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This paper extends and improves the author’s earlier work on measuring own- and cross-price
elasticities from spatial variation in prices using houschold survey data. Double-logarithmic
demand functions are replaced by functions that relate budget shares to the logarithms of prices
and incomes, and zero expenditures are treated appropriately. Formulae are developed for
estimation and for the calculation of standard errors. Limited Monte Carlo evidence suggests that
the asymptotic approximations work well in practice. An eleven-commodity system of food
demands is estimated using Indonesian data from 1981.

1. Introduction

For many questions of public policy, it is important to know how consumers
change their expenditures on goods in response to changes in prices. For
developing countries, there are typically rather few time-series data from
which price elasticities can be inferred. By contrast, cross-sectional household
expenditure surveys are available for many LDC’s. In Deaton (1986,1987) 1
developed a methodology for using such household survey data to detect
spatial variation in prices and to estimate price elasticities by comparing
spatial price variation to spatial demand patterns. In the first paper 1 showed
how to estimate the own-price elasticity for a single good by comparing its
demand to its price. In the second paper the methodology was extended to
cover systems of demand functions, so that cross-price elasticities could be
estimated and substitution patterns studied.

Both papers, although giving satisfactory results for data from the Cote
d’Ivoire, contain a number of unresolved problems. Perhaps the most serious
of these is the use of double-logarithmic demand equations. Not only are such
demand functions inconsistent with basic theory, but more importantly, they
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cannot be used to model households that do not purchase all goods. As a
result, many sample points have to be deleted prior to estimation. Even if the
selection did not introduce bias, the estimated demand functions are thereby
conditioned on positive consumption. However, for most policy purposes, it is
the wunconditional demands that are of interest. The revenue effects of a tax
change depend on how total demand is altered and not on whether changes
take place at the extensive or intensive margins.

In the published version of the first paper, Deaton (1988), the logarithmic
formulation was abandoned, but the analysis was confined to the single-com-
modity case, and thus to measurement of own-price responses. The current
paper provides a unified statement of the methodology for the system case
without using double-logarithmic forms and is intended to supercede previous
treatments. The first part of the paper summarizes the model and describes the
estimation procedure. A brief Monte Carlo experiment illustrates how the
procedure works in practice as well as the consequences of following alterna-
tive estimation strategies of the kind that have appeared in the literature. The
second part of the paper presents an application of the new version of the
model to data from the 1981 SUSENAS Indonesian household survey. Results
are given for a moderately large demand system of eleven commodities.
Another application of the same techniques can be found in Laraki’s (1988)
analysis of food subsidies and demand patterns in Morocco. The appendix
derives standard errors for the estimators presented in section 2. A SAS
computer program that implements these procedures is available from the
author or from the Welfare and Human Resources Division of the World
Bank.

2. Model formulation and estimation

The framework for the analysis is a model of consumer behavior in which
households choose how much of a commodity to buy and in what quality or
grade. Commodities are considered as collections of heterogeneous goods
within which consumers can choose more or less expensive items, so that the
unit value of a commodity, the price paid per physical unit, is a matter of
choice. Both quantity and quality choice are functions of household income,
household characteristics, and price. Prices of any one good will typically
affect the quantities and qualities chosen of all goods.

To estimate such a model, data are required on household expenditures on a
range of goods as well as on physical quantities purchased. Weight may well
be the most natural measure of physical quantity, but it is by no means the
only one. For example, it might be convenient to consider a commodity ‘flour
and flour products’ that contained purchases of both flour and bread. In such
a case, it would not be sensible to add kilos of bread to kilos of flour, but
rather to convert bread to its flour equivalent before adding. Calories may also
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be a convenient common unit in which to aggregate. While all household
budget surveys collect data on household expenditures, not all ask questions
about physical quantities, The methods of this paper cannot be applied to
survey data without such information.

The second major data requirement, and one that is satisfied by virtually all
household surveys, is that households be geographically ‘clustered’ within the
sample. Survey organizations nearly always adopt such a design because it
minimizes transport costs and allows a group of households to be interviewed
at the same time. For current purposes, clustering is important because it
means that households within each cluster can be assumed to face the same
prices for market goods. Note that the validity of the ‘same price’ assumption
requires not only the geographical proximity of the households, but also that
they be interviewed at approximately the same time.

The model that I shall work with is as follows. For household i/ in cluster ¢
there are two equations for good G:

N
0 0 0 0
Woie =0+ BeInx, +yg-2,.+ Z Oy In py. + (f(;c+ H(iic)* (1)
H=1
N
Inog,;, = “lc + B(l, Inx,, +v5-2,+ Z YouIn py+ ”cl:m-- (2)

H=1

In eq. (1), w,, is the budget share of good G in household i’s budget, defined
as expenditure on the good divided by total expenditure on all goods and
services, x, . This share is assumed to be a linear function of the logarithm of
total expenditure, of the logarithms of the prices of all of the N goods, and of
a vector of household characteristics z;,.. The remaining terms are f.., a
cluster-fixed effect for good G, and an idiosyncratic residual u?, . The second
equation relates to the unit value of good G, v, as defined as the expenditure
on the good divided by the quantity bought. The logarithm of the unit value is
a function of the same variables that appear in the share equation, with the
exception of the cluster-fixed effect. The basic idea is that the logarithm of unit
value is the logarithm of quality plus the logarithm of price. In consequence, if
there were no quality effects, unit values would move proportionally with
price. However, prices, income, and characteristics all affect the choice of
quality and so all appear in the unit-value equation. Although it is difficult to
rule out the possibility of cluster-fixed effects in the unit-value equation, the
model depends on their exclusion; since prices are not measured, the identifi-
cation of the model requires a direct link between prices and unit values, a link
that would be broken by the presence of fixed effects.

One nonstandard feature of the egs. (1) and (2) is that the prices for the
goods, In p.,., are not observed, so that it is not possible to estimate the
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equations directly. Note that prices are assumed to be the same for all
households in cluster ¢, so that there is no i suffix on these variables. The
budget share in eq. (1) is observed for all households, but the unit value for
good G in eq. (2) is observed only for those households that record at least one
purchase in the market for that commodity. Households with zero budget
shares do not generate a corresponding unit value, just as in the labor supply
literature, individuals who do not work do not have recorded wage rates.
However, in the current case there will also be households with a positive
budget share but for whom there is no recorded unit value, This occurs if
households consume own-produced goods whose value has to be imputed.
Different surveys will generally have different imputation rules, and it will only
rarely be the case that the prices used for imputation can be treated as genuine
observations on unit values. For each cluster ¢, I shall denote by n_ the
number of households in the cluster, and by n; the number of households
that have observations on both the budget share and the unit value of good G.

Eq. (1) looks very much like the ‘Almost Ideal’ demand system of Deaton
and Muellbauer (1980) in which budget shares are a linear function of the
logarithms of real expenditure and prices. However, there are a number of
reasons why the model here is different. First, egs. (1) and (2) should not be
regarded as a direct representation of preferences, but simply as the regression
functions of budget shares and unit values conditional on the included
right-hand-side variables. Zero expenditures are included, so that the condi-
tional expectation is taken over purchasers and nonpurchasers alike. There is
no guarantee that there exist preferences that generate a regression function
like (1). Instead of following the traditional methodology of postulating a
linear structural model and then dealing with the zero censoring separately
and subsequently, I am directly postulating that the conditional expectations
or regression functions take the form (1) and (2). Such a procedure has several
advantages. As argued in the introduction, it is this regression function that is
of interest for policy, and estimation of the underlying structural model is not
required. Estimation is simplified because I am dealing with a linear model
and not with a Tobit or its multivariate generalization. Further, it is the
regression function which is identified from the data, and it is far from clear
whether it is possible to disentangle the effects of the censoring from the
underlying functional form without essentially arbitrary and untestable identi-
fying assumptions. Of course, there still remains unresolved the question of
whether (1) is a plausible functional form for the budget shares, given that the
zero observations are included.

