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SAVING AND LIQUIDITY CONSTRAINTS 

BY ANGUS DEATON 1 

This paper is concerned with the theory of saving when consumers are not permitted 
to borrow, and with the ability of such a theory to account for some of the stylized facts of 
saving behavior. When consumers are relatively impatient, and when labor income is 
independently and identically distributed over time, assets act like a buffer stock, 
protecting consumption against bad draws of income. The precautionary demand for 
saving interacts with the borrowing constraints to provide a motive for holding assets. If 
the income process is positively autocorrelated, but stationary, assets are still used to 
buffer consumption, but do so less effectively and at a greater cost in terms of foregone 
consumption. In the limit, when labor income is a random walk, it is optimal for impatient 
liquidity constrained consumers simply to consume their incomes. As a consequence, a 
liquidity constrained representative agent cannot generate aggregate U.S. saving behavior 
if that agent receives aggregate labor income. Either there is no saving, when income is a 
random walk, or saving is contracyclical over the business cycle, when income changes are 
positively autocorrelated. However, in reality, microeconomic income processes do not 
resemble their average, and it is possible to construct a model of microeconomic saving 
under liquidity constraints which, at the aggregate level, reproduces many of the stylized 
facts in the actual data. While it is clear that many households are not liquidity 
constrained, and do not behave as described here, the models presented in the paper 
seem to account for important aspects of reality that are not explained by traditional 
life-cycle models. 
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INTRODUCTION 

THIS PAPER IS CONCERNED with the optimal intertemporal consumption behav- 
ior of consumers who are restricted in their ability to borrow to finance 
consumption. The restriction is not a symmetric one. Nothing prevents, these 
consumers from saving and accumulating assets, and under some circumstances 
they will find it desirable to do so. Such models are worth pursuing if only 
because borrowing constraints seem to be a feature of reality, both in poor and 
rich countries. Furthermore, at least some of the recent econometric work on 
life-cycle rational expectations models of consumption has discovered anomalies 
that can perhaps be attributed to consumers' inability to borrow. For the United 
States, using macroeconomic data, Flavin (1981) and many subsequent authors 
have found evidence that changes in consumption are positively related to 
predictable changes in income. The microeconomic evidence, primarily from the 
Panel Study of Income Dynamics (PSID), is more mixed, but Hall and Mishkin 
(1982) and Zeldes (1989a) found a relationship between changes in food 
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consumption and previously predictable income changes, although the work of 
Altonji and Siow (1987) and Mariger and Shaw (1988) shows that the relation- 
ship is not present in all years. Although there is room for different interpreta- 
tions of these results, the possibility of liquidity constraints has been widely 
canvassed. 

Limited borrowing opportunities may also help to explain the observed 
patterns of household wealth holdings as well as the fact that consumption 
appears to track household income quite closely over the life-cycle; see in 
particular Carroll and Summers (1989). Most versions of life-cycle models 
predict a dissociation of consumption from income, and the existence of 
substantial asset accumulations at least at some points in the life cycle. In recent 
controversies starting with Kotlikoff and Summers (1981) the validity of these 
predictions has been challenged. In particular, it is clear that most households 
in the U.S. hold very few assets. Different surveys give somewhat different 
estimates, but the Survey of Income and Program Participation (SIPP), the 
Consumer Expenditure Survey (CES), and the Survey of Consumer Finances 
(SCF) are in broad agreement that median household wealth, excluding pension 
rights and housing, is around $1000. Indeed, the CES data show that approxi- 
mately one fifth of total consumption is accounted for by households who not 
only possess no stocks or bonds, but who have neither a checking nor a savings 
account. It is hard to believe that such households would be able to borrow 
much money to finance consumption, should they indeed wish to do so. 

In this paper I consider the behavior of relatively impatient consumers, who 
prefer consumption now to consumption later, and who are unpersuaded by the 
rewards of waiting. With no uncertainty, and no borrowing constraints, such 
households would borrow or run down assets. What makes their behavior 
interesting is that their incomes are uncertain. In common with recent work by 
Barsky, Mankiw, and Zeldes (1986), Skinner (1988), Zeldes (1989b), and 
Kimball (1990), I assume that consumers are "prudent" and have a precaution- 
ary demand for saving. Precautionary motives interact with liquidity constraints 
because the inability to borrow when times are bad provides an additional 
motive for accumulating assets when times are good, even for impatient con- 
sumers. 

My general procedure is to start from a simple stochastic process for labor 
income, and to derive, from that process, the appropriate policy rule for 
consumption given that borrowing is not allowed, or at least cannot exceed 
some fixed limit. I then focus on the time-series behavior of consumption, 
savings, and asset accumulation in response to the forcing behavior of income. I 
shall discuss whether it is possible to build a representative agent model of a 
liquidity constrained consumer that could account for the main features of the 
aggregate time-series data in the U.S. But my more fundamental concern is to 
characterize the type of microeconomic behavior that borrowing constraints 
might produce. The approach is one of partial equilibrium, and in particular, I 
make no attempt to model the determination of the real interest rate. I also do 
not consider the welfare consequences of borrowing restrictions; interested 
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readers may consult Imrohoroglu (1989) who examines welfare issues in a 
closely related model. 

The analysis shows that, in the presence of borrowing restrictions, the 
behavior of saving and asset accumulation is quite sensitive to what consumers 
believe about the stochastic process generating their incomes. In the simplest 
case, when incomes are stationary and independently and identically distributed 
over time, as might be the case for a poor farmer in a developing country, assets 
play the role of a buffer stock, and the consumer saves and dissaves in order to 
smooth consumption in the face of income uncertainty. I show that it is possible 
to make consumption very much smoother than income without borrowing and 
without accumulating very many assets. The more prudent are consumers, and 
the more uncertain is income, the greater is the demand for these precautionary 
balances. 

Positive serial correlation in the income process diminishes both the desirabil- 
ity and the feasibility of using assets in this way. In the limit, when income is a 
random walk, with or without drift, it turns out that those who wish to borrow 
but cannot do so typically can do no better than consume their incomes. This 
"rule-of-thumb" or simple Keynesian policy is not generally optimal in the 
presence of borrowing constraints, but the random walk case is one of several 
income processes that produce the result. I also investigate the consequences of 
borrowing restrictions in an environment in which income growth is stationary, 
but where the growth rates mimic aggregate data and are positively serially 
correlated. These models produce what may appear to be the paradoxical result 
that, when consumers follow the optimal consumption policy, savings is contra- 
cyclical, rising at the onset of the slump, when incomes are falling, and falling at 
the onset of the boom, when incomes are rising. 

In reality, microeconomic income processes are very different from their 
macroeconomic aggregates, so that while individual consumers share in the 
general growth, the variance in their incomes is dominated by idiosyncratic 
components, some permanent, some transitory. The presence of substantial 
transitory income at the individual level is quite likely to generate negative serial 
correlation in individual income growth rates, and this can generate buffering 
behavior as in the simple models with no growth. If each agent's income process 
is independent of all others, such behavior will not generate savings in the 
aggregate. However, some component of aggregate fluctuations in income 
growth is common to all consumers, and even though it accounts for only a very 
small fraction of individual income changes, its existence can generate savings in 
the aggregate. I construct a simple model in which individual income growth is 
negatively autocorrelated, aggregate income growth is positively autocorrelated, 
and aggregate saving is procyclical. 

For much of the analysis, I shall assume an infinite horizon. This is mostly for 
technical convenience in that it allows me to derive relatively simple stationary 
policy rules, but the contrast with finite life models is more apparent than real. 
The existence of borrowing constraints effectively shortens the horizon, and in 
many cases, the infinite horizon policy rule will characterize much of the finite 
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plan, in the same way that finite horizon growth models possess turnpike growth 
paths that are themselves the solutions to infinite horizon problems. In cases 
where this is not true, the solutions are typically already covered in the 
literature, so that a fairly complete treatment is possible. 

