 Ix—h=x,<x+h) (74)

where I(e) is the indicator function, which is unity if the statement e is true,
and zero otherwise, and where the positive number % controls the width of the
band. According to (74), the density at x is estimated by the fraction of the
sample per unit length (the band is 2k long) that is close to (i.e. within A of) x.
The procedure here is akin to taking a moving average in time series; rather
than take the fraction of the sample at x, which can only be zero or j/N for
positive integer j and so is very variable from point to point, we average over a
nearby interval.

Like the time-series moving average, (74) has the disadvantage of being
discontinuous at every point where an observation comes into or falls out of
the band. As a result, if (74) is applied to a finite amount of data, the resulting
estimator will have a “step” for every data point. This roughness can be
removed by calculating a weighted average of the number of points near x,
with maximum weight when points are at x, and with the weight steadily
declining for points that are further away, and becoming zero for points that
are just about to drop out of the band. We write this in the form:

X=x%

AL =%§3 K(T) (75)

where K(z) is a positive symmetric function, so that K(z) = K(—z), which is
declining in the absolute value of its single argument, and which integrates to
unity. The function K(z) is a kernel, and (75) is a kernel estimator of the
density. Note that the naive estimator (74) is a special case of (75) with
K(z)=0.5I(|z| = =1); for obvious reasons it is known as the rectangular
kernel estimator. The intuition of (75) is exactly the same as that of (74); we
are adding up the number of points per unit of line in an interval around x, but



Ch. 33: Data and Econometric Tools for Development Analysis 1863

we use weights, that sum to unity but that weight more heavily the points near
x.

There are several kernels that give good results in practice; three of the most
commonly used are the Epanechnikov

K,(z)=0.75(1 - z)I(|z| =1) . (76)
the Gaussian

K,(z) = 2m) " exp(—0.5z%) (77)
and the quartic

K (2)=301-2") Kz =1). (78)

For estimating densities (and regression functions) the choice between these
(and other) kernels appears not to be of great importance. see Silverman
(1986, p. 43). The Gaussian kernel does not require a separate line of code to
detect whether the observation is or is not in the kernel, but many computers
are unhappy exponentiating large negative numbers. The Epanechnikov and
quartic kernels do not have this problem; the latter has the advantage of being
everywhere differentiable, a property that is necessary if we want the estimated
density — and later regression function — also to be differentiable, as will be the
case in several of the applications discussed below.

More important than the choice of the kernel is the choice of the bandwidth.
When the bandwidth is large, the estimator averages over a wide interval
around each point, the estimated density will be relatively smooth, but we risk
bias by missing genuine features of the underlying density. When the band-
width is small, sample irregularities will be transmitted to the estimate, and
while we will not miss real irregularities, and so will be protected against bias,
we risk having too much variability. In any case, as the sample size increases,
the bandwidth should shrink, so that with infinite amounts of data, the
bandwidth will be zero, and we measure the fraction of the sample — and the
population — at each data point. But the bandwidth must decrease more slowly
than the sample size expands, so that the number of points in each band
increases fast enough to ensure that consistent estimates are obtained at each
point. If the bandwidth decreased in proportion to N ', there would be the
same number of points in each band no matter what the sample size, and the
variance of the estimate would never decrease. It turns out that it is optimal for
the bandwidth to decrease in proportion to the fifth root of the sample size.
Beyond that, there are a large number of methods of determining the constant
of proportionality, each with its own adherents. Silverman (1986, pp. 45-46)
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suggests the following as a useful bandwidth when using a Gaussian kernel
h =1.06 min(o;, x/1.34)N 7, (79)

where o is the standard deviation of the sample, and y is its interquartile
range, i.e. the difference between the 75th and 25th percentiles. The same
formula can be used with the Epanechnikov and quartic kernels if the 1.06 is
modified to 2.34 and 2.42 respectively.

Figure 33.4 shows densities for the logarithm of household income (deflated
by a single price index in each year) in Taiwan for the years 1976 through 1990
inclusive. The underlying data come from the fifteen household surveys
discussed in Section 1; there are 9,000-10,000 households in 1976 and 1977,
and thereafter between 14,000 and 16,000. Each graph is calculated using (75)
and a Gaussian kernel with bandwidth given by (79), and so varying from
survey to survey. The densities are estimated at each point on a grid of 100
evenly spaced points for each survey; in order to draw graphs, it is unnecessary
(and expensive) to estimate the density for each individual sample point. Note
that the underlying distribution of incomes in levels is positively skewed, with
observations much more densely distributed at low values than at high values.
In such circumstances, it would be better to use smaller bandwidths at low
incomes than at high. The logarithmic transformation is a simple way of
avoiding having to do so, and the plots of the roughly symmetric densities are
easier to see. The graphs show clearly the pattern of real income growth in
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Figure 33.4. Non-parametric estimates of densities of log real income, Taiwan 1976-1990.
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Taiwan, and modal real household income approximately doubles from 1976 to
1990. The graphs also show that the shape of the income distribution has been
changing over time, with the lower tail stretching out as some households are
left behind, and the density at the mode falling. Taiwan has had, and continues
to have one of the world’s most equal distributions of income, but inequality
has been widening over the last decade [see also Government of Taiwan,
(1989) and Deaton and Paxson (1994b)].