The second reason why (1) and (2) differ from a model like the almost ideal
demand system is that we are no longer within the framework of a standard
demand model where quantities are a function of prices and the budget. Here,
consumers choose both quantity and quality, so that expenditure is the
product not only of quantity and price, but of quantity, quality, and price. As
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a consequence, the analysis must take account of price and income elasticities
of quality, and the existence of these effects also complicates the relationship
between the parameters and the elasticities that we are ultimately interested in
measuring.

The parameters 82 in (1) and B in (2) determine the total expenditure
elasticities of quantity and quality. Since B =9 Inv,/d In x and since unit
value is price multiplied by quality, the parameter is simply the expenditure
elasticity of quality. If (1) is differentiated with respect to In x and ¢ is the
(quantity) demand elasticity, we have

dlnw,/dInx=BL/w.=¢ec+ Bt—1, (3)

since the logarithm of the share is the sum of the logarithms of quantity and
quality less the logarithm of expenditure. Rearranging,

e = (1= 85) + (B3/wg)- )

Turning to the price elasticities, Y, is the matrix of own- and cross-price
elasticities of the unit values; if price were to have no effect on quality, ¥
would be the identity matrix. In general, the elasticities of quality with respect
to price are v, — 8, for Kronecker delta 8., If ¢, is the standard matrix
of own- and cross-price elasticities of quantities, then, differentiating (1) with
respect to In p,,, we have

dInw,/dInpy=ecu+VYou=0a/We- (5)
so that

eon= ~You + 0u/We- (6)

It is the estimation of the quantities £;, and e; to which I give the most
attention in what follows, although note that, for some purposes, interest
might focus on the income and price elasticities of quantity and quality
together, ie., on &;+ B: and &g, + Yoy — 8cy» quantities that are easily
calculated if required. Note that the elasticity formulae typically contain both
parameters and data and will therefore vary across the sample. I shall typically
ignore this variation and evaluate formulae at the sample means of the data.

Given that prices are not observed, all of the parameters cannot be esti-
mated without further prior information. The basic result that yields identifi-
cation is a formula that links the effects of prices on quality choice to
conventional price and total expenditure elasticities. Given a separability
assumption about the basic goods that comprise each heterogeneous commod-
ity, it is shown in Deaton (1988) that

Yon =0+ B{i‘scn/ﬁ(;- (7)
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According to (7), the price of good H only effects the quality of good G to the
extent that there is a cross-price quantity elasticity e;,. Given such an
elasticity, the effect works through the change in the total quantity of good G;
BL/¢c is the elasticity of quality of G with respect to total expenditure on G.

Assuming that (7) holds at the sample means, (4) and (6) can be used to
substitute for e;, and ¢; in (7), and we obtain a relationship linking the
underlying parameters:

Bcl:( Ocr/ws — ‘PGH)

Yoy =0 . 8
OGH GH (l _Bcl;) + Bg/wc ( )
It is convenient to define the vector £ by

£o= Bt/ {(1-BE)we+ B3}, ©)
so that, in matrix notation, (8) becomes

¥=]+D(¢£)O—D(¢£)D(w)VP, (10)

where I 1s the (N X N) identity matrix and D(x) denotes a diagonal matrix
with the vector x on its diagonal.

I am now in a position to discuss the method of estimation. There are both
important analogies and important differences between the methods used here
and the methods of estimation routinely used for panel data. In panel data, we
typically have a short time series on a large cross-section of individuals. Error
structures are specified that allow either fixed or random effects for each
individual, and estimators are sought that will be consistent as the number of
individuals in the cross-section increases with the number of time-series
observations held constant. In the current application, the role of the individu-
als is taken by the clusters or villages in the survey, and the repeat, time-series
observations are replaced by the individual households within each cluster. In
sample surveys, the cluster size does not vary very much across surveys,
sample sizes, or countries, and is usually between six and fifteen households.
In consequence, as in the case of panel data, I require estimators that are
consistent as the number of clusters increases, holding cluster size constant. As
far as error specification is concerned, eq. (1) assumes that there is a fixed
effect in the demand equation. This allows each household in each cluster to
share a idiosyncratic cluster effect that could represent shared preferences
(villages are often homogeneous with respect to race, tribe, religion, or
occupation), or weather, or distance, or many other factors. Such a specifica-
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tion allows for arbitrary patterns of spatial correlations in consumption
patterns; the spatial autocorrelation models estimated by Case (1988), and
shown by her to be important, are special cases of the model estimated here.

It is very important that the fixed effects be permitted to be correlated with
the included exogeneous variables, particularly income, and it is this feature
that rules out the use of a ‘random’ effect for each cluster and the associated
error components model. For the unit-value equation (2), the addition of a
fixed effect would destroy identification, because the unit values would no
longer give any useful information about the prices. However both random
errors u” and u' in (1) and (2) are allowed to have cluster components; in
particular, there is no supposition that measurement error cancels out over the
households in each cluster. When there are only a few sample households in
the village, the average measurement error for the cluster will typically have
lower variance than the measurement error for each household, but that does
not mean that it can be ignored. I note finally that while in most panel data
sets there are the same number of time-series observations on each individual,
it is typically not the case here that there are the same number of sample
households per cluster; even when intended by design, nonresponse always
introduces some variation. This variation introduces some additional complex-
ity into the algebra but raises no issues of principle.

The estimation takes place in two stages. At the first, egs. (1) and (2) are
estimated equation by equation by OLS with cluster means subtracted from all
data. The subtraction of cluster means removes not only the fixed effects in (1)
but also the cluster invariant prices in both equations. The resulting ‘within’
estimates of B2, y2, BL, and y. are consistent in spite of the lack of
information on prices and fixed effects. Denote these parameter estimates as
B, %2, B, and ¥.. Although I shall not be dealing here with a ‘complete set’
of demand equations, in which the budget shares of the goods add to unity,
these parameter estimates respect the adding-up conditions in the sense that
for a complete system the vectors of parameter estimates B and 7° add to
zero. This result is a consequence of the fact that for a system of OLS
estimators B = (X'X)"}(X’Y), where Y is the matrix of observations on the
budget shares, Yt = Xy implies Bi =y for vector of units ¢. In this case the
budget shares add to unity, so that y is zero except for the element corre-
sponding to the constant term in X. All this only works if zero observations on
consumption are included. Otherwise, the sample of included households is
different for each commodity, we no longer have a simple multivariate regres-
sion set, and the result does not apply.

Note that, from (4) and (9), the estimates of the total expenditure elastici-
tites of quantity and quality as well as the parameters £ are functions only of
these first-stage parameters. Denote the residuals from the two sets of regres-
sions as el and el, . These can be used to give consistent estimates of the
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variances and covariances of the residuals in (1) and (2) as follows:

6 =(n=C-k)'L ¥ eliedic, (11a)
-~ 4 = 2

Go=(n; —C—k) "L L(ek)", (11b)
5&%‘2 (”E - C_ k)_lz Z_egiceé?r'c‘ (11{:)

C i

where n. is the sum of n). over clusters and n is the total number of
households. In (11b) and (11c) the summation is taken over all households that
record unit values, while in (11a) it runs over all households. Note that egs.
(11b) and (11c) estimate only variances and covariances within goods, and that
the covariances of the residuals between goods are assumed to be zero both
within the unit-value equation and between the two equations.