There are two main sections to the paper. In the first, I assume that the 
process generating labor income is stationary, while the second deals with the 
nonstationary case. The analysis differs markedly in the two cases. Section 1.1 
outlines the basic model, and 1.2 shows how to incorporate serial correlation 
within the stationary model. Section 2.1 is concerned with the case in which 
income growth is independently and identically distributed over time. Section 
2.2 allows for serial dependence in the growth process, and is concerned with 
the behavior of liquidity constrained consumers whose income process mimics 
that of U.S. aggregate data. Section 2.3 examines income processes that more 
closely mirror the microeconomic data and considers the implication of individ- 
ual behavior for the aggregate. 

1. SAVING AND LIQUIDITY CONSTRAINTS WITH STATIONARY INCOME 

1.1. The Basic Model 

The framework is the standard one of intertemporal utility maximization. The 
consumer maximizes the utility function 

(1)~~~~~~~~~~~~D (1) u = Ett E (1 + 6)t tv(c")) 

where 8 > 0 is the rate of time preference, and v(ct) is the instantaneous 
(sub)utility function, assumed to be increasing, strictly concave, and differen- 
tiable. The evolution of assets is given by 

(2) At+1 = (1 + r)(At + -ct) 

where yt is labor income, At is real assets, and r is the real interest rate. The 
real interest rate is treated as fixed and known, and all the uncertainty is 
focussed on labor income yt. Labor is inelastically supplied, and y, is a 
stationary random variable with support [y0, y1], with y0 > 0 and y 0 y1 < 00; 
income cannot fall below the positive floor yo. I take the simplest form for the 
borrowing restriction 

(3) At>0 
although it would be straightforward to allow for some fixed negative limit. 

Since it will be used so much in what follows, I shall denote the instantaneous 
marginal utility of money by A(cd), i.e. 

(4) A(ct) = v'(ct). 

A(-) is a positive monotone decreasing function. In most of what follows I shall 
assume a precautionary motive for saving by taking A(-) to be convex. A 
decrease in consumption causes the "price" of consumption to rise by at least as 
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much as an increase reduces it, so that increased uncertainty (and Jensen's 
inequality) raises the expected price of future consumption relative to that of 
current consumption. 

Rather more attention has to be given to my next assumption, that 8 > r. For 
many people, particularly those close to subsistence in LDC's, the assumption 
seems to me to be a natural one, and one that is worth following through. 
However, much of the standard empirical life-cycle literature is premised on the 
supposition that 8 = r. While the assumption is probably more favored for its 
convenience than its inherent plausibility, there are undoubtedly many individu- 
als who are sufficiently patient to ensure that 8 S r. I therefore consider briefly 
the various possible configurations of interest and impatience; readers inter- 
ested in more detail can consult the papers by Schechtman (1975), Bewley 
(1977), Schechtman and Escudero (1977), and Mendelson and Amihud (1982). 

Take first the case where 8 = r = 0. Schechtman (1975) has shown that, if this 
is so, and with the income process independently and identically distributed 
over time, consumption will converge to the mean of income, ,u, say. Such a 
result is possible in spite of the liquidity constraints, because the optimal policy 
results in At tending to infinity as t becomes large. Bewley (1977) has shown 
that this version of the permanent income hypothesis also holds if Schechtman's 
i.i.d. assumption is extended to stationarity. In some ways this is an attractive 
model; consumption is smooth, indeed completely so, and assets act as a buffer 
against fluctuations in income. However, in reality, consumption does fluctuate 
with income, if not one for one, and we do not observe consumers responding to 
liquidity constraints by accumulating indefinitely large quantities of assets. 

Consumers for whom 8 S r will accumulate assets indefinitely, and in the 
limit, the income stream becomes irrelevant as consumption comes to be 
financed increasingly out of capital income. Borrowing constraints are unlikely 
to be of relevance for such consumers; saving, not borrowing, is their main 
concern. Dynasties and central planners apart, such infinite horizon models are 
not very relevant for individual consumers. More interesting results are ob- 
tained by working with a finite horizon. With no uncertainty, and a constant 
income stream, these patient consumers will accumulate early in life and 
decumulate later, so that, once again, borrowing constraints are not an issue. 
With uncertainty, and with convex marginal utility, more assets will be accumu- 
lated early in life, consumption will begin from a lower level and will grow more 
rapidly, so that, once again, borrowing constraints are unlikely to be binding. 
The solutions to these problems (without liquidity constraints) have been 
studied by Skinner (1988) and Zeldes (1989b); their simulations show that there 
can be substantial precautionary accumulation if future incomes are sufficiently 
uncertain. Again, we have the problem that, unless income happens to match 
the desired consumption stream, the assumption that 8 < r generates more 
accumulation than appears to be the case for many consumers. For example, in 
occupations with uncertain but relatively flat income profiles, consumers should 
accumulate when they are young; in fact, as in most occupations, consumption 
tracks income closely; see Carroll and Summers (1989). 
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Consider then the case of impatient consumers with 8 > r. The case where y, 
is i.i.d. with distribution function F(Q) has been analyzed by Schechtman and 
Escudero (1977) and this provides a convenient starting point and model for 
further analysis; see also Foley and Hellwig (1975) for an earlier analysis of a 
closely related problem. As Schechtman and Escudero point out, the solution to 
(1)-(3) with no uncertainty would be to run down any initial assets, and then to 
set consumption equal to income, so that the natural analogy with uncertainty is 
for assets to follow a stationary renewal process. Under certain further condi- 
tions, they show that such is indeed the case. 

Perhaps the simplest way to set up the problem is to start from the modifica- 
tion of the usual Euler equations that is brought about by the presence of the 
borrowing constraint (3). Define x "cash on hand," by 

(5) xt =At +Yt. 

xt is the maximum that can be spent on consumption in period t. Consumption 
in periods t and t + 1 must satisfy 

(6) A(ct) = max [A(xt), 8EtA(ct+M) 

where f3 = (1 + r)/(1 + 8), and f8 < 1 since r < 8. If the consumer is con- 
strained, consumption can be no higher than xt, and the marginal utility no 
lower than A(xt). The constraint will bind if marginal utility at xt is higher than 
the discounted expected marginal utility next period; otherwise the two marginal 
utilities are equated in the usual way. Note, however, that the expectation itself 
takes account of the possibility of future constraints, a point emphasized by 
Zeldes (1989a). 

Given equation (2), the variable xt evolves according to 

(7) xt+1 = (1 + r)(xt -ct) + yt+,. 

A natural way to proceed is to look for a stationary stochastic optimum in which 
consumption is a function of the state variable xt, ct =f(xt), say. The marginal 
utility of money (price of consumption) p(xt), say, is then defined by 

(8) p(xt) =A[ft(xt)], or ct=f(xt) =A-1[p(xt)]. 

Hence, if there exists a stationary solution p(x), with associated f(x), it must 
satisfy 

(9) p(x)=max[A(x),|fp{(1+r)(x-A'1p(x))+y}dF(y)]. 

This equation is just a rewritten form of (6) with (7) and (8) used to substitute; 
the marginal utility today is equated to the maximum value of marginal utility in 
the constrained situation and the discounted expected value of tomorrow's 
marginal utility. If equation (9) has a solution, we can use it to characterize the 
equilibrium properties of the marginal utility of money, and thus the policy 
function f(x). 
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The standard method of solving these problems is also useful for thinking 
about the economics, and about how the infinite horizon solution relates to the 
same problem with a finite horizon. Imagine a series of functions 
p0(x), p1(x),.. ., pj(x), where p0(x) A(x), and the updating rule is 

(10) Pn(X)=max [A(x),8 fpn{(1+r)(x-A-'Pn(x))+y}dF(y)]. 