It is also possible to look at income distribution non-parametrically by
plotting cumulative distribution functions or Lorenz curves. I have focussed
here on density estimation, not because it is necessarily superior, but because
the estimation of distribution functions or Lorenz curves using the individual
data is straightforward because it is not usually necessary to smooth the
estimates. The empirical estimator of the distribution function

N
Ex)=N"'2 I(x,<x) (80)

is discontinuous for the same reasons as is the naive estimator, but for
reasonable sample sizes, the discontinuities will not usually be apparent to the
naked eye, and will not usually generate difficulties for the calculation of
poverty or other measures. The same is true for Lorenz curves.

Non-parametric methods can also be used to estimate multivariate densities,
although the “curse of dimensionality”” means that very large numbers of
observations are required when the dimensionality is high, see Silverman
(1986, pp- 93-94). In practice, it is frequently useful to disaggregate by discrete
variables, and to estimate densities by region, or by ethnic group, and these
estimates present no new issues of principle. Estimates of the joint density of
two continuous variables are practical and often informative, and can be
constructed using the bivariate extensions of the methods given above. The
standard procedure is to transform the data using its variance covariance
malrix so as to make the scatter spherical, and then to make a weighted count
of the number of observations in a circle around each point (x, y). The details
are again in Silverman, pp. 65-80. To illustrate using the quartic kernel, the
joint density estimator is

f@) = fx, y) = 3(=V/|S|NR) 2 (=70 (| = k) (81)

where S is the sample variance-covariance matrix, |S| is its determinant, and ¢*
is the quadratic form (z — z,)'S ™ '(z — z;), the squared distance of z, = (x;, )
from z.

Figure 33.5 shows a contour map of the joint density of log consumption and
log income using the Taiwanese data for 1979. This was calculated from 16,424
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Figure 33.5. Non-parametric estimate of joint density of log income and log consumption, Taiwan
1990.

observations using (81), a 99 by 99 point grid, and a bandwidth of 1. (The
calculations took a little less than an hour using GAUSS on a 66-Mhz PC.)
Once again, the fact that the contours are not far from elliptical shows that the
transformation to logs has induced something close to normality, not only for
the marginals but also in the joint distribution of log income and log
consumption. Even so, the contours are more egg-shaped than elliptical, so
that although the regression function of log consumption on log income will be
approximately linear, it will not be homoskedastic. The contour map is the
preferred way of showing detail in the joint distribution, although for some
purposes, a rapid appreciation of its general shape can be better seen from
“net-maps”, which provide a projection of the three dimensional object, see
Deaton (1989) for net-maps of the joint distributions of living standards and
net rice consumption across different regions of Thailand.

2.3.2. Non-parametric regression

Joint densities, such as that illustrated in Figure 33.5, contain the information
that goes into regression functions, whether the conditional density of x on y,
or the conditional density of y on x. More generally, the regression (function)
of y on a vector (x,, x,, . ., x;) is defined as the expectation of y conditional on
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the x’s, or

(X5 Koy oo s X)) S E(W/ X1 X0, 0005 X))

If two variables x and y are jointly normally distributed, then both regression
functions (of x on y and of y on x) will be linear and homoskedastic, but in
general we cannot expect this to be the case. Indeed, there are a number of
examples in development econometrics where nonlinearity has been an
important issue, and perhaps the leading example is the relationship between
nutrition and income. As emphasized by Ravallion (1990), it is likely that very
poor people, who are close to subsistence, will spend a large fraction of any
additional available resources on calories, but that this fraction will become
much less as basic needs are met. As a result, the regression function of
calories on income (or total expenditure) may be steeply sloped at low income
levels, and flatten out as income increases. A transformation to logs may help,
but there is no reason to suppose that the relationship is exactly of the form
that would thereby become linear. The obvious procedure, especially when
data are plentiful, is to estimate a non-parametric regression.

