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SPECIFICATION AND TESTING IN APPLIED 

DEMAND ANALYSIS' 

For rather more than two decades, applied econometricians have been estimating 
systems of demand equations which have been explicitly or implicitly derived 
from the theory of utility maximisation. For the most part, such studies have used 
the traditional specification of utility as a function of quantities consumed and 
have derived demand functions by manipulation of the first-order conditions for 
utility maximisation. For recent examples of a large literature, see the books by 
Theil (I975, I976) and the review paper by Barten (I977). However, over the 
same period, demand theorists have made increasing use of duality tools, so 
that the direct utility function is now frequently discarded as an analytical tool. 
The considerable power of the new methods in economic theory can be gauged 
from the recent paper by Gorman (I976); there, a wide range of problems is 
handled with great elegance and simplicity using the tools of duality. These 
methods have had a good deal less impact on applied work and although there 
have been exceptions (see, for example, Houthakker (i 960) and the recent work 
on the translog model by, for example, Christensen, Jorgenson and Lau (I975)), 

even these make only limited use of the crucial concepts. The purpose of the first 
part of this paper is to lay out the central concepts of duality in demand analysis 
as they are relevant to the applied econometrician. The approach is informal 
(the interested reader may consult Diewert (I 974) for a more formal treatment) 
but is I hope informative. The use of duality allows a considerable increase in the 
flexibility with which empirical demand equations can be specified and permits 
a much more intimate relationship between theory and practice. I shall pursue 
this by means of a simple example. 

However, specification is only half the task and an enhanced ability to generate 
new, plausible models only renders more acute the problem of discriminating 
between them. To date, hypothesis testing in demand analysis has been confined 
to testing specialisations of particular models (see, for example, Barten (I969), 

Deaton (I 974 a), orJorgenson and Lau (I 975)). But this leaves a crucial problem 
untouched; how is one to adjudicate between competing specifications, between 
the translog models and the Rotterdam system, or between the linear expenditure 
system and the indirect addilog model, and so on? The basic problem is that 
these models are not " nested " within one another; it is not possible to derive one 
from the other by the imposition of suitable restrictions. In some cases it might be 
possible to combine non-nested models into a composite hypothesis against 
which each of the original models can be tested as specialisations. But this is not 
possible in demand analysis. A composite of the Rotterdam and translog models 
would have so many parameters as to make estimation impossible and would have 

1 This is an extended and rewritten version of a paper presented to the S.S.R.C. Economic Theory 
workshop on duality held at the University of Warwick in December 1976. I am grateful to the partici- 
pants, to Henri Theil and especially to David Hendry for helpful comments, and to David Mitchell for 
help with the computations. 
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little interest in its own right. Instead, it is now possible to use tests explicitly 
designed for non-nested hypotheses. These tests are due to Cox (I96I, I962) and 
were adapted and introduced into the economics literature by Pesaran (I974) 
and extended by Pesaran and Deaton (I978). Although the available references 
are somewhat technical, the basic idea of these tests is extremely simple. Part 2 of 
this paper shows how they can be applied in demand analysis to complement 
traditional techniques of testing. Use is made of the example derived in Part I 

and the new model is tested both against an unrestricted version of itself and 
against the linear expenditure system, with which it is non-nested. 

I. DUALITY AND THE SPECIFICATION OF EMPIRICAL HYPOTHESES 

If utility is written as a function of quantities consumed, and if the utility function 
is strictly quasi-concave, monotone increasing and differentiable, empirical 
demand functions can be derived from the first-order conditions of utility 
maximisation. This is much more easily said than done; these conditions fre- 
quently cannot be solved explicitly for the demand functions, and when they can, 
the resulting equations may be difficult or impossible to estimate. The linear 
expenditure system provides an exception to these problems, and although it has 
been much used by econometricians and planners, as a model it has proved 
remarkably difficult to follow. Minor generalisations have frequently been 
proposed, but even more than 20 years after Stone (I954) first estimated the 
parameters of an explicit utility function, there are only a few direct utility 
functions, other than those closely related to the L.E.S., which lead to demand 
functions which are interesting enough to be worth the sometimes considerable 
effort of estimation. Hence, apart from the linear expenditure system form, the 
direct utility function has been remarkably unproductive as a tool of empirical 
analysis. 