This recursion can be thought of as the backward solution to a finite life 
stochastic dynamic program. In the final period, n = 0 say, everything is spent, 
and the marginal utility of money p0(x) is simply A(x) because whatever x is, it 
will be spent. One period before, p1(x) is set by the borrowing constraints or to 
equate marginal utilities, and so on back in time. In this form, equation (10) is 
useful for calculating the functions pn(X) and thus for solving and simulating 
any finite period problem. Under appropriate conditions, as we iterate back- 
wards, the function will converge, in which case we have a solution to (9) and to 
the infinite horizon problem. If we define the mapping T by pn + 1(x) = Tpn(x), 
then the condition 8 > r, so that 18 < 1, together with the restrictions on the 
support of F(y), guarantee that T is a contraction mapping; see Theorem 1 of 
Deaton and Laroque (forthcoming). In consequence, under the original assump- 
tions, there exist unique functions p(x) and c =f(x) that solve the original 
problem. 

An alternative approach to the same solution is to work through the value 
function, V(x), defined by the functional equation 

(11) V(x) = O?max (v(x-s) + (1 +)' fV[(1 +r)s+y] dF(y)} 

where s is the amount of assets held over into the next period. The period by 
period recursion corresponding to (10) is 

(12) Vn(x)= max (v(x-s)+(1+)Y' fVn1[(l+r)s+yJdF(y)}. 

The solution to (11) exists under the same conditions as the solution to (9), and 
the two solutions are linked both by the envelope property p(x) = V'(x) and by 
the fact that s(x), the argument that maximizes (11), satisfies c = f(x) = x - s(x). 
Since the value function inherits the concavity of the original utility function 
v(x), it is monotone increasing and concave, so that we have the useful property 
that p(x) is decreasing, so that f(x) = A -'{p(x)} is increasing. Deaton and 
Laroque (forthcoming, Theorem 3) show that the convexity of A(x) implies that 
p(x) is convex. Without borrowing constraints, it is the convexity of A(x) that 
controls the degree of precautionary saving. With borrowing constraints, the 
same role is played by p(x), so the inherited convexity means that the same 
arguments for prudence and precautionary savings go through when borrowing 
is prohibited. Indeed, p(x) is more convex than A(x); the inability to borrow in 
adversity reinforces the precautionary motive. 

Mendelson and Amihud (1982) and Deaton and Laroque (forthcoming) also 
show that there exists a unique x* such that p(x) = A(x) for x <x*, and 