The procedures are closely analogous to those for density estimation, and
the basic ideas are, if anything, even more transparent. With an infinite amount
of data, the regression function of y on x could be calculated by averaging all
the observations on y at each point x. With finite data, such a procedure is
impractical, but we can use the same idea as in density estimation, and take an
average over some interval around x. An early form of such non-parametric
regression is Mahalanobis’ (1960) fractile graphical analysis by which the x’s
are first sorted and then partitioned into fractile groups, such as deciles, so that
averages of y can be calculated and plotted for each fractile. This method is
analogous to the construction of histograms to represent densities, and like the
latter can be improved by calculating averages for each x, and by weighting
within the averages.

Alternatively, and more formally, we can write the regression function of y
on x, m(x) as

m@ = | vyl dy =10~ | v, ) ay (83)

for which we can construct an estimate

0= |7 2 vk (57| - [ 2 (5] )

which is known as the Nadaraya-Watson kernel regression estimator. Pro-
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cedures for choosing the kernel and the bandwidth are similar to those in
density estimation, though the kernel and bandwidth that optimally trade-oft
bias and variance for the density will generally not do so for the regression
function. However, if the main object of the exercise is graphical representa-
tion of the regression function, a bandwidth can be selected by trial and error,
with some preference for erring on the side of too small a bandwidth, since it is
easier for the eye to smooth over irregularities than to uncover invisible
features from an over-smoothed curve.

Note that since these methods estimate regression functions, and not the
underlying structure, they require no modification for dichotomous or limited
dependent variables. If the y’s are 1 or 0, the regression function will be a
conditional probability, and that is what the nonparametric regression will
estimate. If the true model is Tobit, a linear model with censoring at zero, the
nonparametric regression will deliver the Tobit regression function, equation
(26).

One useful feature of (84) is that it allows straightforward estimation, not
only of the regression function at each point, but of its derivatives, which are
often of as much or more interest. Direct calculation gives:

ww=(nSKe) (2K, -n) (85)

where ¢, = (x — x;)/h. These derivatives are readily calculated at the same time
as the estimates of the regression function. Note however that, at the same
bandwidth, the derivatives will be much less smooth than the regression as a
function of x, so that higher bandwidths are typically desirable, see also Hardle
+(1991).

Figure 33.6, reproduced from Subramanian and Deaton (1992), shows the
derivatives of the regression of the logarithm of calories on the logarithm of
per capita household total expenditure for a sample of 5,600 households in
rural Maharashtra in India. Since the regression function is in logs, the figure
shows the elasticity of calories with respect to per capita total expenditure at
each level of the latter. The results for two different bandwidths are shown; the
smaller value is clearly too small and introduces what is almost certainly
spurious fluctuations as total expenditure changes. Using the larger of the two
bandwidths, there is some evidence of a slow decline as per capita expenditure
rises, but not of any critical (or subsistence) point where the elasticity falls
sharply. This is in contrast to Strauss and Thomas’ (1990) results for Brazil,
obtained using Cleveland’s (1979) LOWESS estimator — an alternative non-
parametric regression method — where elasticities are found to be much higher
for poor than for rich households. The fact that the Indian households are
much poorer may be relevant; perhaps they are all poorer than the cut-off
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Figure 33.6. Elasticity of the calorie-cxpediture relationship with different bandwidths,
Maharashtra, India 1983.

point in the Brazilian data. Note too that the elasticities in the figure are all a
great deal higher than the figures that Bouis (1992) and Bouis and Haddad
(1992) regard as sensible, perhaps because of the fact that nothing has been
done to eliminate plate wastage, or food passed on to other people. These
varying estimates are also fully consistent with that obtained by Behrman and
Deolalikar (1987) using panel data from the ICRISAT data, from a nearby
part of India. However, Behrman and Deolalikar’s estimate of 0.37, based on a
much smaller sample, and obtained from the first-differences of panel data, is
not significantly different from zero, and the authors choose to interpret their
result as showing that there is no relationship between calories and income.

2.3.3. Other non-parametric estimation methods

I have emphasized kernel regression methods in this presentation, but there
are many other possibilities. I have already referred to Cleveland’s (1979)
LOWESS procedure, whereby the regression function is estimated by a series
of local OLS regressions, appropriately weighted. Non-parametric regressions
can also be estimated using splines, see Engle et al. (1986) and Hirdle (1991),
or by nearest-neighbor methods, which are similar to kernel methods, but the
averaging is done, not over a fixed bandwidth centered on the point, but over
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the k nearest neighbors of the point, with k playing the role of the bandwidth.
Such estimators are very similar to variable kernel estimators, with the
bandwidth small in regions of high density, and large in regions of low. It is
also possible to approximate regression functions using series expansions, with
polynomial and Fourier series the obvious choices; for the latter see Gallant
(1981), El-Badawi, Gallant, and Souza (1983), and Gallant and Souza (1991).
Such estimators are convenient because they can be estimated by OLS, but can
be dangerous with “dirty” survey data. A few outliers can have a major effect
on fitted polynomials, while, with Fourier series, the regression function tends
to “send out” failored sine waves to pick up individual outliers. Kernel
estimators have the advantage that observations beyond the bandwidth do not
have any effect on the regression line at a point, so that the effect of outliers is
limited. Kernel estimators of densities and of regression functions are also
readily generalizable from the univariate and bivariate cases to multivariate
analysis. _