In principle there is no difficulty in estimating the full matrices of inter-good
covariances, and the appropriate formulae are the obvious extensions to (11b)
and (1lc). The formulae given below also apply to the more general case.
However, in many applications there are relatively few households recording
market purchases, and the estimation of off-diagonal elements for ¢l9, and
4% could only be based on households that record purchases for both of the
goods. Even then, each element of the estimated matrix would be formed from
a different number of residuals, a fact that would have to be allowed for in
calculating standard errors. The important covariances here are those between
the budget shares and unit values for the same good. Expenditures and
quantities are inevitably measured with error, so that when unit values are
calculated by dividing one by the other, there will be generally be a correlation
between the residuals in the budget share and unit value equations.

All of the first-stage estimators will be consistent as the sample size tends to
infinity, even if the number of clusters increases at the same rate as the total
sample size, as it would in the practically relevant case where cluster size is
held constant. Of course the consistency comes at a price, that the parameters
(including the variances) are the same for all clusters, so that the within-cluster
information can be pooled over a large number of clusters.

The second stage of estimation begins by using the first-stage estimates to
calculate the parts of mean cluster shares and unit values that are not
accounted for by the first-stage variables. Define 72 and . by

-0 _ 50 ~0 _ ~0 .
V=W~ BsInx . —Yg z.=w;, — X . %G, (12a)

).;(]7.(' = ln U(F.(' - BEF In x.(' - ?(l; ’ z.(' = Il'l UG.(' Xt lﬁ(l?" (lzb)
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where, in a slight abuse of notation, x _ is the vector of explanatory variables
at the first stage and 70 and =} are the parameters for the two equations.
Define the matrix @ as the variance—covariance matrix across clusters of the
theoretical magnitudes yZ ., defined as above but using the true parameters 8°
and y°. S is the corresponding matrix for y:, and R the covariance matrix,
1e.,

den = COV( Y oo ,Vg'.(-)s Sen = COV( .V(l:.cs y!lf.c-)’
(13)

_ 0 1
YTon = CO"’( V6.0 }’u.r)'

It is also convenient to have a matrix notation for the matrices of residual
variances and covariances. Denote the population counterparts corresponding
to (11a), (11b), and (11c) by 2, 2, and I, respectively. As defined above and
as implemented in the computer code, the last two of these are diagonal
matrices, but nothing in the theory prevents a more general interpretation.

From the population version of (12) and taking probability limits over all
clusters,

S=¥M¥ + QN1 (14)
R=¥YMO + TN, (15)
where M is the variance-covariance matrix of the unobservable price vector,
N '=plimC™ 'YX _D(n})"", with D(n}) a diagonal matrix formed from the
elements of n/;, and N ! is the corresponding matrix for the ns. Equating

sample moments to their population counterparts, calculate the matrix B
according to

B=(S-ar:") (R-TT;Y), (16)

where a tilde (~) denotes an estimate and the diagonal matrices 7, and T,
are the sample counterparts of N and N, and are given by

Trt= UL (D)) TH=CE(00)) ()

and C is the total number of clusters in the sample. As the sample size goes to

infinity with cluster sizes remaining fixed, B will tend to its population
counterpart, i.e.,

plimB=B=(¥)"'®". (18)
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It is not required that the cluster size becomes large; by pooling across clusters
at the first stage, the first-stage parameters are consistent as the number of
clusters increases. Similarly, the estimation of price effects rests entirely on the
between-cluster variation, and the estimate of B will tend to its true value as
the number of clusters grows large.

Estimates of B do not allow direct recovery of ¥ and ®. However, eq. (10)
together with (18) allows @ to be calculated from

@=B'{I1-D(¢)B +D(£)D(w)} . (19)

The matrix of price elasticities E, from (6), is {D(w)} '@ — ¥, so that,
substituting,

E={D(w) 'B'—1}{I-D(§)B +D(§)D(w)} " (20)

Estimates of @ and E are calculated from (19) and (20) by replacing
theoretical magnitudes with estimates from the first and second stages and by
using the sample mean budget shares for the w vector.

The appendix derives variances and covariances for the parameters and for
the elasticities, as well as test statistics for Slutsky symmetry. The remainder of
this section reports a very limited Monte Carlo experiment with a ‘stripped-
down’ version of the model. The model I have investigated is one in which
there are neither cross-price nor quality effects; the focus is rather on the
effects of the measurement error, particularly in the unit-value equation. The
true model is formed from the following versions of (1) and (2):

w.=a’+B%nx, +0Inp, +f +u, (21)

Inv,,=Inp.+ul,. (22)

There is only one good, and the absence of quality effects means that the unit
value is simply a noisy measure of price. The parameter a’ is set to zero, B9 to
0.02, and @, which is the parameter on which I shall focus, to 0.046; this value,
together with the other assumptions to be made, generates a price elasticity of
—0.67 at the mean of the budget share. Total expenditure x and the unobserv-
able p are each generated by independent drawings from lognormal distribu-
tions, In x with mean 4.6 and standard deviation 0.5, and In p with mean zero
and standard deviation 0.1. These values were drawn afresh at each experi-
ment rather than held fixed in repeated samples; this appears to be the
appropriate way to model repeated sample surveys from the same underlying
population. I made no attempt to induce any cluster structure into the In x’s;
all observations are independent drawings.
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The fixed effects f, are generated as 0.01(In x, — 4.6) + 0.0159, where 4.6 is
the mean of In x, Inx_ is the cluster mean of Inx,., and ¢ is drawn from
N(0,1). This procedure is chosen so as to generate a correlation of 0.3 between
the fixed effects and Inx. Finally, the two error terms u® and u' are
independently drawn from normal distributions, each with mean zero and
standard deviations of 0.0005 and 0.1, respectively. The independence of u°
and u! corresponds to the case where errors of measurement in expenditures
and prices are independent, so that there will be a negative correlation
between measured quantity and measured unit value. While there is a good
deal of arbitrariness in the choice of these parameters, they generate data that
bear at least superficial resemblance to the results reported below.

The experiments were carried out as follows. Given a cluster size n,,
assumed to be the same for all clusters, and a number of clusters C, 500
‘sample surveys” were generated according to the rules above and the estimate
of @ calculated using eq. (16). No use was made of the absence of quality
effects in the price equation, so that the unit values were regressed on In x at
the first stage as described in the text above. Based on the previous literature,
two additional estimators were calculated. The first, referred to as the ‘be-
tween-cluster’ estimator, has a first stage that is identical to that for the
‘correct’ estimator, but at the second stage, the corrections for the estimated
measurement errors are omitted. Referring to eq. (16), the estimate would be
S'R. The basic idea is to ignore the within-cluster information, relying on the
averaging within clusters to reduce the measurement error in prices; see
Strauss (1982) for a similar argument in the context of farm-household
behavior in Sierra Leone. The second, ‘logarithmic’, estimator follows the
standard procedure of double-logarithmic regression; see for example Timmer
and Alderman (1979) and Timmer (1981). In the experiments, Ing was
calculated as Inw + In x — In p, and then the individual household data were
used to regress Ing on a constant, In x, and Inv. To compare the estimated
elasticity with the parameter , it was multiplied by the sample mean budget
share and added to 1. A simple errors-in-variables analysis shows that,
provided the true elasticity is greater than —1 as it is here, this estimator will
be biased downward by the spurious negative correlation between Ing and
Inwv.