The major reasons are clear enough in retrospect. There are two immediately 
obvious forms for the utility function, either 

U = Zfi(qi) (I) 

or u = (q* -a)' A(q* -a), (2) 

where q* is some transformation of q; for example, 

fs = a ' ~~~~~~~~(3) 

so that (2) encompasses quadratic utility and the translog forms. As for (I), the 
form 

fi (qi) = a-i (qi - y.),i -I (4) 

with ci > o, and /Ji < I, covers most of the important cases; with /i = o we get 
the linear expenditure system, with yi = o Houthakker's (I960) addilog, and 
with/8i = 8 independent of i we get what Pollak (I977I) calls " generalised Berg- 
son functions with minima". The whole class (I) has well-known and highly 
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undesirable properties and is too restrictive for most empirical work (see Deaton, 
I 974 b). Besides, apart from the case when /Ji is independent of i, it is not possible 
to derive explicit demand functions and this poses (not necessarily insuperable) 
problems for estimation. On the other hand, the quadratic form (2) is as general as 
the additive form (i) is restrictive, and the large number of parameters involved 
prevents estimation of the model for all but academic exercises involving half-a- 
dozen or so commodities. It turns out to be remarkably difficult to find something 
intermediate between (i) and (2). The search is also much hampered by the 
inability to move easily from the utility function to the demand functions and 
back. The econometrician has exactly the situation of the child's puzzle where 
there are a dozen strings leading to a dozen destinations and, although the loose 
ends are visible, everything is in an impossible tangle in the middle. This causes 
difficulties in both directions. On the one hand, one has very little idea, in general, 
what effect the specification of utility has on the demand functions, especially 
when it is difficult to discover precise analytical forms. More important, perhaps, 
is the curtain that is drawn between statistical inference and theoretical specifica- 
tion. We know quite a lot about behaviour, we know what shapes Engel curves 
are and are not, we know what we expect about expenditure and price elasticities, 
and yet it is extremely difficult to say what implications this evidence has for the 
shape of the direct utility function. 

The duality approach solves many of these problems. We can go from pref- 
erences to behaviour in one step and we can go from behaviour to preferences in 
one step. The construction of preference-consistent demand functions becomes 
straightforward, and a clear route is open for the incorporation of empirical 
evidence into a knowledge of preferences. 

Given the language and apparent difficulty which sometimes surrounds 
theoretical treatments of duality, it is surprising how simple are the basic tools 
and how familiar. It is also perhaps surprising that although duality in demand 
analysis and duality in mathematical programming are conceptually identical, 
in practice they are very different. In mathematical programming, the formula- 
tion of a dual involves the stating of an entirely new problem; a minimising 
problem if the original was a maximising problem and a maximising problem if 
the original was a minimising problem. This new problem is defined over differ- 
ent variables; the so-called dual variables. It is this aspect of duality, the change 
of variables, which is central to consumer demand analysis; the dual problem 
exists, but it is not of central importance. Indeed, the crucial concepts involve 
very little explicit duality theory and are widely used in production theory with 
no consciousness of duality being involved. 

The central concept is the costfunction (sometimes called the expenditure func- 
tion). If we label indifference curves by some arbitrarily scaled utility indicator 
u, so that higher indifference curves always have a higher u value, then we can 
measure the minimum cost of attaining that indifference curve (i.e. utility u) at 
any prices p. We write this function c(u, p). It is very easy to show that c(u, p) has 
the following properties (see Diewert (I 974) for proofs): 

(i) If the consumer is actually maximising utility he will be minimising costs 
so that his total expenditure at any time will be the current value of c(u, p). 
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(ii) c(u, p) is increasing in u and p; it costs more to be better-off and it costs 
more to be as well-off if prices rise. 

(iii) c(u, p) is homogeneous of degree I in p; a doubling of prices doubles the 
cost of staying on the same indifference curve. 