1228 ANGUS DEATON 

a 

0 
CN4 

0 
0 

~~~~~~~~~=(/h+rx)/(l1+r) 
0 

-,0 

E 
cn 0 y is N(100,a), r=O.05, 6=0.10 

0 

0 coses are from top to bottom 

p=2, a=1O and o-=15 

? 0 . . , H p=3, a=1 0 aond o- 1 5 

0 40 80 120 160 200 240 280 320 
income+assets 

FIGURE 1.-Consumption functions for alternative utility functions and income dispersions. 

p(x) > A(x) for x > x*, so that we have 

(13) c=f(x)=X, XsAX*, 

c=f(x) Ax, x> x*. 

The consumption function therefore has the general shape shown in Figure 1, 
shown there for y, distributed as N(A, a-), u = 100, r = 0.05, 8 = 0.10, and 
A(c) = c-. Such figures appear in Mendelson and Amihud (1982) and are 
"smoothed" versions of the piecewise linear consumption functions derived in 
the certainty case by Heller and Starr (1979) and Helpman (1981). The figure 
shows four different consumption functions corresponding to the four combina- 
tions of two values of p and o-; they all begin as the 45-degree line, and diverge 
from it and one another at their respective values of x*, all of which, in this 
case, are a little below ,u, the mean value of income, shown as a vertical line. 
The other line in the figure will be discussed below. 

The general properties of the solution are clear. Starting from some initial 
level of assets, the household receives a draw of income. If the total value of 
assets and income is below the critical level x*, everything is spent, and the 
household goes into the next period with no assets. If the total is greater than 
x* , something will be held over, and the new, positive level of assets will be 
carried forward to be added to the next period's income. Note that there is no 
presumption that saving will be exactly zero; consumption is a function of x, not 
of y, and f(x) can be greater than, less than, or equal to y. Assets are not 
desired for their own sake, but to buffer fluctuations in income. When income is 
low, there will be dissaving, and when it is high, there will be saving. 
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Note too that the distribution of consumption will not be symmetric. It is 
always possible for the consumer to prevent consumption from becoming too 
high since additional resources can always be carried forward. But the opposite 
is not true. If cash on hand is sufficiently low, it will be optimal to spend 
everything; in spite of prudent preferences, money is worth more now than it is 
expected to be in the future. But there is nothing to stop there being a bad 
income draw in the next period, and without assets carried forward, consump- 
tion cannot be higher than income. Optimal smoothing cannot do much against 
a series of bad harvests. 

The evolution of cash on hand is governed by the equation 

( 14) Xt+ 1 = (1 + r) [x X-f( Xt)] + Yt+. 

In consequence xt+1 will be less than xt if 

(15) ( ('I 
A ) '<Axt)- (rxt' /)) (1 +r) (1 +r) 

so that xt can only go on expanding if the income draw is large enough to offset 
the vertical difference between f(x) and the line c = (, + rx)/(1 + r) in Figure 
1, a difference that is increasing in x. From the graph it would appear that xt 
cannot become infinitely large, but must eventually collapse. Schechtman and 
Escudero show that this is true in general for -1 < r < 0, and will be true for all 
r < 8 provided additional restrictions are placed on the utility function. These 
restrictions are not satisfied by negative exponential utility (see also Levhari, 
Mirman, and Zilcha (1980)) but are satisfied by many other utility functions, 
including the isoelastic case. The evolution of the marginal utility of money 
p(x,) is also of interest. In the standard case, without borrowing restrictions, 
p(x,) follows a martingale, whereas in the current case, it follows a renewal 
process. As long as the consumer carries forward positive assets, we have the 
martingale result that Ej{p(x?+ 1)) = 8 - 'p(x,), but as soon as assets fall to zero, 
which they eventually must, the process "loses its memory" and begins again; 
conditional on zero assets Ej p(x,?+ l)) = E{ p(y)), a constant. 

Further results require a more intimate knowledge of the consumption 
function f(x), and since there is little hope of recovering closed form solutions, 
it is necessary to use the contraction mapping apparatus to compute the 
functions over some suitable grid. Equation (10) is one possibility for doing so, 
but the presence of pn(x) on both right and left hand sides makes the 
computation extremely cumbersome. In practice, (10) seems to work well when 
pn(x) on the right hand side is replaced by pn-1(x) and p0(x) is set to A(x). 
Using Simpson's rule to evaluate the integral, and with a grid of 100 points, the 
computations were easily done on a 386-series PC, taking 5-20 minutes per 
calculation depending on the values of the parameters. I also repeated the 
calculations using the value function (12). In this case, the calculations follow 
the equation directly, and the policy function is recovered from the value of 
s(x) at the converged solution. For the problems examined here, this procedure 
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was no faster, and although the same results were obtained, there are a number 
of computational disadvantages to using the value function approach. Firstly, in 
order to maximize over s for different values of x, it is necessary to have grids 
for both magnitudes, so that, to get adequate precision, very large matrices are 
required. Secondly, the utility function is typically not defined for all possible 
combinations of x and s, specifically those for which x - s is negative, and 
while this problem is not difficult to deal with, the programming is further 
complicated. Finally, the use of grids generates a policy function at the final 
stage that is a step function, which has to be "smoothed" once convergence is 
obtained. By contrast, the direct approach to the policy function through the 
modified version of (10) is straightforward to program, and seems to be robust 
in practice. The real virtue of (12) is that, unlike (10) it can be used in the 
finite-life case, even with 8 < r, when policy functions must be calculated for 
each period separately. 

Figure 2 shows a 200 period simulation of one of the cases displayed in Figure 
1. Income, consumption, and assets are drawn to the same scale. The marginal 
utility function is c-P, and income is simply 200 random drawings from 
N(100, 10). Consumption is notably smoother than income; its standard devia- 
tion is 4.9 as opposed to 10 for the income process. It is asymmetric, and its 
downward spikes are much more severe than any corresponding upward peaks. 
Assets show repeated reversions to zero, although assets are more often held 
than not. Only along the "flats" at zero is consumption equal to income, 
something that happens relatively rarely. Note that the level of assets is typically 
quite low, usually less than 10% or one standard deviation of income. It is an 
important finding that it is possible to smooth consumption to the extent shown 
with so few assets. The desirability of doing so is determined by the parameters 
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of the problem, particularly p, which controls the degree of prudence, and o-, 
which controls the uncertainty of income. If the marginal utility function A(c) is 
convex, mean preserving spreads in the distribution of income must increase 
saving; see Mendelson and Amihud (1982) and Deaton and Laroque (forthcom- 
ing). 

In Deaton (1990), I argue that this simple model is a useful way of looking at 
the saving and consumption behavior of farmers in LDC's whose income, in at 
least some cases, might be reasonably approximated as being i.i.d. over time, 
and that its predictions match well with what we know about rural savings 
behavior in developing countries. However, the i.i.d. assumption is not necessar- 
ily appropriate even in those contexts; although weather fluctuations may be 
genuinely independent over time, there are many behavioral and technical 
responses that are likely to generate serially correlated income processes even 
where weather is the ultimate source of uncertainty. For advanced countries, 
i.i.d. income processes make even less sense. Even so, some of the outcomes in 
Figure 2 look remarkably like the sort of behavior we observe in the U.S. Assets 
are low. Consumption is serially correlated, and smoother than income. Con- 
sumption regressed on income and its lags gives a declining geometric pattern of 
coefficients, and the regression of consumption on income and lagged consump- 
tion has coefficients that sum to close to unity. Consumption is well predicted by 
income and starting assets, a regression in which further lags of income do not 
appear. All these results can be found in the American literature, at least prior 
to the modern rational expectations treatment. What these simulations do not 
generate is any correlation between the change in consumption and the lagged 
change in income, the correlation found by both Flavin (1981) and Hall and 
Mishkin (1982). Of course, this does not cast doubt on the liquidity constraint 
interpretation of their results, but rather on the realism of the i.i.d. assumption 
for income. 

1.2. Stationary Serially Correlated Income 

The extension of the foregoing analysis to serially correlated income pro- 
cesses is straightforward in theory, but is less easy to implement. To fix ideas, 
suppose that income follows a first order AR process, 
(16) (Y - /)=4(y-_1-/) +e'. 
The modified Euler equation (6) holds as before, and the state variable xt 
evolves, as before, according to (7). However, it is no longer true that xt is the 
only state variable. When looking forward to predict the expected marginal 
utility of consumption in period t + 1, the information in both xt and yt must 
be taken into account. The marginal utility of money function is therefore 