The results are shown in graphical form in figs. 1, 2, and 3. In fig. 1 there are
100 clusters, each of size 2. (In the empirical results below, the situation is
much better than this, and there are typically more than 2,000 clusters with
4-6 households in each.) The estimated densities are shown for each of the
three estimators. They are calculated from the underlying 500 estimates by
using a kernel density estimator with a Gaussian kernel and a bandwidth of
1.06 - m~%2 - min(sd, iqr/1.34}, where sd and igr are the standard deviation
and inter-quartile range of the estimates and m =500 is the number of
replications; see Silverman (1986, pp. 45-47). Unlike the other two estimators,
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Fig. 1. Three estimators: smoothed densities.

the “correct’ estimator is correctly centered, but has noticeably greater spread.
The between estimator is biased downward; averaging over clusters does not
eliminate the measurement error in the unit values, so that the variance of
‘prices’ is overstated, thus producing an understatement when it is divided
into the covariance of prices and budget shares. The expected downward bias
in the logarithmic estimator is also apparent; in this case the elasticity would
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Fig. 2. Effects of numbers of clusters.
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Fig. 3. Effects of cluster size.

be estimated as close to —1 instead of its true value (at the sample mean) of
—0.67. The variance of the log estimator is the least because it uses the whole
sample, not just the between-cluster data. That of the ‘correct’ estimator is
relatively wide because of necessity to estimate the within-cluster error vari-
ances. The sampling variability of these variances causes a loss of precision
but is required to correct the bias and inconsistency in the other two estima-
tors. Not shown here is the bias of the total expenditure elasticity from the log
estimator; by ignoring the fixed effects, the estimated expenditure elasticity is
contaminated by the correlation between In x and f, not to mention the
measurement error in Inwv.

Figs. 2 and 3 show the effects of increasing, first, the number of clusters, and
second, the number of households in each cluster. Fig. 2 shows the expected
narrowing of the distribution as the number of clusters increases from 100 to
1000 with the cluster size at its worst possible value of 2. As theory would
suggest, the standard deviations of the four densities are proportional to C~ 3,
and even with these relatively unfavorable sample sizes, the asymptotic stan-
dard errors derived in the appendix are an excellent approximation to the
empirical standard deviations. For the four cases shown, with cluster size 2
and with 100, 200, 400, and 1000 clusters, the actual standard deviations with
theoretical asymptotic standard errors in parentheses are, respectively, 0.0210
(0.0220), 0.0149, (0.0151), 0.0105 (0.0107), 0.0067 (0.0067). Fig. 3 shows that
the larger cluster sizes are better than smaller ones, but the effect is not very
marked. Again, this is what is predicted by the theory. Even with infinite
numbers of households in each cluster, the estimates would not converge;
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information about prices comes only from the cross-section of clusters. Again
the asymptotic standard errors are a good guide to the actual results; for
cluster sizes 4 and 8, the actual standard deviations (theoretical standard
errors) are 0.0092 (0.0093) and 0.0086 (0.0088). Unless there is something
special about these simulations (and they are the only ones that I have tried),
the theory in the appendix would seem to provide useful formulae for standard
errors, especially given that, in practice, sample sizes are likely to be much
larger than those in the simulation.

3. Results from rural Java

The model described in section 2 was used to estimate a demand system of
eleven foods using data from the 1981 SUSENAS household survey of
Indonesia. Since spatial price variation is likely to be more marked in rural
areas and since survey clusters are more widely spaced in the countryside, I
report results only for rural households. In order to keep a sample that is
relatively homogeneous, I further restrict attention to Java. Even so, the
potential maximum sample is 14,487 households. Table 1 lists the eleven
foods, together with their average budget shares, and the numbers of house-
holds providing information about each. Although households that record no
expenditure are included in the analysis, whole clusters with zero expenditures
are excluded because there is no way of estimating a price for them. There are
3,202 sample clusters in rural Java in all, and the third column of table 1
shows how many clusters record at least one household making a purchase for
each of the goods. The first and second columns show how many households

Table 1

Commodities. sample sizes, and budget shares for Java, 1981.%

Percent

Shares Values Clusters shares
Rice 12,914 9,245 2,804 24.53
Wheat 5,228 1,703 1,061 0.52
Maize 3,926 1,593 815 5.77
Cassava 6,441 2,539 1,343 1.39
Roots 5,716 2,021 1,185 0.60
Vegetables 14,419 14,115 3,181 5.57
Legumes 13,939 12,055 3.070 3.66
Fruit 10,114 4,652 2,124 1.88
Meat 4,928 1,526 1,001 2.07
Fresh fish 9,262 5,046 1,925 2.95
Dried fish 13,327 10,665 2,871 2.83

“First three columns are numbers of households in clusters with some households purchasing
the good, numbers of households recording purchases, and numbers of such clusters. Final column
shows budget shares for each good averaged over households in the first column.
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Table 2
First-stage estimates: Quantity and quality effects.®

B’ 1(B%) B 1(BY) € 1(¢)
Rice -0.1179 —56.7 0.0290 9.0 0.490 57.6
Wheat 0.0035 6.6 0.0993 1.1 1.567 234
Maize —0.0526 -19.1 —0.0003 =00 0.088 i3
Cassava -0.0118 -149 0.0168 0.7 0.139 35
Roots —0.0008 -1.7 0.1653 28 0.709 139
Vegetables - (L0206 -337 —0.0402 -18 0.670 25.2
Legumes ~0.0039 -59 0.0422 4.6 0.850 423
Fruit 0.0086 124 0.0725 27 1.385 40.0
Meat 0.0287 182 0.0885 1.9 2.296 434
Fresh fish 0.0090 88 0.2232 8.5 1.082 35.0
Dried fish —0.0105 -176 0.0639 5.7 0.566 255

“8Y is the coefficient of the budget share and B' the coefficient of the unit value on the
logarithm of household expenditure per capita. e is the calculated total expenditure elasticity of
quantity, 8' is the total expenditure elasticity for quality.

are in these clusters and how many make purchases. Overall, there are just
under five households per cluster. Even selecting out clusters where no
household makes a purchase, the number of purchasers per cluster varies from
4.4 for vegetables to around 1.5 for meat. Expenditure on rice accounts for
nearly a quarter of the budget, while the other foods account for another
quarter between them.

Table 2 presents some of the results from the first-stage estimation. At this
stage, cluster means are removed from all variables, and shares and logarithms
of unit values regressed on the logarithm of household per capita expenditure,
the logarithm of total household size, a set of demographic variables (the
numbers of household members in each of thirteen age and sex categories as a
ratio of household size), and nine educational dummies. The first four columns
show, together with their z-values, the coefficients 8° and ', which estimate
the effects of the logarithm of total expenditure on the shares and the unit
values. The last two columns show the total expenditure elasticities of quantity
calculated according to eq. (4).