All of these nonparametric estimation techniques are most valuable in low
dimensional situations, for one or two dimensional densities, or for regressions
with at most two or three right hand side variables. In higher dimensions, data
requirements are usually prohibitive, even by the standards of household
survey data, and even armed with several million observations, it is unclear
how one would display the results of a high dimensional density or regression.
(Although programs such as Mathematica will draw three-dimensional netmaps
with color variation representing the fourth dimension.) While there are many
problems in development economics where the problems are low dimensional —
calorie expenditure curves, Engel curves, and income distributions, for
example — there are many other problems that require a different approach.

There has been a good deal of recent work on semi-parametric estimation
techniques, where the idea is to mix parametric and non-parametric ap-
proaches, using prior structure where data are weak or scarce, and letting the
data speak for themselves through non-parametric specifications where they
are capable of doing so. One possibility is to write a regression function that is
a mixture of linear and unspecified parts

E(ylx, z) =m(x, 2) = B'x + f(z) (86)

where z Is a variable about which the data are likely to be quite informative,
and x is a vector of variables where prior structure is required. For example, z
might be income in an Engel curve, and x a set of sociodemographic variables
whose effects are likely to be less well-defined in even a very large data set.
Techniques for estimating (86) have been investigated by Robinson (1988).
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2.3.4. Average derivatives and index models

Perhaps even more useful for many problems in empirical development is the
index model, in which the regression function is written in the form

E(ylx) = m(x) = 6(B'x) (87)

so that while the standard linear structure is retained in the index B'x, the
function 6(.) is left unspecified. This index model has the obvious attractions of
mixing parametric and non-parametric specifications, something that is neces-
sary if we are to bring some element of non-parametric methodology to higher
dimensional problems. It also arises naturally in limited dependent variable
models; for example, the regression function of Tobit — equation (26) —is of
this form. Stoker (1991) shows that a range of other models — logit and probit
models, truncation models, Box — Cox and Generalized Linear Models, and
duration models — can all be written in the index form (87). While estimation of
the parameters of (87), which are clearly identified only up to scale, will
typically not provide estimates of all the parameters of these models, it can
provide some information, and can do so without the distribution assumptions
that are required for traditional maximum likelihood procedures.

Estimation of index models has been studied by Powell, Stock, and Stoker
(1989), who show that it is possible to estimate the B’s consistently and with
convergence to the true values at the usual rate of root-N not at the much
slower rates, typically the fifth root of N, that characterize non-parametric
regressions. The basic idea comes from Stoker (1986). Write f(x) for the
marginal density of the x’s, the conditioning variables in the regression, and
define the vector of “scores” z(x), by, j=1,.., K,

z;=—0dln f(x)/ax; (88)

so that, for each of the K x-variables, we have a value of its score for each
observation. Consider then the population expectation of z;(x)y, where the
expectation is taken over both y and x. Note first that, from (88),

e = [ [ zonfyxayar=— [ peoniolo ay ax (89)

where f/(x) is the jth partial derivative of the joint density. If the right hand
side of (89) is integrated by parts, and if f(x) is zero on the boundary of x, then

aEy(ny)) _

B = | [ feompim ay o= (5 (90)
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The last term on the right hand side of (90) is the vector of population average
derivatives of the regression function, while the left hand side involves the
scores z; which can be estimated by the kernel methods discussed above; note
that estimates of the derivatives of the joint densities can be obtained by
differentiating (75) or its multivariate extension. Replacing population quan-
tities by their estimates in (90) yields the average derivative estimator

N
b=N"' 2 4wy, (91)

Sj will converge to the average over the population of the jth partial derivative
of the regression function.