p(x, y), and is defined by (compare (9)) 
(17) p(x, y) = max [A(x), ?(x, y)], 

?(x,y) =,3fp{(1 +r)(x-Ak-p(x,y)) +y +,u(1-4) +e, 

by + u(l -4) + e} dF(e), 



1232 ANGUS DEATON 

and the associated consumption function f(x, y) is given by A - 1{p(x, y)). It is 
possible to show that, if the autocorrelation parameter 0 is positive, p(x, y) is 
nonincreasing in y and strictly decreasing when p(x, y) is greater than A(x), 
and vice versa when 4 is negative. In the former case, a good draw of income 
indicates that more good draws are to be expected, so that income can be 
expected to be higher in the future, and more can be spent out of a given 
amount of cash on hand. With p negative, as for a tree-crop farmer, part of the 
income from a good crop is really a loan from next year and should be treated 
accordingly. 

In principle, p(x, y) can be computed in exactly the same way as p(x) in the 
previous subsection. In practice, the additional dimensionality poses difficult 
computational problems. If an n-point grid is used for each variable, then an 
n X n grid is required, effectively squaring the computational time. Rather than 
transfer to a supercomputer, I have chosen to replace the continuous income 
process by a discrete approximation in a way similar to that suggested by 
Tauchen (1986). 

Suppose that the underlying distribution of ? in (16) is normal, N(O, o-). I first 
choose (mr-1) points a1, a2, ... , am 1, such that, with ao = -Xo and am = + , 
the successive areas under the standard normal, rP(aj) - .P(aj-1), are each 
equal to 1/m. I then take the m conditional means Z1, Z21 ... Zml within each 
of the intervals as the m equiprobable values of a discrete process that 
approximates N(O, 1). The true AR(1) for income implies that y, is distributed 
as N(Ij, 02) where 02 = o.2/(1 _ 22). This is replaced by a discrete first-order 
Markov process in which income takes on the m discrete values ,u + Ozi, with 
transition probabilities rij set to be identical to the transition probabilities from 
interval to interval of the true underlying normal autoregressive process y, 
From the properties of the normal distribution, we have 

(18) rij =Pr(Oaj > -ix > Oaj_ 1Oai >yt-1 1- > Oai-1) 

6 ( 2wrr) 

x f exp - _ ( '( j-1 dxP 
ai-I 262 aJP ~ f X 

For any given o- and P, this integral is calculated directly. The marginal utility 
function p(x, y) is then replaced by m functions p(x, i), i= 1,... m, each 
representing the marginal utility of x given that state i occurs, i.e. that income 
takes on the value Ozi + ,u. The functions are simultaneously defined by 

(19) p(x, i) = max [A(x), E7ijp{(l + r)(x -A-lp(x, i)) + Oz1 + 1 j)] 

The computations are as before; I start from po(x, i) = A(x) for all i, substitute 
into the right hand side of (19), and so on. I used m = 10 in all the calculations 
reported here and found that convergence was always straightforward. Indeed, 
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FIGURE 3.-Consumption and cash on hand for AR(1) income process. 

the replacement of numerical integration by matrix multiplication appears to 
more than compensate for the need to compute 10 functions instead of one. 

One particular set of consumption functions is shown in Figure 3. These 
functions are computed for the 10 point discrete Markov approximation with a 
positive autocorrelation parameter of 0.7. The coefficient of relative risk aver- 
sion is 2, the real interest rate 2%, the rate of time preference 5%, and the 
white noise driving process is N(0, 10). I have also computed similar sets of 
functions for 4 = ( - 0.4, 0, 0.3, 0.5, 0.7, 0.9); these are not shown, but I will refer 
to the results in the text. 

As was the case when income was i.i.d., the consumption functions each 
follow the 45-degree line, branching off at critical values of x that depend on 
the level of income, or the "state." In this example, as in all others with 4 > 0, 
the lowest consumption function corresponds to the lowest value of income, and 
vice versa. When 4 = 0, the consumption functions collapse into one, as in 
Figure 1 (a useful check on the code!), while they move further apart as the 
autocorrelation increases. 

A simulation corresponding to Figure 3 is shown in Figure 4. Careful 
inspection of the income series shows that there are, indeed, only 10 values; 
these are most noticeable when there are repeat values with associated troughs 
or "tables." Once again, consumption is smoother than income, with standard 
deviations of 10.4 and 14 (13.3 in the sample) respectively. Savings are pro-cycli- 
cal, and relatively large asset stocks are occasionally accumulated, particularly 
after long booms. There are also quite long periods when there are no, or close 
to no assets, and during which consumption is equal to income. The asymmetric 
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FIGURE 4.-Simulations of income, consumption, and assets with positively autocorrelated income. 

behavior of consumption is still prominent; savings are a much more effective 
cushion against high consumption than against low consumption. 

The important point to note here is that positive serial correlation in the 
income process reduces the scope for income smoothing for liquidity con- 
strained consumers. For the range of autocorrelation coefficients examined, the 
standard deviations of income and consumption are shown in Table I. For the 
i.i.d. case, optimal smoothing can remove half of the standard deviation of 
income, and for the negatively autocorrelated case, this figure rises to 57%. By 
contrast, when incomes have an autocorrelation coefficient of 0.9, consumption 
is essentially as noisy as income. I can think of several factors that help explain 
these results. By assumption, these consumers have a rate of time preference in 
excess of the interest rate, so that assets are costly to hold. The precautionary 
demand is a powerful motive to hold assets, but the smoothing of consumption 
over long autocorrelated swings requires more assets, and more sacrifice of 
consumption, than is the case when income is i.i.d. or negatively autocorrelated. 

TABLE I 

STANDARD DEVIATIONS OF CONSUMPTION AND INCOME FOR AR(1) INCOME, 
PARAMETER 4 

AR coeff 4 -0.4 0.0 0.3 0.5 0.7 0.9 

1. sd(y) 10.9 10.0 10.5 11.5 14.0 22.9 
2. estsd(y) 10.8 10.2 10.0 11.4 13.3 27.5 
3. est sd(c) 4.6 5.1 6.7 7.6 10.4 25.9 
ratio 3/2 0.43 0.50 0.67 0.67 0.78 0.94 
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Positive autocorrelation also restricts the ability to smooth consumption. Once 
cash on hand falls below the minimum of the points at which the consumption 
functions in Figure 3 depart from the 45-degree line, no assets will be held, even 
if the bad income shock that produced the situation is a signal that further bad 
draws are to follow. These (anticipated) bad times have to be ridden out without 
any assets to cushion their impact. 

In spite of the (important) difference that autocorrelation makes, the basic 
insights of the original model carry forward. For impatient consumers in a 
stationary environment, assets are expensive to hold, but can provide a useful 
buffer between consumption and income. Such buffers are more effective and 
less costly the less positively autocorrelated is the income stream. As is the 
nature of a buffer, savings can be negative as well as positive, and will be 
procyclical in the usual way. However, it is quite possible that saving will be zero 
for finite periods of time, something that is more likely the more positively 
autocorrelated is income. 

Many of these results seem to accord well both with intuition (at least with 
mine) and with most of the stylized facts as we know them. But a serious 
difficulty remains. Most consumers in developed and developing economies can 
reasonably expect income to grow over time. As I shall show in the next section, 
if they do hold such expectations about their own incomes, the analysis may be 
very different. Of course, growth may not happen that way, and each consumer 
may expect his or her own income stream to be stationary, with growth taking 
place only from generation to generation. If so, the analysis of this section goes 
forward, with aggregate asset growth because the buffer stocks of the young will 
be larger than the buffer stocks of the old. Standard life-cycle models emphasize 
low frequency "hump" saving, and generate aggregate saving through aggrega- 
tion effects when population and income are growing. The models examined 
here work with "high frequency" saving, and the same sort of aggregation 
effects will give positive saving and asset accumulation in the aggregate. Of 
course, the magnitudes will be much smaller than in the traditional story, and 
that again appears to be in accord with the data. 

2. SAVING AND LIQUIDITY CONSTRAINTS WITH NONSTATIONARY INCOME 

In this section, I examine the same model of savings with borrowing con- 
straints under the assumption that the logarithm of the income process is 
stationary in first-differences. Without uncertainty, such an assumption corre- 
sponds to steady growth. Here I shall be concerned with logarithmic random 
walks with drift, as well as with processes whose first differences are either 
first-order autoregressions or first-order moving averages. Such models are 
capable of modelling actual aggregate household income in the U.S., and are 
thus the relevant processes if aggregate consumption is to be treated as that of a 
representative individual. The "correct" model of individual income is less 
obvious, but it is nevertheless plausible that many consumers perceive their 
incomes as displaying stationary growth rates rather than levels. 
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2.1. Independent and Identically Distributed Growth 

In the stationary version of the model, consumers were divided according to 
whether or not the rate of time-preference 8 did or did not exceed the real rate 
