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The use of duality concepts has now become widespread in production and consumption 
theory. In both of these areas, one of the central and most useful concepts is the cost or 
expenditure function which represents tastes or technology through the minimum cost to 
consumer or producer of reaching a particular utility or output level at given prices. Under 
utility maximizing or cost minimizing assumptions, the value of this function is actual 
outlay, so that the cost function defines the relation between expenditure, prices and utility 
or production as the case may be. For many problems, prices and outlay are the natural 
variables with which to work, and it is this that makes the cost function such a convenient 
representation of preferences. Even so, the mathematical properties of the cost function, 
particularly its homogeneity and concavity, give it decisive advantages over either direct or 
indirect utility functions even in situations where quantities are the more natural variables. 
For this reason, it is useful to consider the dual of the cost function itself, retaining its 
mathematical properties, but defined on primal, rather than dual variables. This dual is 
the distance function, sometimes also referred to as the transformation function, the gauge 
function, or the direct cost function. 

This function has made a number of distinguished but infrequent appearances in the 
literature. Wold (1943) uses it to relate quantity bundles to a given reference vector and 
thus to define a utility function. Debreu (1951) defines a " coefficient of resource util- 
ization" through the distance function while Malmquist (1953) develops a systematic 
theory of quantity indices based upon it. In production theory, the distance function is 
discussed by Shephard (1953) and more recently is systematically and extensively used in 
the forthcoming monograph by Fuss and McFadden (1978), especially in the contributions 
by McFadden and by Hanoch. In the demand context, the function is briefly discussed by 
Diewert (1974), but the main contributions are in an unpublished paper by Gorman (1970) 
and, more briefly, in Gorman (1976). The function is used in a number of recent pub- 
lications, notably by Blackorby and Russell (1975), Hanoch (1975), Blackorby and 
Donaldson (1976), Blackorby, Lovell and Thursby (1976) and Diewert (1976a) and (1976b). 
The aim of the present paper is to present a reasonably systematic, if informal presentation 
of the distance function in the context of consumer behaviour. Much of what follows is 
derived from one or more of the contributions listed above. However, none of these 
provides anything like a complete treatment, and in view of the wide range of potential 
applications of the analysis, in particular to demand studies, to rationing theory and to 
welfare economics generally, a synthesis of such useful material is overdue. 

Section 1 of the paper defines the distance function and discusses its properties. 
Particular attention is focused on the duality between the distance and cost functions and 
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on the use of the former in deriving compensated inverse demand functions. These latter 
seem to have been first systematically treated by Hicks (1956, Chapter XVI) who used 
them to define " q-complements " and " q-substitutes " in contrast to the now standard 
"p-complements " and "p-substitutes ". The matrix of q-substitution effects is the 
Antonelli matrix of integrability theory, Samuelson (1950), and we show how this and the 
Slutsky matrix of p-substitution effects can be regarded as generalized inverses of one 
another. Section 2 takes up Malmquist's (1953) analysis and discusses the theory of 
quantity and utility indices based on the distance function and its dual relation to the 
price and utility indices based on the cost function. Finally, Section 3 gives a brief fore- 
taste of the application of the analysis. The familiar Ramsey rule for optimal taxation in 
an equity disregarding society is derived in a new and very simple form. Instead of stating 
the optimal tax rule in terms of its effects upon quantities, the distance function approach 
allows a direct characterization of the tax rates themselves. 

1. THE DISTANCE FUNCTION 
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FIGURE 1 

Primal space. 

Figure 1 illustrates an arbitrary indifference curve II' in quantity space corresponding to 
a strictly quasi-concave utility function; according to some normalization of utility, this 
curve is labelled u. OB is an arbitrary given quantity vector q. The distance function 
d(u, q), defined on utility u and quantity vector q, gives the amount by which q must be 
divided in order to bring it on to the indifference curve u. Geometrically, the value of the 
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distance function is the ratio OB/OA. Mathematically, if preferences are represented by 
the direct utility function v( ), then the distance function, d(u, q), is defined on arbitrary 
utility level u and quantity vector q, by the equation 

v{q/d(u, q)} = u. ...(1) 

Note that in the special case when u = v(q), d(u, q) = 1, hence 

u = v(q) iff d(u, q) =1. ...(2) 

Hence, by appeal to (2) we can always write the direct utility function in the equivalent 
implicit form d(u, q) = 1. Clearly d(u, q) for fixed u is a scalar measure of the magnitude 
of q and, in this sense, it is simply a quantity index number. Similarly, for fixed q, d(u, q) 
is an (inverse) measure of utility. Note too that the distance function is entirely ordinal; 
it is defined with reference to an indifference surface and not with respect to any given 
cardinalization of preferences. Figure 1 should make this clear. 