The quality elasticities B! relate to unit values, defined as expenditure per
kilo, where the latter is calculated by adding weights across all goods in the
group. Such a procedure makes sense for most of the goods, but is less than
satisfactory for such categories as fresh fish, vegetables, or fruit, where I am
(literally for fruit) adding apples and oranges. A more sophisticated calorie-
based treatment would be an obvious next step. However, note that even if
kilos of “fruit’ are of little interest on their own account, total weight is likely
to be well-correlated with more satisfactory indicators of volume if the
composition within the category is more or less constant across the sample. In
any case, and with the exception of roots and fresh fish, the estimates in table
2 show very little response of unit value to total expenditure. For two goods,
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maize and vegetables, there are insignificant negative effects, while for the
others, the elasticities are less than 10%. Even when the quality elasticity is
relatively large, as in fresh fish, the effect is hardly dramatic. An estimated
expenditure elasticity of fish expenditure of 1.31 is decomposed into an
estimated quantity elasticity of fish of 1.08, with the difference of 0.22
representing the upgrading of quality at higher incomes. The quantity elastici-
ties are ordered much as would be expected, with cassava and rice near the
bottom, and meat, fresh fish, and wheat near the top.

Table 3 reports the estimates of variances and covariances from the first-stage
estimates. The first column gives the diagonal of the matrix 2, the residual
variances from the share equation; the square roots of these numbers can be
compared with the average budget shares from table 1 to give some idea of fit.
The second column is the diagonal of £, while the third column, which is the
most interesting, presents the covariances between the residuals in the two
equations. The estimates of o'° are important because they are informative
about the importance of measurement error, and because their magnitude
affects the size of the corrections that are made to what otherwise would be an
OLS regression of cluster average shares on cluster average prices; see eq. (16)
above. A natural starting point for discussion is the supposition that the errors
of measurement in reported expenditures are orthogonal to the errors of
measurement in reported quantities. If so, the error in the unit value will have
a positive covariance with the error in the share, and that is what occurs in
table 3 in all cases except for vegetables. The last may reflect a different
reporting bias, or just the general inappropriateness of adding together
the weights of different vegetables. The scale of ¢'° will be determined by the

Table 3

First-stage variances, covariances, and cluster sizes.*

(L] il 10

o o a 1y t,
Rice 0.004915 0.00671 0.00072 3.85 231
Wheat 0.000138 0.50110 0.00122 428 1.28
Maize 0.002678 0.05991 0.00172 4.11 1.40
Cassava 0.000349 0.06175 0.00066 4.09 1.41
Roots 0.000100 0.30061 0.00023 4.14 1.33
Vegetables 0.000467 0.58771 —0.00180 374 3.59
Legumes 0.000530 0.08454 0.00041 3.76 2.99
Fruit 0.000450 0.21981 0.00119 4.08 1.59
Meat 0.001369 0.15164 0.00153 4.20 1.24
Fresh fish 0.000865 0.23510 0.00212 4.08 1.76
Dried fish 0.000413 0.10134 0.00082 392 2.68

6", g'! and ¢'" are the residual variances of the share equation, the unit-value equation, and
the covariance between them, respectively. 1, and 7, are the elements of the matrices T; and T,
and are appropriately defined ‘averages’ of numbers of households per cluster, in total, and
reporting purchases of the good.
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Table 4

Cross-cluster variances and covariances and corrections,®

Ratio Ratio
cov(w,ln p) var(ln p) [§)] 2) e, €y
Rice 0.00203 0.0158 0.1284 0.1429 -0.48 —-0.42
Wheat 0.00113 0.9545 0.0012 0.0015 -0.77 -0.71
Maize 0.00223 0.1499 0.0149 0.0169 -0.74 —-0.71
Cassava 0.00117 0.1663 0.0071 0.0082 -0.49 —0.41
Roots —0.00038 0.6486 - 0.0006 =0.0010 - 1.10 -1.17
Vegetables —0.00184 0.5862 =0.0031 —0.0032 = 1.06 ~1.06
Legumes ~0.00032 0.1203 —0.0027 —0.0047 -1.07 —-1.13
Fruit 0.00033 0.2424 0.0014 0.0004 -0.93 —=0.98
Meat = 0.00010 0.2281 —=0.0004 —-0.0044 -1.02 -1.21
Fresh fish 0.00165 0.3311 0.0050 0.0057 -0.83 —1{.81
Dried fish 0.00345 0.1404 0.0246 0.0316 -0.13 012

“The covariances and variances are evaluated across cluster means. Ratio (1) is the ratio of the
covariance to the variance. Ratio (2) is the ratio of the covariance less o!? /14 to the variance less
o''/t,. e, and e, are the own-price elasticities calculated ignoring all cross-price and quality
effects using ratio (1) and ratio (2), respectively.

budget share of the good, so that, once again, it is useful to deflate the
estimates by the average budget share. Particularly noticeable is the very small
figure for the most important commodity, rice, where ¢'° /w is 0.0029, suggest-
ing that measurement errors on expenditures have a standard error of only
about 5%. For the other commodities, similar computations give much larger
figures.

From an econometric point of view, the importance of allowing for mea-
surement error is determined by the size of the corrections to § and R made
by subtracting 27, ' and I'T_!. Table 4 is one way of assessing the extent to
which measurement error affects the estimates. The first and second columns
show the cross-cluster variance of mean unit value and its covariance with the
budget share, where both quantities have been purged of the effects of the
first-stage variables. The ratio of covariance to variance, ratio (1), is the OLS
regression coefficient in the regression of mean budget share on mean unit
value. If there were no quality effects, no cross-price effects, and no measure-
ment error, this ratio, divided by the budget share, would be one plus the own
price elasticity, e, in the table. As has already been seen, the quality effects are
small in any case and, as will be seen, allowing for cross-price effects has only
a minor effect on the own-price elasticities, so the simple estimates here are
more useful than might appear. If the calculation is complicated only to the
extent of allowing for measurement error, still ignoring cross-price and quality
effects, the covariance is corrected by subtracting ¢'°/¢ from table 3, the
variance by subtracting o' /7., and the ratio and the elasticity recalculated.
Hence ratio (2) and e, in the table,
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Given the general uncertainty about price elasticities, the last two columns
are remarkably close. Only for dried fish, and to a lesser extent for meat, does
the correction make a real difference. For some commodities, for example rice,
the estimated size of the measurement error is small relative to the substantive
variances and covariances so that ratio (1) and ratio (2) are similar. This
finding replicates earlier work on the demand for rice in Indonesia by Case
(1988). For other goods, allowing for measurement error makes a large
proportional difference to the ratio of covariance to variance, but since the
ratio itself is small, the estimated elasticity remains close to minus one. In
either case, similar results would have been obtained by simply ignoring the
measurement error, provided, of course, that the regression is one of average
cluster demand on average cluster price. However, it is important to note that
this result provides no support for a regression, at the household level, of log
quantity on log price. Such a regression is restricted to households that make
positive purchases and the results on the restricted sample are likely to be (and
in this case are) quite different. Even simple regressions of budget shares on
In x have quite different coefficients depending on whether or not zeros are
excluded, particularly for those commodities where there is a large number of
households not purchasing. Further, by working at the household level rather
than with cluster means, there is no averaging to reduce the effects of
measurement error relative to the effects of genuine price variation.

The matrix of own- and cross-price elasticities is presented in tables 5a and
Sb. All of the estimated own-price elasticities are negative, as they should be.
Note however that the ‘default’ own-price elasticity is not zero but minus one,
a value that is attained when B and B! are zero; see eq. (20). The own-price
elasticities are also close to the preliminary estimates in table 4; allowing for
cross-price effects is not very important for measuring own-price elasticities, at
least in these data. For four commodities (vegetables, legumes, fruit, and meat)
the price elasticity is not significantly different from this default value - a
phenomenon that may reflect problems with defining quantities. For all goods
except meat and for all goods with price elasticities significantly different from
minus one, the price elasticities are estimated to lie between minus one and
zero. There are no goods with very large estimated own-price elasticities, and
there is some tendency for the goods that have the lowest total expenditure
elasticities (dried fish, cassava, rice) to have absolutely low price elasti-
cities — something that might be expected for goods that are are genuinely
‘necessary’.