of interest r. For those with 8 < r, liquidity constraints were unlikely to ever 
bind, and their behavior could be analyzed in a standard finite life framework. 
Those with 8 > r faced liquidity constraints, and their behavior was described in 
the previous section. With income growth, the distinction is different, and 
individuals are more likely to be liquidity constrained. Suppose that preferences 
are isoelastic, with relative risk aversion parameter p. If there is no uncertainty, 
consumption will grow at rate p - 1(r - 8), so that if income grows at rate g, and 
the household has no initial assets, borrowing will be required if consumption 
begins at a higher level than income, i.e. if p- 1(r - 8) < g, or if 8 > r - pg, a 
requirement that is substantially weaker than 8 > r. Indeed, there has always 
been somewhat of a puzzle in the consumption literature as to why individuals 
who anticipate substantial income growth (e.g. students) and who have a 
preference for smooth consumption (high p) do not borrow large sums in early 
life. While there are a number of possible answers, particularly at the aggregate 
level, the existence of borrowing limitations has always been a likely explana- 
tion. Arguably then, liquidity constraints are likely to be more of an issue in a 
growing than in a stationary economy. 

The model of Section 1 has to be substantially recast in order to yield useful 
results. It is immediately clear that nonstationary income is going to result in 
nonstationary processes for consumption and assets, so that it is not useful to try 
to define a policy function over these variables. Instead, I work with various 
ratios of variables. To do so, it is necessary to restrict the analysis to the 
isoelastic utility function c -P/(1 - p). Write the income process in the form 

(20) zt+1=Yt+ 1/Yt 

and I start from the case where zt is i.i.d. over time, i.e. where the logarithm of 
income follows a random walk with or without drift. The modified Euler 
equation (6) takes the form 

(21) c-P = max [ xyP, pEt c71]P 
Divide equation (21) by y-P, and define 

(22) 0tlyt, wt--x/yt = (At + yt)/yt, 

so that (21) becomes 

(23) A(Ot) =max [A(wt), 8Etz+P 

where, to emphasize the continuity with the previous section, I have reverted to 
A(x) for x-P. The cash in hand to income ratio wt evolves according to 

(24) wt+1 = 1 + (1 + r)(wt -Ot)z-+1 

We are now in a position to write down a policy function relating the 
consumption to income ratio Ot to the cash on hand ratio wt, 0(w), say, and the 
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associated marginal utility p(w) = A{0(w)}. Note that p() is now the "scaled" 
marginal utility; it is the marginal utility of the wealth to income ratio multiplied 
by y-P. If the function exists it satisfies (substitute (24) in (23)) 

(25) p(w) = max[A(w),I8zPP{l + (z1 + r)z-l(w-A7-p(w)))dF(z)]. 

The question of existence is approached in exactly the same way as before. A 
finite life analog is constructed, and the backward iteration is set up and used to 
define a mapping from the policy in period n to that in the previous period 
n + 1. If this mapping is a contraction mapping, the finite life problem will 
converge to the infinite period solution given sufficient time. Otherwise, the 
infinite horizon problem has no solution and the finite life problem must be 
analyzed directly from the associated value function, exactly as done by Barsky, 
Mankiw, and Zeldes (1986), Skinner (1988), and Zeldes (1989b). With minor 
adaptation, the proof of Theorem 1 in Deaton and Laroque (forthcoming) can 
be used to show that the period to period mapping of the policy function is a 
contraction if 

(26) PE(z-P) = (1 + r)E(z-P)/(1 + 8) < 1. 

If this condition holds there will exist a unique optimum policy satisfying (25). If 
z is lognormally distributed, so that A ln y, is N(g, a 2), and we make the usual 
approximation that In (1 + r) - In (1 + 8) = r - 8, then (26) becomes 

(27) p-'1(r - ) + po2/2 <g. 

Condition (26) and its specialization (27) are the conditions that ensure that 
borrowing is part of the unconstrained plan. For the rest of the analysis, I 
assume that (26) holds, so that a unique p(w) exists. 

The function p(w), defined by (25), and the associated consumption ratio 
function 0(w) have the same general shape as the consumption functions in 
Figure 1 although with an origin of (1, 1), not (0,0). As before, there exists some 
critical level of w, w* say, such that, for w < w*, p(w) = A(w) and 0(w) = w. 
The ratio wt evolves according to the process 

(28) Wt+1= 1 +zT+1(l +r){wt-A 1p(wt)} 

so that as soon as wt falls to w* or below, w+1 is 1. But p(l) = 1, because 
1 < w*, or directly from substitution in (25) and using (26), so that once wt is 1, 
it remains 1 thereafter, no matter what are the future values of income. A value 
of wt of unity implies that assets are zero, so that once assets fall to zero, they 
remain zero. In this case, with consumption equal to income, it may readily be 
confirmed that (26) is (over)sufficient to guarantee that expected utility is 
bounded, or alternatively, that the appropriate transversality condition is satis- 
fied. 
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What appears to be more difficult to dispose of is the case where the 
consumer begins with some assets, since it is not clear to me that there could 
not exist a distribution F(z) which would generate a p(w) in (28) that would 
keep w permanently above w*. In special cases, this can be ruled out. Since 
p(w,) is monotone nondecreasing, and p(w) > A(w), with equality for w < w*, 
p(w) <p(w*) = A(w*), so that AW1{p(wd)} < w*. Define a, = w, - 1 > 0, and the 
stochastic process bt, such that bo = ao, and 

(29) b+1 =z11(l + r)(bt - b*) 

where b* = w* - 1 > 0. Now wt - 1 = at < bt for all t. Hence, if {bt} eventually 
falls below b*, then {wtj must be below w*, and will thus fall to unity in the 
next period. If w* were unity, which is its lowest possible value, the logarithm 
of bt would follow a random walk with drift ln (1 + r)/(1 + g)); recall that 
(1 + g) is the expectation of ln zt. Hence, if g > r, ln (bt) is a random walk with 
zero or negative drift, and will in finite time fall below b*, forcing wt below w* 
and thence to unity. Even if g < r, the quantity b* is nonnegative, so there are 
clearly other cases where, from an initial asset position, assets will quickly 
collapse to zero. However, I have not been able to develop a set of necessary 
conditions to guarantee that assets always collapse. In all the simulations that I 
have run, and from many different starting values, wt S w* after only a few 
periods, and I conjecture that this happens in general. If this is the case, the 
complete solution to the consumer's problem is that, if there are any opening 
assets, they will decline to zero in finite time, and thereafter consumption will 
be equal to income. In the case where the logarithm of income is a random 
walk, with or without drift, and provided (26) holds, then we get the often cited 
(but not generally valid) consequence of liquidity constraints, that consumption 
equals income. 

When income is a random walk, we have the limiting case of the autoregres- 
sive stationary model in the previous subsection, and the presence of binding 
borrowing constraints makes it undesirable to undertake any smoothing. To see 
what is going on, suppose that the consumer has no assets, but that income 
growth is well above average. At first thought, this seems like a good situation to 
save. But, by assumption, the consumer is already liquidity constrained and the 
additional income merely provides an opportunity to get closer to the ideal 
consumption path that would have been realized had there been no borrowing 
constraints. So good draws in the income growth process are spent, and assets 
remain at zero. Saving is also typically desirable when income is expected to be 
lower in the future; see particularly Campbell (1987). However, with a random 
walk, while a bad draw does indeed imply that income thereafter can be 
expected to be permanently lower, the expected growth rate of income is 
unchanged, and nothing can signal a future trough in income over which it 
would be desirable to maintain consumption by accumulating assets now. There 
is never any rational expectation that income will be lower than it is now. In 
consequence, the combination of the persistence of the random walk and the 
binding liquidity constraints precludes the accumulation of assets. 
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2.2. Autocorrelated Growth and the Cycle 

A random walk with drift appears to be a reasonable approximation to real 
income in the long run; the annual growth rates of household real disposable 
income are close to white noise about a constant mean. However, for post-war 
U.S. quarterly data, the growth of aggregate household income is better approx- 
imated by a positive autocorrelated AR(1). For both real GDP and income, 
growth shocks are persistent, with positive shocks more likely to be followed by 
positive shocks, and vice versa. I examine two different models designed to 
match these features of aggregate income, and show that both are capable of 
generating some savings, even in the presence of liquidity constraints, but that 
the savings generated do not behave in the same way as actual aggregate saving. 

The first model I examine is that suggested by Hamilton (1989), in which 
income growth is a two state Markov process with noise. The two state 
specification is particularly useful here since it keeps the computations simple 
while yielding a model that appears to fit the data quite well. The specification I 
use is as follows. There are two states, indexed by s = 1,2. When s = 1, the 
"boom," A ln y, = g1 + E, while when s = 2, the "slump," A ln yt = g2 + E1, 
where g2 <0 <g1, and E, is white noise drawn from the same distribution 