To relate d(u, q) to the cost function, we move to the dual space. Write fr(x, p) for 
the indirect utility function giving u as a function of prices and total expenditure x. Then, 
since +(x, p) is homogeneous of degree zero 

u = f(x, p) = i( 1,P)- = *Q?), say. *.(3) 

To define a dual distance function d*(u, p), say, which corresponds to (1), we write 

4,*{p/d*(u, p)} = u. .(4) 
But, by (3), 

d*(u, p) = x = c(u, p), ...(5) 

where c(u, p) is the cost function, the minimum cost of reaching utility u at prices p. Hence 
d(u, q) and c(u, p) are dual to one another. 

Gorman (1976) derives this in another way. Let d(u, q) = A, say, and write q* = q1A. 
Thus 

d(u, q)c(u, p) = Ac(u, p) _ Aq*.p = q.p, ...(6) 

for arbitrary u, p and q. (The inequality in (6) comes from the definition of the cost 
function, whereby for all q yielding u, c(u, p) _ q.p.) The inequality can be replaced by 
an equality for some p and q. Following earlier work by Afriat, Gorman says that price 
and quantity vectors p and q are conjugate at utility u if the cheapest way of reaching u 
at p is a vector proportional to q. Clearly, in this case, if p and q are conjugates 

d(u, q)c(u, p) = q.p. ... (7) 

From (6) and (7), it follows immediately that 

d(u, q) = min {p'q: c(u, p) = 1}, ...(8) 
p 

and since the direct utility function can be implicitly written d(u, q) = 1, the cost function 
can be redefined as 

c(u, p) = min {q'p: d(u, q) = 1}. ...(9) 
q 

Equations (8) and (9) make the duality between d(u, q) and c(u, p) absolutely transparent 
and allow us immediately to prove standard results for the distance function from the well- 
known corresponding results for the cost function. These are summarized below; proofs 
are not given since the results are either obvious or follow immediately from the corres- 
ponding results for the cost function. 

Property 1. Just as c(u, p) = x defines the indirect utility function u = #(x, p), 
d(u, q) = 1 defines the direct utility function u = v(q). 
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Property 2. d(u, q) is increasing in q and decreasing in u. 

Property 3. d(u, q) is homogeneous of degree one in q. This follows at once from either 
(1) or (8). In order to avoid problems at the origin, the domain of v( ) is restricted to the 
non-negative orthant excluding the origin, and we confine attention to u> v(O). 

Property 4. d(u, q) is concave in q. From (8) we see that the distance function is a 
minimum value function so that the concavity of d(u, q) follows in the same way as does the 
concavity of c(u,p) from (9). (Equation (1) also implies the concavity of d(u, q) given quasi- 
concavity of v(q). We shall discuss the case of non-convex preferences below.) 

Property 5. Whenever they are defined, the partial differentials of d(u, q), which we 
write ai(u, q), are the prices normalized with reference to total expenditure x. Hence, 
writing ri for pi/x, 

Od(u, q) _ ai(u, q) = ri Pi ...(10) 
Oqi x 

Differentiating the cost function c(u, p) gives the Hicksian compensated demand functions 
hi(u, p), say, with quantity demanded as a function of utility and prices. Correspondingly, 
differentiation of the distance function gives compensated inverse demand functions with 
expenditure normalized price (marginal willingness to pay) as a function of utility and 
quantity supplied. Just as substitution of u = *(x, p) in h1(u, p) leads from compensated 
to uncompensated demands, substitution of u = v(q) in ai(u, q) leads to uncompensated 
inverse demands. Note also from (10), if p and q are conjugate at u, 

a ln d(u, q) = wi(u, q) = wi(u, P) = 'lnc(u,p) ...(11) 
a In qi a ln pi 

where wi = piqi/x is the value share devoted to good i. 

Property 6. The compensated inverse demand functions ai(u, q) are homogeneous of 
degree zero in q. This follows at once from the linear homogeneity of d(u, q) and from 
(10). Hence, the functions ai(u, q) associate with each indifference curve and with each 
quantity ray (only proportions matter) a set of expenditure normalized (shadow prices). 
Figure 2 illustrates. Note that ai/a; is simply the MRS along u at q. In this form, the 
MRS is a function of both u and q so that we can easily separate changes in the MRS due 
to changes in welfare from those due to changes in proportions. 