(iv) c(u,p) isconcaveinp; thisimpliesthatanincreaseinone (ormore) price(s) 
will cause no more than proportionate, and usually less than proportionate 
increases in costs. This is because the consumer minimises costs; he always chooses 
the best way of producing utility so that he will substitute, as far as possible, away 
from goods which become relatively expensive. This is a very general property 
of the cost function, and it in no way depends on the convexity of indifference 
curves. This is a significant advance on Lagrangian methods which rest crucially 
on convexity. 

(v) If c(u, p) is differentiable, or where it is differentiable, its derivatives with 
respect to price are the quantities demanded: 

c(u, p) - hi(u,p) = qi. (5) Dpi 
It is now clear why it is so easy to generate demand functions. All we need is to 

think of a function c(u, p) which is increasing, homogeneous, concave and differ- 
entiable, and we can use (5) to write down the demand functions. Note, however, 
that the demand functions given by (5) are functions of utility and prices, the 
so-called Hicksian demand functions. In practice we have observations on total 
expenditure, not utility, so that we must be able to write the quantities as functions 
of the former. This is simple enough. Since we know the value of c(u, p) at any 
time, i.e. total expenditure, we can invert the function and write utility, u, as a 
function of total expenditure and prices: 

u = V/r(x,p), (6) 

where we use x, i.e. total expenditure, for c(u, p) to emphasise that it is no longer 
a function. Substitution of (6) into the Hicksian demand function (5) leads 
immediately to the Marshallian demand functions. 

qi = hi[f(x, p), p] = gi{x, p}. (7) 

These can be estimated in the usual way. 
For empirical work, equation (5) is doubly important, not only because it 

can be used to generate demand functions, but also because it offers a direct link 
in the other direction, from demand back to preferences. This can best be illus- 
trated by a simple example. 

In work with Engel curves, it has been suggested (see, for example, Working, 
I 943; Leser, 1976) that a model in which budget shares are linearly related to the 
logarithm of total outlay provides an excellent fit to the data. In other words, 

Wi = ai + 8i log x, (8) 
where wi = pi qi/x. This form is consistent with adding-up provided XGk = I and 
3k = o, and is of further interest since it allows perfect aggregation over con- 
sumers as defined by Muellbauer (I975, I976 a). We take this as a starting-point, 
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and in our example attempt to show how the prior knowledge that (8) is a sensible 
functional form can be incorporated into a full system of demand equations. 

Equation (8) makes no allowance for prices since these are usually assumed 
to be constant across households. Making the necessary modification, the full 
demand system underlying (8) can be written 

Wi = ;i (p) +f8t (p) log x, (g) 
where we try to choose ac(p) and f8t(p) to ensure econometric simplicity and so 
as to integrate into a cost function. From the first consideration we might, for 
example, choose ac and f8 so that 

Wi = t + 8i log X + Dtj logpj, (I O) 

where the a, f8 and y parameters are now constant. 
This model is of considerable interest in its own right: it is very general; it 

can be regarded as an arbitrary first-order approximation to any set of demand 
functions; and it can be estimated equation by equation by ordinary least 
squares. Results of doing so are presented in Table I below and will be discussed 
in the next section. 

Meanwhile, let us explore the utility implications of (i o). Since, from (5) 
a log c (u, p) = w_ (I 

a logp% '' 
equation (i o) can be written 

a log C = t + 8i log c + lyj logpj, (I 2) 
a logpi 

which is a system of partial differential equations defining c as a function of p. 
This system has a solution only in the restricted case where, for some 0, 

yij +t, acj = 6t1,. 4j (3) 
If (I3) is satisfied, the solution to (I2) iS 

log c (u, p) = ao + Zak logPk + U Pk, (' 4) 
where a0 = -0, and ai = ai - 0ft. 

It is a simple matter to check that (I 4) is a cost function of Muellbauer's (I 975) 
PIGLOG form, and indeed, this model has already been derived by Muellbauer 
(I 976b) and Carlevaro (I 976) in a different, but conceptually similar situation. 
The indirect utility function Vf (x, p) is solved from (I4) to give 

u = (logx -ao-Zak logPk) / Pkk (I 5) 
This is as far back as we can go in this case since it is not possible to derive the 
direct utility function explicitly. But this is of no importance; the existence of (I4) 
means that a utility function exists which will give rise to the demand functions 
so that these latter will have all the usual properties. 