N(O, ar2) whatever the state. Independently of Et, the growth process switches 
randomly between the two states with constant transition probabilities 7r= 
pr (st = 1 st - 1 = 1) and 7n2 = pr (st = 2 1st - 1 = 2). Since both states show persis- 
tence, both transition probabilities are greater than 0.5, and since the economy 
shows positive growth on average, (1 - r2)g1 + (1 - r1)g2 > O 

The price function p(w) in (25) is replaced by two functions p(w, s), one for 
each state s, defined by 

(30) p(w, 1) = max [A(w),(3{(71Ijj + (1 -l),211], 

p(w,2) = max [A(w),13{r2122 + (1 -72) 12}], 

Iij= e-Pgi-Pep{l + (1 + r)e-g,-'[w-A-lp(w,j)],i) dO(E), 

and these can be computed exactly for the normal distribution. The condition 
corresponding to (26) is that, conditional on either state, f3E[exp (-pA ln y)] be 
less than unity. 

A pair of the corresponding consumption ratio functions is shown in Figure 5, 
together with the parameters that generated them. These parameters are not 
those estimated by Hamilton. When I used his estimates, together with reason- 
able figures for r, 6, and p, both consumption functions started from the point 
(1, 1), so that, as was the case for the random walk with drift, the model will 
result in consumption being equal to income, at least once initial assets have 
been run down. The parameters used to generate the figures are "exaggerated" 
versions of Hamilton's. The income growth noise has a larger variance, the 
positive growth is more positive, and the negative growth more negative. The 
transition probabilities are close to those estimated by Hamilton, so that the 
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FIGURE 5.-Consumption to cash on hand ratios for Hamilton's model. 

autoregressive properties of the income growth process are similar to those 
found in the data. 

The important results are in Figure 6, which shows a 200 period simulation of 
the saving ratio, the ratio of assets to income, and an indicator of whether the 
process is in the good or bad state. What happens here, and must happen given 
Figure 5, is that as soon as the bad state is announced, for example at period 29 
in the figure, savings switches from zero to positive and the consumer begins to 
accumulate assets. As the slump continues, the savings ratio stops rising, 
eventually falling below zero if the slump continues long enough. Assets go on 
rising for a while after the savings ratio has started falling, but eventually reach 
a ceiling above which they cannot go. At this point of the slump, the negative 
savings ratio, supported by asset income, helps protect consumption against the 
effects of income which has negative expected growth throughout the slump. 
Eventually the slump ends (period 40), and the boom takes over. As soon as this 
happens, the consumer uses all of the accumulated assets to finance a spending 
boom, and then sits out the boom with consumption equal to income and no 
assets. The saving ratio therefore falls sharply at the onset of the boom, rises 
equally sharply at the start of a slump, and is zero during a well-established 
boom. 

This behavior seems bizarre and is the precise opposite of the standard story 
in which procyclical savings helps smooth consumption. But the behavior is 
perfectly rational given the constraints and preferences of the individual. 
During the boom, when income is expected to rise more rapidly than its 
unconditional average growth rate, consumers have no motive to save. Indeed, 
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FIGURE 6.-Cyclical saving behavior in Hamilton's model. 

because they would prefer consumption to grow less rapidly than income, they 
would like to dissave and are only prevented from doing so by the borrowing 
constraints. Instead they save only to ride out the slumps. Because growth rates 
exhibit persistence the onset of the slump tells consumers that income can be 
expected to fall over the immediate future, so that to moderate the fall in 
consumption, there is a motive to accumulate assets now when income is still 
high, and to use them to ameliorate the effects of the slump. The fact that the 
actual data do not look like this tells us that the aggregate data cannot be 
modelled as the behavior of a liquidity constrained representative consumer. 
This is perhaps not surprising; even in the absence of borrowing restrictions, 
conditions for aggregation to representative agents are implausible, so that a 
representative agent formulation is perhaps even more than usually misdirected 
when there are liquidity constraints. 

Some qualifications are in order. Within the Hamilton model, negative 
expected growth in the slump state is necessary to generate any saving, but it is 
not sufficient. In particular, define q1 by 

(31) exp ( -p7ln) = rr exp ( -pgl) + (1 - r1) exp ( -pg2) 

which is a measure of expected growth conditional on being in state 1, and the 
corresponding 712 for state 2. If both growth rates ql and 772 are greater than 
p-1(r - c) + po-2/2, then (30) implies that p(w, 1) =p(w, 2) = 1. If so, then as 
was the case when income was a random walk, once wt= 1, it will remain 1 
thereafter, and there will be no savings and no assets no matter what the state. 
Secondly, note that I have assumed that consumers know the state, and that as 
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FIGURE 7.-Cyclical saving behavior when income is an ARIMA(1, 1, 0). 

soon as there is a switch, it is immediately apparent. Even if the Hamilton 
process were indeed the true one, the presence of the noise in the income 
growth process means that it is not possible immediately to recognize any 
change in state. Given enough time, consumers would learn the state, but since 
learning takes time, behavior would not be as I have described it. 

Even so, the cyclical behavior of savings in this model is not a consequence of 
these peculiarities. As an alternative, I computed a ten state Markov approxi- 
mation to an AR(1) in logarithmic first differences. The policy function is easily 
derived by applying the principles of Section 1.2 to the nonstationary model. 
Figure 7 shows a typical simulation for a case where the growth process in 
income has an autoregressive parameter of 0.4, as does the U.S. quarterly data. 
Exactly the same cyclical patterns reoccur as in the Hamilton model in Figure 6. 
Saving is positive when income is falling at the beginning of the slump, is 
negative when income is rising at the beginning of the boom, and is zero during 
normal good times. 

2.3. Individual Behavior, Noisy Incomes, and Aggregate Behavior 

The failure of the representative agent model does not imply that liquidity 
constraints are unimportant, or that agents who are liquidity constrained do not 
behave as described here. One possibility is that consumers who are liquidity 
constrained, although responsible for a large share of consumption, are respon- 
sible for only a small share of savings, and that the aggregate saving behavior is 
accounted for by unconstrained consumers, who can either borrow as much as 
they wish, or whose preferences do not cause them to wish to borrow. But it is 
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unlikely that income processes at the micro level exactly mirror the time-series 
behavior of aggregate income, so that an alternative approach is to work from 
the bottom up, starting not from the aggregate time-series process, but from 
those observed in the micro data. The final model that I examine represents an 
attempt to do so. 

At the micro level, individual incomes are a good deal less persistent than is 
the case for the aggregate. Year to year changes show significant negative 
autocorrelation, either because there is substantial transitory income in each 
year, or because there is considerable measurement error in the data. The 
process I shall examine here is one in which, at the micro level, the first 
difference of logarithms has a moving average representation, i.e. 

(32) 
Alny,-1a= 

E-III-1, 

where Et is a white noise process and 1 > qi > 0 is the moving average parame- 
ter. MaCurdy (1982) uses the PSID to estimate a model of this form for 
individual earnings, and although it is not his preferred model which is an 
MA(2), it fits the data almost as well. The representation (32) is equivalent to 
(log) income being the sum of white noise, (multiplicative) transitory income, 
and a random walk with drift, permanent income. In this interpretation, the 
parameter qi is 1 + [0 - (02 + 40)o.5]/2, where 0 is the ratio of the variance of 
the permanent component to the transitory component. MaCurdy's estimate for 
qi of 0.44 corresponds to value of 0 of 0.85, so that the permanent component 
accounts for just less than half the total variance in income. 

Again, I assume a normal distribution for E, and again use an m-point 
approximation to simplify the computations. If the m states are labelled 
i = 1,... , m, there are m price functions p(w, i) defined by the functional 
equations, 

(33) p(w,i) =max[A(w), E7njYJP 

Xp([1 +iJ1(+r)(w-A-1P(wli))], I 

where Yij = exp ( - - ei + 'iei) and rri is the probability that ei occurs, equal 
to 1/m here. I calculated (33) using MaCurdy's estimate of if = 0.44, growth 
rates of 0 and 2% per annum, and with r = 2%, U = 5%, and p = 2. MaCurdy 
estimates o, the standard deviation of e, the innovation to the logarithmic 
income process, to be 0.235, an enormous figure that would give a standard 
deviation for A ln yt of 0.25. If this estimate were correct, borrowing constraints 
would be unlikely to be a problem for most American earners. With earnings so 
uncertain, precautionary motives would tend to increase the desired growth rate 
of consumption and generate a great'deal of saving early in the life-cycle. In this 
sort of situation people are unlikely to wish to borrow; severe uncertainty and 
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prudent preferences produce behavior that can look similar to that produced by 