Property 7. Just as the Hessian of the cost function is the Slutsky matrix of compensated 
derivatives of quantities with respect to price, the Hessian of the distance function is the matrix 
of compensated derivatives of normalized prices with respect to quantity. This latter is 
known in the literature as the Antonelli matrix, see e.g. Samuelson (1950). Properties 3-6 
imply that, like the Slutsky matrix, the Antonelli matrix is symmetric and negative semi- 
definite. In observations of markets where quantities, rather than prices, are exogenous, 
these conditions on the Antonelli matrix would be testable in the same way that Slutsky 
conditions are often tested in the dual situation. 

Formally, write A for the matrix whose i, jth term is @2d(u, q)/@qiaqj. Then 
(i) Aq = 0 (ii) A = A' (iii) O'AO < 0 ... (12) 

The Antonelli matrix forms the basis for the definition of Hicks' (1956) q-complements and 
q-substitutes just as the Slutsky matrix defines p-complements and p-substitutes. Thus, 
goods i andj are q-complements if, and only if, aij>O so that, in view of (10), the marginal 
valuation of i rises with the quantity of j bought along an indifference curve. Similarly for 
substitutes. As Hicks emphasizes, this definition is not equivalent to that of p-complements 
and p-substitutes and is much closer in spirit to the early definitions in terms of marginal 
utilities by Edgeworth and Pareto. 
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Properties 1-7 mean that all the propositions of demand theory can be stated via the 
distance function just as they can through the cost function. Which is more appropriate 
depends on the problem at hand. 

Property 8. The Slutsky matrix S and the Antonelli matrix A are generalized inverses 
of one another (see also Bronsard et al. (1976b)). Since this proposition cannot be argued 
by analogy, we give a brief discussion. 

The matrix S is given by sij = a2c/lpiOpj. Since c(u, p) is linearly homogeneous in p, 
c(u, p) = xc(u, r). Elementary calculus applied to the derivative property of the cost 
function gives 

qi = hi(u, r) = ac(u, r)/ari .. .(13) 

s!*J=xsij = 02c(u, r)IOriarp. 
...(14) 

Write Vc(u, r) and Vd(u, q) for the vectors of first derivatives of c(u, r) and d(u, q), i.e. 
h(u, r) and a(u, q) respectively. Hence, from (13) and (10) in turn 

q = h(u, r) = h{u, Vd(u, q)} = h[u,Vd{u,Vc(u,r)}] ...(15) 

r = a(u, q) = a{u, Vc(u, r)} = a[u,Vc{u,Vd(u,q)}] ...(16) 

Differentiating (15) with respect to q and (16) with respect to r and repeatedly:applying the 
chain rule 

S*= S*AS* .. .(17) 

A = AS*A. ... (18) 
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These, plus the respective " normalization" rules, S*r = Aq = 0 establish S* (= xS) and 
A as generalized inverses. In many applications, it is useful to have explicit formulae for 
AS* and S*A, for example when we wish to " invert " S in optimal tax formulae. 

From Figure 2, 
gq/d(u, q) = hi{u, Vd(u, q)} ... (19) 

so that multiplying by d(u, q) and differentiating with respect to qj gives in matrix form 
S*A = I-qr'. ... (20) 

Similarly, for pi/c(u, p) = a{u, Vc(u, r)}, or by transposition of (20) 

AS* = I-rq'. ... (21) 

These equations can also be used to check (17) and (18). Note, as always, the close 
parallels between duality and matrix inversion. Much of the power of duality methods 
comes from their ability to replace mechanical matrix inversion by elementary algebra 
with transparent economic interpretations. 

We note finally the consequences of not assuming quasi-concavity for the direct utility 
function. The equivalence of the two definitions of d(u, q), i.e. equations (1) and (8), 
depends upon convexity of preferences. If (1) is used, d(u, q) will be (strictly) concave and 
continuously differentiable if, and only if, v(q) is (strictly) quasi-concave and continuously 
differentiable. However, if preferences are non-convex, the cost-function will " bridge" 
non-convex portions of indifference curves so that if (8) is used to define d(u, q), c(u, p) 
having been defined as usual, then d(u, q) will be concave, everywhere continuous and first 
and second differentiable almost everywhere, independently of the quasi-concavity of v(q). 
The direct utility function which can be " recovered" from the cost function via (8) by 
setting d(u, q) = 1, will not, of course, be the original utility function unless the latter is 
quasi-concave. However, this synthetic utility function, which has the same indifference 
curves as the original but with non-convexities bridged, is the economically relevant one. 
Points where indifference curves are non-convex cannot be supported by shadow prices 
and the inverse demand functions have no meaning in such situations. Hence, if we 
confine attention to situations with linear budget sets, the best general procedure would 
seem to be to use the cost function, defining the distance function by (8) and using 
d(u, q) = 1 rather than the original utility function as the direct representation of 
preferences. 