The demand functions corresponding to (I4) are, by differentiation with 
respect to logpi followed by substitution of u from (15), 

wi = ai +,8i (log x-ao-Zak logPk), (i 6) 

or alternatively Wi = ai + ,8 log (x/P), (i 6') 
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where P - eaoHIpak, is a price index. Equation (I6') establishes the model as a 
member of the Fourgeaud and Nataf (I959) class, in which demands are a 
function of real income and real price alone, while (I6), with its constant term 
and a real income term, is reminiscent of the linear expenditure system. (Indeed, 
the substitutions which serve to integrate the linear expenditure system (see 
Samuelson, I947-8) serve equally well in this case.) 

Although this example serves very well to illustrate the ease with which 
empirical evidence can be used to generate new preference-consistent demand 
models, the final result in this case is somewhat disappointing. The original 
equation (io) is very general and allows a wide range of price response. After 
imposing the constraints (I 3) the utility consistent version (i 6) is extremely 
restrictive containing only (2n - I) independent parameters, all but one of which 
are identified without changes in prices. Further research would thus discard 
this version and examine other possible specifications for the functions oc(p) 
and 8ih(p) 

Nevertheless, for illustrative purposes, it is worth showing how we may pro- 
ceed to test a new model such as this. There are two possible approaches, both of 
considerable interest. In the first, the final model (I6) can be tested as a special- 
isation of (io). This will tell us whether the integrability conditions (equations 
I 3) do or do not hold in practice. (This of course tells us nothing about whether, 
in general, demand functions are integrable since, by assuming (io), we have 
selected a very special functional form.) The second test is to compare the model 
with an alternative utility-based formulation, such as the linear expenditure 
system. Since the linear expenditure system and (I6) are not nested either one 
within the other, special techniques must be used. It is to these we now turn. 

2. TESTING ALTERNATIVE HYPOTHBSES 

The normal procedure of statistical inference is that we have some basic frame- 
work for the test and within this we wish to examine various specialisations. The 
framework, or maintained hypothesis, is never itself challenged within the 
procedure. The example in this paper is the general equation (i o) within which 
we wish to test the special case (i 6) which is attained by imposing the restrictions 
(I 3). If we adopt a maximum-likelihood approach to estimation, this can be 
turned naturally to the problem of hypothesis testing. For if LF is the maximum 
attainable likelihood without restriction, say of equation (i o), and LR is the 
maximum attainable with the restriction, equation (i 6), then the ratio LR/LF 
forms a natural basis for the test (see, for example, Silvey, I970) . If the ratio is 
less than some critical level, k say, the restrictions are rejected. In some problems 
(for example, single equation linear regression) k can be set to give an exact test 
with a preset known significance level. In more complicated cases, such as the 
present, it is necessary to rely on asymptotic results, particularly that which 
states that, if the restricted hypothesis is true, minus twice the logarithm of the 
ratio is asymptotically distributed as x2. 

All this rests crucially on the nesting or asymmetry between the two hypotheses 
and on the fact that, if the restrictions are valid, the likelihood ratio must 
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approach unity as the sample size increases. When the two hypotheses are non- 
nested, none of this happens. There is now no question of a maintained hypothe- 
sis which is never challenged; one or both of the models may be false. And even 
if one of the models is true, we can no longer assert anything definite about the 
likelihood ratio. It is even possible, although generally unlikely, that the true 
model may predict that the false model has the higher likelihood. To deal with 
this situation, Cox (I96I, I962) derived a statistic which modifies the straight- 
forward likelihood ratio, essentially by removing its expectation. However, since 
there are two possible models being considered, the likelihood ratio has two 
possible expectations. But this turns out to be a natural feature of the problem. If 
we assume each hypothesis to be true in turn, as 'working hypotheses' as it were, 
we may derive two modified likelihood ratio tests, one for each hypothesis. This 
allows us four possibilities: rejecting one or other of the models, rejecting neither, 
or rejecting both. 