There are a number of complications and improvements to this basic idea
that make it work better in practice. First, note that the scores are logarithmic
derivatives of the joint density, and so will be very badly estimated where the
joint density is small. This problem is dealt with by “trimming”, which means
dropping such observations from the sum in (91). Second, note from (90) that
the E(z;x,) is the derivative with respect to x;, of the expectation of x;
conditional on x, which is 1 if j =k, and is otherwise zero. As a result, if the
scores are placed in an N by K matrix Z, the “instrumental variable estimator”
(Z'X)~'(Z'y) also converges to the vector of average derivatives. To trim this,
define the diagonal N by N matrix W by its typical element

Wy = 8, 1(f(x;) > a) (92)
for some small positive number «. We then construct the “practical’ estimator
S=(Z’WX) (Z'Wy) (93)

where Z is the matrix of estimated scores.

Hirdle and Stoker (1989) and Stoker (1991) discuss a number of other
possible variants of this average derivative estimator. The remarkable thing
about these estimators is not that they consistently estimate the average partial
derivatives of the regression, but that they converge at the standard rate of
1/VN. Although the kernel estimates may give very imprecise and slowly
converging estimates of the scores, the averaging over the sample cancels out
the variability in the components of the estimator, and allows the §’s to
converge at the standard rate.

Consider first the application of average derivative estimators to the index
models discussed above. If the expectation is given by (87), the average
derivative estimator Sj will converge to B, multiplied by the average derivative
of 6, a quantity that is independent of j. For such index models, Powell, Stock,
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and Stoker (1989) actually recommend a “density-weighted” average deriva-
tive estimator which differs from (93) in replacing the matrix W by one with
the estimated densities on its diagonal.

Perhaps the most enticing potential application of average derivative es-
timators is to the case where the regression function is unspecified, in which
case it offers a non-parametric estimate of the derivatives. A good example
comes from the theory of tax reform, and its application to problems of pricing
in LDCs. The basic material is discussed at length in Newbery and Stern
(1987), Deaton (1987), and for India and Pakistan in Ahmad and Stern (1991).

A policy reform of increasing the price of good i is under consideration. The
welfare cost of an infinitesimal price change Ap, is the sum over each agent h of
&"q"Ap,, where q! is net consumption of good i by A, and the weight £" is the
marginal social utility of money to individual 4, independent of A for
unrepentant Harbergians, see Harberger (1978, 1984), or varying with income
(or ethnicity or region) if we want to apply distributional or other weights, The
benefit of the price change is the value of additional revenue that it generates,
so that the cost to benefit ratio of increasing the price can be written

R H™'3, &g
T H 3,4 +3, fk(HJLZh aqﬁ/ap.-)

(4)

where ¢, is the tax rate (or shadow tax rate, see Stern, 1987) on good k, and H
is the population size. Commodities that have large A-ratios are those through
which it is (socially) harmful to raise government revenue, and whose prices
should ideally be reduced, and vice versa for commodities with low A-ratios.
The standard practice for evaluating tax reform proposals is to use household
survey data to evaluate the equity effects in the numerator, weighting the
consumption patterns of different groups by whatever importance policy-
makers attach to their consumption at the margin. In practice this is usually
done by using an Atkinson (1970) social welfare function, in which &” is taken
to be proportional to income (or per capita expenditure) to the power of —e.
Calculations are then done for a range of values of &, with zero representing
indifference to distribution, and larger values representing greater concern for
the poor. Survey (or administrative) data can also be used to estimate mean
consumption, the first term on the denominator, so that all but the second term
in the denominator can be calculated without need of a parametric model. This
last term is usually obtained by using time-series data or spatial variation in
prices to estimate a demand system in which quantities are a function of prices,
incomes, and household characteristics, and to calculate the responses using
the estimated parameters, see for example Ahmad and Stern (1991) or Deaton
and Grimard (1992) for alternative specifications applied to Pakistan. How-
ever, the term can be estimated without a parametric demand system using
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average derivative estimators. Not only can we avoid distributional assump-
tions about unobservables, but we do not even require a functional form for
demand. In cases like this, and the general point applies to any average or
weighted average of behavioral responses, the use of a functional form is
essentially a detour, and an unnecessary one at that. Note too that in these sort
of cases, there is no loss in precision from the non-parametric treatment, at
least asymptotically.

The point made, a number of caveats ought to be entered. Practical
experience with average derivative estimators in real situations is essentially
nil, although see the experimental calculations in Deaton and Ng (1993).
Although the asymptotic theory has been fully worked out, we do not know
how difficult are the computational problems with data sets of several thousand
observations, nor what is the best way to select the bandwidth for the
estimation of the scores. Nor does the fact that these estimators are root-N
consistent in itself guarantee that they will perform well in small samples.
Indeed, the literature provides no guidance on what sample sizes are required
to make the methods work. Nevertheless, these techniques are exceptionally
promising, and provide a potential antidote to that body of empirical work that
derives its results using restrictive functional forms and arbitrary distributional
assumptions.
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