2. THE DISTANCE FUNCTION IN INDEX NUMBER THEORY 
The foregoing analysis can be used to bring together a number of apparently unrelated 
index number concepts. Referring back to Figure 1, Debreu (1951) used the ratio OA/OB, 
the reciprocal of the distance function, as his " coefficient of resource utilization ". Since 
Debreu uses maximum potential welfare as reference, the coefficient of resource utilization 
is a measure of economic efficiency. Similarly, the distance function is a measure of the 
inefficiency of q relative to u. Very similar ideas are involved in Engel's measure of house- 
hold equivalence scales. If this is interpreted in a utility context, see Muellbauer (1977), 
family composition effects act to " scale ' quantities consumed. Hence if mh is the number 
of adult equivalences relative to a reference family, and if the latter has direct utility 
function v(q), uh is given by uh = v(qh/mh). Clearly then, mh, the family equivalence scale, 
is simply d(uh, q,) where d( ) is the distance function of the reference household. Finally, 
if v( ) is interpreted as a Bergson-Samuelson social welfare function and q as a vector of 
household incomes, d(u, zq), where u is actual social welfare, i is the unit vector and q is 
average income, is a measure of the extent to which average income could be reduced 
without loss of social welfare if incomes were to be redistributed perfectly equally. 
Atkinson's (1970) inequality measure is thus 1- {d(u, iq)} -' and can again be interpreted 
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as measure of the inefficiency of the current distribution in achieving social objectives. 
This relationship between distance functions and inequality indices has recently been 
explored in detail by Blackorby and Donaldson (1976). 

By far the most systematic use of these concepts has been made by Malmquist (1953). 
Since Konus' pioneering contributions, (1924) and (1939), it has been realized that for 
constant utility level, UR say, c(uR, p) is an index of prices. Similarly, for UR fixed, d(uR, q) 

is the dual quantity index. If q is chosen at prices p for utility u, i.e. if p and q are 
conjugate at UR 

d(uR, q)*c(uR,p) = x, ...(22) 

or if the indices are Q and P respectively 
Q-P = x. ...(23) 

This relation and the derivative property (11) can also be used to define Divisia 
indices. Differentiating in logs, holding UR constant 

dln Q+dlnP = dlnx, ...(24) 
or 

Ek wkdln qk+ Ek wkdlnpk = dln x. ...(25) 

The value shares in this equation are those which occur only when p and q are con- 
jugate at UR, so that (25) is only exactly valid for infinitesimal changes. Nevertheless, the 
equation may be a fair approximation for small finite changes and is, for example, the basis 
for the definition of " real income " in the Rotterdam model, see e.g. Theil (1975). 

However, most index numbers are used to compare two situations in time or space; 
let us index these by the subscripts 0 and 1. The cost function is used to give a Konuis 
price index by holding utility constant, i.e. 

P(p', p?; u) = C(U, pt)...(26) 
c(u, Po)' (6 

while, if prices are held constant, we have a comparison of utility levels, 

U(u, u?; p) c(u, p) .. .(27) 
c(u 0, p) 

where, in each case, the symbol after the semicolon indicates the information on which the 
index is based. Equation (27) compares two indifference curves by comparing the 
expenditure necessary to reach them at constant reference prices; hence Samuelson's (1974) 
name of " money metric utility ". 

The distance function can be used in exactly the same way to give the dual Malmquist 
quantity indices: 

first, a constant utility quantity index 

Q(q', qo; u) 
= d(u, qO) ... (28) 

and second, a quantity-reference utility index 

U(u1, uo; q) = d(u0, q) ... (29) 
d(u', q)* ..(9 

Thus, while (27) measures indifference curves by the outlays necessary to reach them at 
reference prices, (29) measures them by the distances from the origin at which they cut the 
reference quantity vector. 

In theory, all these indices are independent of one another but, in practice, reference 
levels of p, q or u, as appropriate, must be chosen and in most cases, the most natural 
selection is the relevant variable at either 0 or 1. Thus equations (26) to (29) yield four 
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utility indices and two each of price and quantity indices. Fortunately, these eight indices 
are not independent of one another. 