Before showing how this works for two non-nested models of demand, it is 
worth beginning with a simple example to show how easy the test is to calculate 
and how intuitively acceptable it is. Pesaran (I974) considers the case of two 
competing single equation linear regressions. In the obvious notation 

H0:Y XI3+60) (I7) 

Hi:y=ZY+c,1 (i8) 

where X and Z are alternative sets of explanatory variables, although some 
variables may appear in both. The normally distributed errors co and cl are 
assumed to be serially independent. The test statistic, To, is calculated by esti- 
mating (I 7) and (i 8) by ordinary least squares and estimating equation standard 
errors, a. and a,. Next, we need an estimate of 40, which is the expectation of 
&2 given the truth of Ho. It turns out that this can easily be calculated by regress- 
ing the predicted values from the Ho equation on Z (i.e. the explanatory variables 
from the second regression) and estimating an equation standard error. This last 
is added to co to give alo. The statistic, To, is then given by the formula 

To = -log A1) ('9) 2 ai 

where m is the number of observations. This can be converted to an N(o, I) 
variable by dividing by the square root of its variance which is calculated by 
carrying out one more linear regression involving the residuals of the auxiliary 
regression described above (see Pesaran (I 974) for details). 

All this has been carried out on the basis of Ho being true, so that To is the 
logarithm of the corrected likelihood ratio on that assumption. A precisely 
similar calculation, mutatis mutandis, gives T, on the assumption that H, is true. 
It is easy enough to see why (i 9) makes a reasonable test statistic. The expression 
c&o is the estimate of how well H, ought to fit if Ho is true. If 8j iS large relative to 
this, H, fits much worse than it ought to if Ho is true, so that Ho must be rejected, 
although not favouring Hl. Similarly if &l is small relative to &0., H, fits better 
than it ought, and again Ho must be rejected, this time with some prejudice in 
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favour of H1. The calculation is then repeated for T1 to give corresponding 
results for H1. Indeed, the test can be used to give pairwise comparisons of any 
number of non-nested hypotheses, see Pesaran and Deaton (I978). 

Demand equations are neither single-equation nor linear. If we stay with the 
general form of (i 6), we may write the two competing hypotheses in the form 

Ho: wit fit(xt Pt)Po) +?oit (20) 

H1: Wit = git(xt, Pt, 31) + elit, (2 I) 

where f and g are some functions, and Po and 31 are vectors containing all the 
parameters of each model. The errors coit) clit are assumed to be serially inde- 
pendent and to be multivariate normally distributed as N(O, Q0) and N(O, Q21) 
under Ho and H1 respectively. The calculations in this case are a good deal more 
complex but exactly the same principles apply as in the single-equation linear 
case. Once again, each equation system is estimated, this time by full information 
maximum likelihood. If eoit and elit are the two sets of estimated residuals, 
maximum-likelihood estimates of 20 and Q1 are given by 

[Qo]ij = m eoit eojt, (22) 

[21]ij elit eljt. (23) 

As before, the next step is to estimate the matrix 121o0 the expectation of Al1 under 
Ho. The predicted values from Ho are used in H1 to compute another FIML 
regression and another variance-covariance matrix which is added to no to give 

A10* The To statistic is then given by 

TO=m logdet Al(4 
2 detg2 (24) 

Since the determinant of the covariance matrix plays the same role in FIML 
estimation as does the equation standard error in single equation estima- 
tion, (24) is precisely analogous to (i 9) and has an identical interpretation. 
The variance of To is calculated via a generalised least-squares regression again 
involving the residuals of the auxiliary regression (see Pesaran and Deaton 
for details). 

There is one final complication, which is that demand systems such as (20) 

and (2I) must satisfy adding-up without error. Thus the sums of wit add exactly 
to unity under both Ho and H1 and hence the sums of the errors coit and clit must 
add exactly to zero. This means that Q0 and Q1 are singular, as are their esti- 
mates, no and Al, so that (24) is not defined. This is a reflection of a general 
problem in the maximum-likelihood estimation of demand systems and has been 
successfully treated by, for example, Barten (i969): see also Deaton (I975, 
chapter 3), for an exposition. In this context the problem can be solved by drop- 
ping one equation from the set or, more elegantly, by correcting the formulae 
(22)-(24) for the singularity. The details are not of general interest but an 
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Appendix laying out the calculations will be made available by the author on 
request. 