The important rice price elasticity is estimated to be —0.42, which can be
compared with the figures of —0.55 or —0.62 (depending on detailed assump-
tions) estimated from a subsample of 5218 households in Java from the same
survey by van de Walle (1988). Van de Walle used a log-log specification, and
the difference in the estimates is in the direction that the theory would predict.
However, the divergence is not very large; the vast majority of households
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Table 5a

Own- and cross-price elasticities for Java, 1981.*

1 2 3 4 5 6
Rice Wheat Maize Cassava Roots Vegetables

1 Rice —0.424 —0.005 -0.032 0.088 0.025 -0.057
5.1 03 0.9 31 1.8 32

2 Wheat —-0.461 —0.692 0.011 - 0.000 —0.188 0.284
1.6 13.8 0.1 0.0 38 46

3 Maize 1.245 0.090 —0.822 -0.256 -0.100 0.602
4.9 2.1 7.5 3.0 24 9.5

4 Cassava 0.151 0.078 0.186 —0.325 ~0.003 0.121
0.5 1.4 14 28 0.1 L7

5 Roots 0.795 0.125 0.150 0.084 - (.953 0.080
39 3.6 1.9 1.2 22.0 1.8

6 Vegetables —0.047 -0.057 -0.100 0.101 0.030 -1113
0.4 31 23 2.7 1.6 28.5

7 Legumes 0.108 -0.038 -0.200 —0.050 0.034 —-0.118
0.8 1.6 3.5 1.0 14 38

& Fruit 0.354 -0.013 -0.003 0.171 —0.068 0.056
21 04 0.0 29 23 1.5

9 Meat -0.1%0 —-0.075 - 0.060 -0.173 -0.158 0176
0.8 1.7 0.6 2.0 3.6 32

10 Fresh fish 0.399 0.028 0.244 -0.017 0.099 0.316
2.0 0.8 3.0 02 28 7.0

11 Dried fish 0.391 0.029 0.151 0.057 - 0.057 0.379
2.0 0.8 1.9 0.8 1.7 8.4

“The column is the good whose price is changing and the row is the good affected. Hence, a
increase in the price of vegetables is estimated to increase the consumption of wheat by 0.284. The
figures below the elasticities are (absolute) asymptotic r-values.

consume rice, and van de Walle argues that the rice price may be relatively
well measured. Timmer and Alderman (1979) and Timmer (1981) also report
price elasticities for rice and cassava from the 1976 survey. Again they use a
double logarithmic formulation, but apply the model not to the micro data but
to cell-means of income classes by province, sector, and time period. They
estimate different elasticities for different income groups and find figures that
are numerically very much larger than those reported here. Most income
groups have rice price elasticities below —1, and the average is — 1.1, while for
fresh cassava, the average price elasticity is —0.8, as opposed to —0.33 in
table 5a. Timmer and Alderman also report a cross-price elasticity of cassava
with respect to the rice price of 0.77 (0.15 here), but fail to find a significant
cross-price effect from cassava to rice (0.09 here). There are many possible
reasons for these discrepancies, but again the double logarithmic quantity on
unit value specification must be a prime suspect. I also find it implausible that
such basic staples should display such high price elasticities, if only because
there are few obvious substitutes. However, the opposite position has also
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Table 5b

Own- and cross-price elasticities for Java, 1981.%

7 8 9 10 11
Legumes Fruit Meat Fresh fish Dried fish

1 Rice 0.065 0.130 ~0.064 0.053 0.213
20 29 1.6 21 6.3

2 Wheat -0.127 -0.211 -0.226 0.089 -0.128
1.1 1.3 1.6 1.0 1.1

3 Maize 0.006 —0.247 0.167 ~0.444 —0.111
0.1 1.8 14 5.6 1.1

4 Cassava 0.013 —0.461 0.184 0.054 -0.671
0.1 25 1.1 0.5 5.0

5 Roots -0.122 —0.072 0.080 0.181 —-0.253
1.5 0.6 0.8 29 3.1

6 Vegetables —0.081 —0.064 —0.064 0.050 =0.173
1.9 1.1 1.2 1.5 4.0

7 Legumes —0.954 -0.097 0.202 —-0.084 -0.134
0.8 1.3 3.0 1.9 24

8 Fruit —-0.088 -0.953 —0.092 0.071 -0.070
1.3 0.5 1.1 14 1.0

9 Meat 0.030 -0.376 -1.091 —-0.036 0.196
0.3 27 0.7 0.5 1.9

10 Fresh fish 0.026 —0.009 0.047 —-0.762 0.259
0.3 0.1 0.5 38 32

11 Dried fish —0.023 —0.105 —0.057 0.667 -0.239
0.3 1.0 0.6 10.4 9.4

*See footnote to table 5a.

been argued: that poor, near-subsistence consumers will substitute between
minimum-cost, calorie-based diets as relative prices change.

There are a considerable number of estimates of cross-price elasticities that
are significantly different from zero. It is not difficult to invent ‘explanations’
to account for almost any observed pattern of responses, but undoubtedly
some of the figures make a good deal more sense than others. For example, the
elasticities are gross elasticities, with income effects included, so that it would
be reasonable to expect many of the numbers in the first column to reflect the
large negative income effects generated by increases in the price of rice. Yet
most of these estimates are positive, and there are substantial proportional
increases in the demand for maize, roots, fruit, and fish when the price of rice
rises. For this to make sense, the other omitted categories must show an
overall complementarity with rice. Some other cross-price effects, for example
the strong substitutability between fresh and dried fish, look a good deal more
satisfactory. Table 6 shows the deviations from symmetry evaluated according
to eq. (39), together with their absolute t-values. Sixteen out of the fifty-five
cross-terms are significantly different from zero, and the overall Wald statistic
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Table 6

Deviations from symmetry.®

2 3 4 5 6 7 8 9 10 11

1 01 74 -21  -01 14 -09 -21 21 03 -4l
00 46 25 03 19 09 18 19 04 40

2 05 01 02 -05 -01 01 -00 03 0l
19 10 51 46 08 08 03 02 12

3 17 07 -38 -06 16 -08 34 11
33 28 8 10 20 11 66 18

4 01 04 -02 10 -06 01 L1
07 19 06 36 19 03 41

5 01 02 -01 -03 -04 —00
11 20 09 33 36 01

6 o1 05 09 07 20
02 16 30 32 714

7 02 -06 04 04
07 17 15 13

8 06 02 -02
17 05 06

9 01 -07
04 19

10 11
36

*The upper entry in row i, column ; is (100 times) the quantity wie; — wig + wiw(e; — e
which should be zero under Slutsky symmetry. The lower figures are absolute asymptotic values.
Deviations with r-values greater than 2 are shown in bold.

for the null of symmetry is 415.8, a number that is well in excess of
conventional critical values of a x?, even with 55 degrees of freedom. In
Deaton (1987), I reported a favorable symmetry test for the Cote d’Ivoire;
however, in that case there were only 5 goods and less than 200 clusters, as
opposed to 11 goods and 2000 clusters in the current example. With such large
samples, standard hypothesis tests will always tend to reject if no attempt is
made to trade off Type I and Type II errors, and a case can be made for using
a Bayesian procedure, such as that advocated by Schwartz (1978). This would
reject the null only for test statistics greater than 55 times the log of the
sample size, or 418.0. While such a procedure is not universally accepted, it is
perhaps reasonable to conclude that the evidence is not overwhelmingly
against the symmetry hypothesis.