liquidity constraints; see the excellent discussion in Zeldes (1986). 

My presumption is that MaCurdy's estimate is too high because of the 
presence of substantial measurement error in recorded income, and I have 
experimented instead with values of oa of 0.10 and 0.15, themselves representing 
very substantial uncertainty in the income growth process. Logically, a reduction 
in oa should be accompanied by a decrease in qi, in order to accommodate the 
larger role of the permanent component. But the latter is already accounting for 
half of the variance in individual incomes, and a larger figure seems implausible. 

The results are a hybrid between those where income is i.i.d. stationary and 
those where the growth process is positively autoregressive. The consumption 
functions have the usual general shape, but the low values of the innovations E 
correspond to the high branches of the consumption function. A high innova- 
tion now implies low income growth next period (because there is transitory 
noise in the income level), and so there will be a lower consumption ratio at the 
same cash on hand ratio when transitory income is high. This is the standard 
traditional explanation of procyclical savings out of transitory income. At the 
same time, high levels of current income growth reduce the cash on hand ratio, 
and also tend to reduce the consumption ratio. The net result is that, for 
example, with o= 0.15 and income growing at 2%, the regression of the 
consumption ratio on income growth has a coefficient around -0.2, so that the 
savings rate is procyclical. As a consequence, consumption is again smoother 
than income, with the standard deviation of consumption growth 0.13 as 
opposed to 0.17 for income growth. The liquidity constraints also generate a 
negative correlation between the consumption growth and lagged income growth. 
Such a correlation was found in the PSID data by Hall and Mishkin (1982), and 
was attributed by them to the presence of a fraction of liquidity constrained 
consumers spending their incomes. The explanation here runs somewhat dif- 
ferently, but the underlying cause is the same. (Note however that recent work 
by Mariger and Shaw (1988) suggests that Hall and Mishkin's finding is a 
phenomenon of the early 1970's and does not appear in the more recent waves 
of the PSID. The correlation should not therefore be treated as a proven fact.) 

Consider now the transition from the individual consumers to the aggregate. 
If each income process were independent, then there would be no variation in 
aggregate income growth rates, and the saving and dissaving activities of 
individuals would cancel out in the aggregate. Instead of this, consider a simple 
model in which each consumer receives the aggregate shock together with 
idiosyncratic components. For each consumer, the growth rate of income is 
given by the following: 

(34) Aln yt-g=Zlt +Z2t +Z3ts 

ZTt =gro th +copt, 1 Z2to=g2the Z3t = 3t h r3t - 1 

The first growth component, zl, together with the growth rate g, is common to 



SAVING AND LIQUIDITY CONSTRAINTS 1245 

all consumers, and is assumed to be an MA(1) with positive parameter f3. Since 
both other components are taken to be idiosyncratic and independent over 
individuals, aggregate income growth will be z1 + g. (I assume for convenience 
that all income shares are the same, so average growth rates can be computed 
by simple averaging.) It would be more in accord with the aggregate data for the 
first component to be an AR(1) rather than an MA(1), but the former would 
much complicate the calculations to follow. The component Z2 is the innovation 
in an idiosyncratic random walk. Some such term must be present in order to 
match the large permanent component in individual income shocks, a role 
which cannot be played by the common shock because aggregate income growth 
is not sufficiently variable. The third component Z3 is the first difference of 
transitory income. Total income for each individual is the sum of a common 
IMA(1, 1), an idiosyncratic random walk, and transitory white noise. 

The individual has no way of separating the three components, and observes 
only their sum, which is itself an IMA(1, 1) satisfying (32). I am thereby 
effectively assuming that consumers do not observe the aggregate shock, even 
with a lag. Clearly, such information is in fact available, but I assume either that 
consumers (irrationally) ignore it, or that, because it accounts for so little of 
individual income variance (see below), it is not worth consumers' time to 
discover it. 

Matching (34) to both the aggregate data and the micro data ties down the 
parameters. From my interpretation of the micro data I take f = 0.44 and 

= 0.15 as above. For the macro data, I take g = 0.02 and o1, the standard 
deviation of el, in (33), to be 0.01. A value of E of 0.5 generates an autocorrela- 
tion coefficient of 0.4 in the growth rates of income, in accord with the actually 
estimated AR(1). The other parameters can be calculated by matching the 
variances and covariances of Et - i/w-1 and z1 + Z2 + z3. After some rearrange- 
ment, this gives 

(35) 22 = (1 - -)2 2-(1 + f)2 2 

or32 = qlor2 + 'BU2 

Note that because the innovation variance in the microeconomic growth pro- 
cess, so2, iS SO much larger than that in the aggregate, l2, the two idiosyncratic 
processes have to account for nearly all of the variance in individual income 
growth, something that matches the evidence that aggregate shocks have little 
explanatory power in individual earnings regressions. 

Given that the parameters have been appropriately set, I can use the 
individual consumption functions previously calculated, simulate histories for a 
number of individuals, and do the aggregation explicitly. A simulated aggregate 
process z1 + g is generated first, and then this is added to individual indepen- 
dent z2 and Z3 processes for H consumers. The sum is then used to calculate 
consumption ratios according to the consumption functions in (33), and the 
process iterated forward. There is one minor complication in that the consump- 
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tion functions A - 1{p(w, i)} from (33) are indexed on i, which is the element of 
the discrete approximation corresponding to the current innovation in the 
combined process, an innovation that bears no simple relationship to any of the 
innovations in (34). However, the moving average process (32) is invertible, and 
so its innovation can be recovered from the sum E:if'(A ln y,-i - g). Of course, 
this calculation will not yield a value that is one of the 10 points for which 
consumption functions have been calculated. For the moment, I have adopted 
the crude device of using the element of the approximation that is closest to the 
calculated innovation. Interpolation would be better, but since I am averaging 
over many consumers, it is hard to believe that the approximation errors are 
important in the aggregate. 

Since individual income growth is negatively correlated, and aggregate income 
growth positively correlated, it is necessary to aggregate over a large number of 
households to eliminate the negative effects. In practice, 1000 cases seemed to 
be adequate, and yielded, over 200 periods, an aggregate income change with a 
sample mean of 0.0192 and standard deviation of 0.0125, compared with the 
theoretical magnitudes for infinite H of 0.02 and 0.0125 respectively. The 
sample autocorrelation coefficient of A ln y is 0.262, well below the theoretical 
value of 0.40. The aggregate consumption ratio (i.e. the simple average of the 
1000 individual ratios) responds to income growth with a coefficient of -0.17, 
so that, while savings ratios are procyclical, the effects are small. It would take a 
2.4 standard deviation increase in the income growth rate to shift the saving rate 
up by half a percentage point. As a result, while consumption is smoother than 
income, with a standard deviation of A ln c of 0.0114 as opposed to 0.0125 for 
income growth, the smoothing effect is very small. Assets are now always 
positive, although for each individual, assets are frequently zero. As a conse- 
quence, capital income allows the consumption ratio to average a little more 
than unity, 1.0015 in the simulations reported here. The growth rate of aggre- 
gate consumption has a positive regression coefficient (0.42) on lagged aggregate 
income growth, as opposed to the negative coefficient in the micro data. The 
model therefore provides a means of reconciling the actual (or at least possible) 
orthogonality condition failures in the micro data (Hall and Mishkin) with those 
in the macro data (Flavin), which also display the negative/positive pattern. 

These results show that the model of this section is capable of providing a 
coherent account of a number of disparate phenomena in both microeconomic 
and macroeconomic data. However, it is important to note that the story is still 
incomplete in a number of important respects. While I believe that understand- 
ing the behavior of liquidity constrained consumers is important, I would not 
wish to claim that all consumers are in this position. There are relatively patient 
individuals as well as impatient ones, and the former are likely to accumulate 
considerable amounts of wealth in the standard life-cycle manner. I suspect that 
such people are in the minority, although they account for a disproportionate 
share of aggregate saving and wealth accumulation. Finally, while it is true that 
most Americans accumulate very few financial assets, they do accumulate 
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housing wealth and pension rights. Some of this saving is involuntary, but a 
fuller account would integrate the existence of these other assets into the 
models developed in this paper. 
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