Both types of tests can be illustrated using the models discussed in this paper. 
We begin with the nested test of (i6) against (io). 

The results of estimating (io) on annual British data from I954 to I974 are 
given in Table i. Value shares are notoriously hard to predict so that the model 
fits well, although it must be remembered that we have only I I degrees of free- 
dom per equation. The formulation of the model ensures that zero values for 
,f and y, i.e. failure to find significant effects, reduces the model to homotheticity 
and not to absurdity, as is often the case. Nevertheless, five out of eight commodi- 
ties have total expenditure elasticities significantly different from i; of these, 
clothing is relatively elastic and food and housing relatively inelastic. Given the 
large number of price terms, a very respectable proportion (37 out of 64) have 
t values greater than unity and these are well scattered throughout the matrix. 
From this evidence there appears to be a considerable degree of cross-price 
responsiveness among the commodities. 

Most of this is suppressed by the restricted version of the model. The parameter 
estimates and other statistics corresponding to (I6) are given in Table 2. The 
estimated values of ,3, which are common to both models, are quite different 
from those in Table I; indeed, this is not very surprising given the restrictions 
imposed on the yij parameters, many of which were significant. The equations 
clearly fit a lot less well and twice the logarithmic likelihood value drops from 
I8I4-4 to I502 8. The difference between these two, i.e. 3I I 6, is asymptotically 
distributed as x2 with 56 degrees of freedom so that, even if we make some allow- 
ance for small sample problems, we are left in little doubt that the model is an 
unacceptable specialisation of the general form (io). We would thus conclude 
that the functional form chosen for (i o) is an unfortunate one in that it requires 
integrability conditions which are much too stringent in practice. 

At this point, the most obvious conclusion is to abandon the model (i 6) and, 
in practice, this would be correct. However, there are two possible arguments for 
retaining the model for further tests. The first is related to a view put forward by 
Phlips (I 974, p. 55). Phlips argues that the truth of neoclassical consumer theory 
at the aggregate level must be taken as a maintained hypothesis so that a model 
which is inconsistent with the theory, e.g. (io) without the integrability con- 
ditions, is meaningless and cannot be sensibly interpreted. If one accepts this 
view then the only meaningful tests are those between different preference- 
consistent models; for example, between (I6) and, say, the linear expenditure 
system. The present author would not accept this view, partly because inte- 
grability on aggregate data is a far-from-obvious desideratum, but also because 
it is hard to see why, if (i6) is correct, it should be rejected by the data when 
compared with (io). The second argument is more substantial. In using the 
Cox procedure, even a false model can give us useful information about other 
models. For example, if the linear expenditure system were true, we would have 
certain expectations about what would happen when we estimate (I6); these 
expectations can be checked with experience and may tell us something about 
the linear expenditure system, quite independently of the validity of (i 6). 
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Table 
2 

Parameter 

Estimatesfor 

Model 

(15) 

and 
the 

LES 

(20) 

(Asymptotic 
t 

values 
in 

parentheses.) 

PIGLOG 

model 

Linear 

expenditure 

system 

a 

i 

R2 

y 

R2 

I. 

Food 

o02803 

-o-2675 

0'9725 

100I5 

o-o6I4 

og9879 

( 

I85-6) 

(-28-5) 

(92-5) 

( 

Io-8) 

2. 

Clothing 

0OI042 

-o-o482 

o-8425 

26-I5 

o-ioo8 

o08i 
i6 

(140-4) 

(-Io.8) 

(26.9) 

(2I.4) 

3. 

Housing 

O-O99I 

01707 

o9632 

22,79 

0o2I87 

og96o8 

(87-6) 

(24 

5) 

(4 

43) 

(17-2) 

4. 