4, Conclusions

This paper has proposed a method for using large-scale household survey
data for the estimation of a system of demand equations, making use of spatial
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variation in price to identify and estimate a matrix of own- and cross-price
elasticities. Compared with earlier formulations [Deaton (1987,1988)], the
model presented here contains a more satisfactory specification of the demand
functions, as well as a derivation of the rather complex formulae for variances
and covariances of the estimates. The admittedly limited Monte Carlo evi-
dence presented in section 2 does not suggest any practical problems in using
the procedure or the formulae for the standard errors. Large-scale sample
surveys provide the sort of data where asymptotic theory is likely to provide a
very good approximation.

Estimates are presented for an eleven-commodity system for Indonesia. To
the extent that it is possible to judge, the parameter estimates are plausible.
For rice and cassava, the own-price elasticities are a good deal smaller (i.e.,
closer to zero) than some previous estimates, but the direction of the discrep-
ancy is as predicted by the theory developed here. If judged by a large-sample
posterior odds test, the estimates are consistent with Slutsky symmetry, but the
hypothesis would be rejected by a strict classical statistician (as would most
sharp hypotheses on a sample of more than 14,000 observations).

While the model appears to work well in the application, there are a number
of unresolved issues that ought to be noted. The model is very close to being
exactly identified, and so it is difficult to construct the sort of cross-checks that
would lend it greater conviction. Plausibility of demand elasticities is not in
itself a very powerful test. It would be extremely desirable to have data with
direct measures of market prices against which this method could be com-
pared. The model would also be improved by allowing a more general
functional form for the Engel curve in eq. (1). Given that zero observations are
included, there are even less grounds than usual for assuming linearity. An
ideal, but technically difficult solution would be a semiparametric form in
which the Engel effects are dealt with nonparametrically. Although much
remains to be done, the results reported here would nevertheless support the
cautious use of the procedure in practical applications.

Appendix

This appendix describes the procedures for deriving standard errors for the
parameters B, as well as the derived quantities ® and E. As pointed out by a
referee, the estimator in section 2 works by equating sample with theoretical
moments, and so belongs to the generalized methods of moments class of
estimators. The general theory of this class has been worked out by Hansen
(1982), so that one approach to deriving standard errors would be to apply
Hansen’s formulae. The sequential nature of the procedure can be handled by
the results given by Newey (1984). The GMM method can be used to explore
efficiency considerations, as well as to check the extent to which it is possible
to relax the assumptions of homoskedasticity and normality which are made
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below. However, the algebra involved is still extraordinarily heavy, and
following this route all the way would be a research project in its own right.
Given computer software that would handle symbolic matrix differentiation, it
would be a useful exercise to redo the calculations below using the GMM
method, Here, I proceed directly under the assumption that the error terms in
(1) and (2) are i.i.d. normal.

I start with the variance-covariance matrix of the estimate of the matrix B;
this is the most straightforward to deal with, and the variances of the elements
of E are derived from it. The basic procedure is the ‘delta method’ [see for
example Fuller (1987, p. 108)]. Expand B from eq. (16) around the true value
B, so that
-1

(B—-B)=(s-ar')
x{(R-R)—(I-T)T;!
—(S-S)B+(2-2)T'B}. (A1)

The derivations are simplified by adopting the following notation from Deaton
(1987). Define the following matrices:

w-(2 %) a-(E 5)

together with J = (0y|Iy), an N X 2N matrix of ones and zeros, and P’ =
(Iy]— B’). Then (A.1) becomes

(B-B)=A4"Y{(H-H)-(A-A)T'}P, (A.3)

where 4 =(S—QT;") and T is a 2N X 2N diagonal matrix with T, on the
first N elements of the diagonal and T, on the second N elements. Eq. (A.3)
traces the sources of variance in B back to the estimation uncertainties in H
and in A. The latter comes entirely from the first-stage estimation and can be
dealt with straightforwardly using the fact that A is a Wishart matrix. It is the
estimation error in H that is complicated because there are two independent
sources: (a) the estimation error that comes from the estimation of parameters
at the first stage and (b) the inherent uncertainty that comes from estimating
population from sample covariance matrices, an uncertainty that would be
present even if the first-stage parameters were known. In Deaton (1987), albeit
using a different functional form, I incorrectly assumed that source (a) could
be asymptotically ignored. The numerical results in that paper are barely
affected by the error, but in general both sources of variance need to be taken
into account, even in large samples.

J.Econ—C



304 A. Deaton, Price elasticities from survey data

To decompose further the estimation error (H — H), rewrite (12) in the
form

Y0=y0- x(I1°-11°), (A.4a)
Y'=Y'- x(IT'-11'), (A.4b)

where Y° and Y! are the C X N matrices of cluster means of budget shares
and log unit values, each with the grand mean removed, X is the correspond-
ing C X K matrix of cluster means of first-stage explanatory variables, again
with the grand mean removed, and II° and IT' are KX N matrices of
first-stage parameters. By aligning the matrices to define Y= (YY), a
C X 2N matrix, and similarly for IT= (II°|IT'), (A.4a) and (A.4b) can be
combined to give

¥=¥-X(I1-1). (A.5)

The matrix H is then simply C~'Y’Y, and I denote the corresponding estimate
with known first-stage parameters as H, i.e., H=C~'Y’Y. Write M for the
covariance matrix C~ XY, so that, to the first order,

H=H-M(IT-II)- (IT-TT)M. (A.6)
Substituting in (A.3), we have
(B-—B)=A Y{(H-H)-M(IT-1I)
—(M-MmyM—-(A-A)T'}P, (A7)

which isolates the three sources of variance in the estimate of B. The first
expression in the braces, H — H, comes from the second stage between cluster
residuals and has a standard Wishart form. The variability in the estimates of
IT and A comes from the first-stage within-cluster residuals. Since the within
estimates are orthogonal to the between estimates, there is no covariance
between the first term and the last three. Further, since the IT parameters are
obtained by linear regression at the first stage, their estimates are asymptoti-
cally independent of the estimates of the variances and covariances of the
residuals, and thus of the estimates of A. Note finally that no allowance need
be made for the variability of M that comes from the variability of Y, since
the effects through (A.6) are of the second order. Given this, I have econo-
mized on notation by not replacing M in (A.7) by its population counterpart.
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In ‘vec’ notation (A.7) takes the form
vec( B — B) =(P’®A'1J)[vec(ﬁ—H) —vee{ M'(IT-11)}
—vec{(ﬁ— nym} - vec{(fi - A)T"l}]
=(P'®A Y)[vec(H-H) (A.8)
—(I+K)(I1® M')vec(I1—IT)]
—(PT'® A V)vec(A—A),
where K is the 2N?X 2N? commutation matrix with the property that
K vec(A)= K vec(A’) for arbitrary conformable matrix A4; see Magnus and
Neudecker (1986). Given that both H and A are Wishart matrices, we have
E[vec(H — H)vec(H—H)|=C"'(H® H)(I1+K), (A.9)
E[vcc(ﬁ — A)vec(A —A)’] =(n-C-k) (A®A)I+K),
(A.10)

while, since II is estimated at the first stage from the standard multivariate
regression model,