Fuel 

o0o473 

OOII4 

o02oo6 

1534 

0O0493 

o-684I 

(56.4) 

(2-31) 

(17-4) 

(I4.8) 

5. 

Drink 

and 

O0I389 

-oo269 

o-6oI i 

45'O5 

O'I20I 

o-8I55 

tobacco 

(i68-8) 

(-5.59) 

(33-9) 

(33.8) 

6. 

Transport 

and 

o-o866 

0I341 

0?9733 

13.15 

0-2I32 

o09648 

communication 

(I 

5.8) 

(28 
9) 

(4 

79) 

(46.3) 

7. 

Other 

goods 

o0oggo 

OOI53 

o06028 

28-65 

o-ii68 

o05662 

(2I11-7) 

(5 

6o) 

(2 i 

6) 

(35-5) 

8. 

Other 

services 

o 

I446 

0.0110 

0I4304 

5I*69 

o-II98 

-oI 

56o 

(306.4) 

(3 

97) 

(29-I6) 

(26.i) 

ao 

fixed* 
at 

6-o06 

2 

log 
L 
= 

I502-8 

2 

log 
L 
= 

I530-5 

* 

Technical 

note. 

The 

value 
of 
ao 

was 

fixed 

after 

failure 
to 

reach 

convergence 

with 

the 

parameters 

unconstrained. 

The 

value 
of 

6-o06 
is 

theoretically 

plausible 

given 

(14) 

and 
is 

consistent 

with 

the 

evidence. 

Note 

that 

scale 

changes 
to 

price 

index 

numbers 

affect 
ao 

but, 

since 

the 
,8i 

parameters 

add 
to 

zero, 
do 

not 

affect 

the 

adding-up 

properties 
of 

the 
ai 

parameters. 
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Table 2 gives estimates of the linear expenditure system. In order to ensure 
compatibility with the other models this is written in the form 

Wit = Pit+ 
i 

Pi (I X ) Yk (25) 
Xt \kXt/ 

with parameters y and y. 
The equation-by-equation fit of the LES is similar to that of the PIGLOG 

Model (i 6) with some value shares predicted better by one and some by the other. 
Overall, the LES has the higher likelihood, I5305 as opposed to I502-8 for the 
PIGLOG model. However, since the models are non-nested, we cannot conclude 
anything about the validity of either model from a comparison of likelihoods 
alone. 

Moving to the non-nested testing procedure, and taking the LES as the first 
hypothesis, we find a test statistic of - 2o086; if the LES were true this should be a 
drawing from an N(o, I) distribution. In fact, such an extreme value occurs 
because PIGLOG fits much better than we would expect if the LES were true; 
hence we must reject the LES. Reversing the process, treating PIGLOG as a 
working hypothesis, the corresponding statistic is now - i8-30. Once again, the 
LES fits much better than is to be expected given the validity of PIGLOG; it too 
must thus be rejected. 

This is a perfectly satisfactory result. It is quite obvious from the earlier test 
and from the restrictiveness of the integrability conditions that the PIGLOG 
model is false. The LES, although it fits better than PIGLOG, does not outshine 
it by enough to suggest that it is a serious contender. And this is exactly what the 
formal test tells us. Note, however, that the LES and the PIGLOG model reject 
one another without the intermediation of the general model and thus is an 
important property of the non-nested procedure. 

One is now entitled to ask where one goes, having rejected both the models. In 
this particular case there are clearly better models available than either of those 
considered here. Nevertheless we might still, after further testing, be faced with a 
situation where all the models we can think of are rejected. In this author's view, 
there is nothing to suggest that such an outcome is inadmissable; it is perfectly 
possible that, in a particular case, economists are not possessed of the true model. 
If, in a practical context, some model is required, then a choice can be made by 
minimising some appropriate measure of loss, but such a choice in no way 
commits us to a belief that the model chosen is, in fact, true. Even so, it is too 
pessimistic to believe that we cannot build satisfactory models of demand. The 
examples given in this paper are not very serious contenders but, in my view, the 
methodology which they illustrate is likely to be an important element in further 
progress in the field. 

University of Bristol ANGUS DEATON 

Date of receipt offinal typescript: December I977 
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