E[vec(IT— I)vec(IT- )] =A® (WW) ™', (A.11)

where W is the matrix of explanatory variables for the within regression at the
first stage. Note that the matrices W and X relate to the same variables, but
that X consists of deviations of cluster means from the grand mean, while W
consists of deviations of individual observations from their cluster means.
Combining eqs. (A.8) through (A.11) yields
Vvec(B) =V, + V,+ Vi, (A12)
where

V,=C Y(PPHP® A"YHJ'A™")+ C"Y(P'HI'A"'® A"JHP)K,
Vy=(n=C—k) (PTAT"'P®A"YAJ'A™?)
+(n—C—k) NPT 'ATA '@ A" YAT 'P)K,

Vi=(P'®A NI+ K)(AM(WW) 'M)(I+K)(PRJAY).
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Although (A.12) is the simplest way to write the variance—covariance matrix,
the expression for ¥V, involves a larger than necessary matrix, since the matrix
in the center is 4N?X4N?2 which can be large enough to cause storage
difficulties. The following equivalent expression uses smaller matrices:

Vi=P'AP®A UM (W'W) 'MJ'4~}
+P'M(WW) 'MP® A YJAJ'A™?
+(P'M(WW) 'MI'A"'® A"YAP)K
+(PAVAT @ A"YUM (W'W) 'MP)K. (A.13)

Note finally that there is some ambiguity in implementing ¥, because (A.11)
does not reflect the fact that the unit-value equations are estimated on a
smaller sample than are the share equations. There are several ways of fixing
this that give the right answer in large samples. Here I take W’W as the matrix
from the share regressions and scale {2, the bottom right-hand matrix of A, by
n/n*, where n™ is the average over goods of the numbers of observations
entering the unit-value equations. Since the first-stage parameters are based on
a sample that is typically ten times larger than the sample at the second stage,
both V, and V; usually make very small contribution to the total variance.

Although the above formulae give variances and covariances for all the
parameters that are estimated, in most applications interest will focus not on
the B parameters but on the estimates of elasticities that are derived from
them. In principle, it is straightforward to use the delta method to estimate
variances and covariances of functions of the elements of B. In practice, the
algebra is extremely tedious. An outline is included here for completeness and
to support the computer code. Start with the total expenditure elasticities, e,
which depend only on the first-stage parameters 82 and B}; see eq. (4). Write
the total differential of (4) in the form de= @,dII'e= (e’ ® @)K vecdIl,
where e is a (basis) vector of zeros with a one in the position occupied by In x
in the matrix of first-stage variables, where II, as before, is the K X 2N matrix
of first-stage parameters and @, =[/|— D(w) '] is the NX 2N Jacobian
matrix of partial derivatives. It then follows that

V(e)=(e'® @) K(A®(WW) ' )K(e® ®]) =w® AD], (A.14)

where w=e'(W'W) 'e is the element in the diagonal of (W'W)~! corre-
sponding to In x.
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Turning next to the price elasticities E, transpose eq. (20) and take total
differentials to give

dE'=G-dB[D(w) '+ D(§)E’] + G[B—D(w)]dD(§) - E',

(A.15)
where G = {I — B¢ + D(¢£)D(w))} . Hence, in vec notation,
vec(dE’) = {(D(w) ™'+ ED(£)) ® G }vecd B
+{E®G(B— D(w))}vecD(d¢). (A.16)

To evaluate the second term on the right-hand side, note that £ given by (9),
like e, above, is a function only of the first-stage parameters B2 and Bi.
Define the N X 2N matrix @,=[D(p")|D(p')}, where p%= d¢;/dB2 and
o= d¢./3BL evaluated from (9), so that in parallel with the discussion of &
above, we have d¢é=@,dII'e=(e’'® ®,)K vecdIl. The ‘diagonalization’
matrix L, an N2 X N matrix of ones and zeros, is defined by its property
L¢=vec{ D(£)}, for any N vector £ It can be used to express vec D(d¢) as
Ldé=L(e’® @,)K vecdIl, so that, combining (A.8) and (A.16),

vec(E' — E') = F, vee(H — H) + F, vec(A — A) + F, vec(IT — IT),
(A.17)

where

= [D(w) '+ ED(¢)] P @ G4~ Y,

It

F,=—[D(w) ' +ED(&)|PT '®Ga Y,

F,=[E®G{B-D(w)}|L(e'®®,)K-F(I+K)(I® M),

so that, given the asymptotic independence of the estimates of H, A, and II, a
formula for the variance-covariance matrix can be derived. Unfortunately,
this straightforward procedure leads to large matrices, including, for example,
the last commutation matrix above, which has 4N2K? elements. After some
manipulation, it is possible to derive the following expressions which contain
matrices no larger than max(4N2 2NK):

V(ivecE)=C W, +(n—k—C) "W+ Vy + Vi, + Vi, + Vs,
(A.18)
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where
V(P,H)=[D(w)™ '+ ED(¢)| PPHP[D(w) ™' + D(¢) E'|
® GA"YHJ'A™'G,
V,=V,(PT ', A),
Vi=w[E®G{B—-D(w)}|L®,AD;L'[E'® { B’ D(w)}G'],
Vio=—-[E®G{B—-D(w)}]
x Le'(WW) '"MP{D(w) '+ D(£)E’) ® &,AJ'4 G|
—-[E® G{B—-D(w)}]
XL[e(WW) 'MI'47'G'® ®,AP{D(w) ' + D(¢)E'}] K,
Vp=[{D(w) '+ ED(§)} ® G|W[{ D(w) ™' + D(¢)E'} & G].

In the consumer-demand literature, there has frequently been an interest in
examining the matrix of cross-price effects for evidence of Slutsky symmetry.
In the notation used here, symmetry is satisfied at the budget shares w if the
following condition holds:

A=D(w)E+D(w)ew’ — E'D(w) —we'D(w) = 0. (A.19)
In vec notation, this can be written
8 =vec(A)
=(K-1){I®@D(w)}vecE'+(K—-I){D(w)®w}e (A.20)
=0.

An estimate of A can be calculated from the estimates of E and ¢, and a Wald
test constructed given a variance—-covariance matrix for A. Note that 4 is the
difference between a matrix and its transpose, so it has a zero diagonal and an
upper right triangle that is minus its lower right triangle. In consequence, only
the elements of & corresponding to the bottom left-hand triangle (below the
diagonal) of A need be used for inference. Denoting these by 8* and the
corresponding variance—covariance matrix by V(8*), the Wald test is
8*{V(8*)) ~18*. The matrix V(8*) is selected from the elements of V(8)
obtained from using (A.20) above. Note that the variance—covariance matrices
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for vec E’ and for & have already been obtained, so that the only further
requirement is for the covariance cov(vec E’, &}. Referring to (A.17) gives

C, = E[vec(E' - E')(E_E)']
(A21)
=FlAe (Www) | K(e® d)),

which, after substitution from (A.17) and rearrangement, gives
C,=[E®G{B-D(w)}|LD,ADw
~{D(w) '+ ED(§)} P'M'(W'W) 'e® GAYAD]
—{D(w) '+ ED($)} P'A®] @ GA UM (WW) le. (A22)

The variance—covariance matrix of & is then constructed from the outer
product of the estimate of (A.20), substituting from (A.14) and (A.18) for the
two variances and from (A.22) and its transpose for the two covariances.
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