From (28), 
Q(q1 ~~~d(u0, q 1) 0 

Q(q- q?; u?) = d(u , = d(u , q) = U(u1, u?; q1), ...(30) 
d(u 0, q ) 

and similarly Q(q1, qo; u1) = U(u', uo; q?), ... (31) 

i.e. the base-weight quantity index is the current-weight utility or real-income index, and 
vice versa. The corresponding (well-known) relation between the price and money-metric 
utility index is 

P(p, po; u?) = c(u0, p1) = c(u0, pi) xi X ...(32) 
c(u0, Po) -c(u, pi) -o uU( u, 0; p 1) 

where X is the expenditure index xl/x0. Similarly for P(p', po; u') and U(ul, u?; p0) 
so that 

(i) P(p% po; u0)U(u u *; p1) = X 
and ... (33) 

(ii) p(p ,po; u1)U(u, u0; p0) = X. 

There are thus only four distinct indices (provided only reference points from 0 and 1 are 
allowed): two quantity or real-income indices, and two price indices. The other four 
indices can be derived from these. 

If, and only if preferences are homothetic, utility factors out of both cost and distance 
functions, i.e. in an appropriate normalization c(u, p) = a(p). u and d(u, q) = b(q)/u. In 
this case it is easy to show that all indices are consistent so that, however defined 

Q = U= X/P. ...(34) 

In the more practical non-homothetic case, there will still be inequality relations 
between the various indices which are different from, but parallel the inequalities between 
constant utility and Paasche and Laspeyres price indices. 

Note first, from (6) d(u0, q1)c(u0, po) p p0. ... (35) 

Hence 

Q(q1, qo; uo) = d(u?, qP) p p P pq ... (36) 

i.e. the base-weighted constant-utility quantity index is no greater than the base-weight 
Laspeyres quantity index. Similarly, 

Q(q1, qo; u1) = 1 > c(u, pi) - 
q P .. .(37) 

d(u', q 0) = q 0 -p' qo.pl' 

so that the current-weighted constant-utility quantity index is no less than the current- 
weight Paasche quantity index. These are clearly the exact parallels of the inequalities for 
the Konuis price index. 

Finally, there are two inequalities which have nothing to do with Paasche or Laspeyres 
indices and which link the cost function indices with the distance function indices. 
From (29), 

U(u1, u0; q0) = > C(Uq P-0) x? c(u? P) = U(u, uo; p 0) ...(38) 
d(u?, q0) X x c(u0, Po) 

1) 0 1) ___ __xi c(u1 pi1)1) 
U(U" uo; q =d(u q-<= U( u1 0;P'j ... (39) U(u', u0 q1) = du0, q1) c(u0, pi) c(u0, P 1) 
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Thus, combining results: 
Q(q1, q?; u1) = U(u%, u?; q?) 2 U(u', u?; p?) = X/P(p', p?; u') 40) 

Q(ql, qo; u') = U(u', uo; ql) < U(ul, uo; pl) = X/P(pl, po UO). ...(41) 
In words, using current reference levels, quantity-metric utility (= real income) is no less 
than money-metric utility (= real income); using base reference levels, quantity-metric 
utility is no greater than money metric utility. These inequalities simply reflect the fact 
that money is better than goods. From (41), period 0's quantity vector has to be increased 
by more than does period 0's income to attain period l's welfare. Similarly, a propor- 
tionate reduction in current consumption levels-with proportions fixed-will decrease 
welfare more than an identical proportionate reduction in income. If, for example, 
quantities are constrained by rationing, the difference in the two indices measures the cost 
of rationing. 

Figures 3 and 4 illustrate the two inequalities. In both figures, the same two indif- 
ference curves u0 and ul are shown; u0 is reached in period 0 at Eo (Figure 3), while ul 
is reached in period 1 at E1 (Figure 4). Money metric utility, U(u', u?; p) is computed 
using prices of both periods to draw hypothetical tangents and then taking ratios of the 
perpendiculars to these tangents. Hence, from Figure 3, U(ul, uo; po) is OB0/A0A, while 
in Figure 4, U(u', u0; pl) is OB1/OA,. The quantity metric measure proceeds by pro- 

U(u1, u?; q?) > 
1 0 0 

u1 U(u , u?; p 

0 

C~~~~ 

c0 

0~~~ 

0 q0 
c0 DQ 

FIGURE 3 

Inequality (40). 
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Inequality (41). 

jecting the base quantity vector till it cuts the new indifference curve, Eo in Figure 3 and 
E* in Figure 4. Thus U(u', uo; qo) is OE*/OEO, while U(u', uo; ql) is OEj/OE*. It is 
obvious from the diagrams that it is the convexity of preferences which guarantees the 
results. 

Some of the index numbers discussed above are illustrated for post-war British data 
in Table I. These estimates are based on predictions of the linear expenditure system fitted 
to an eight-commodity disaggregation of total non-durable consumers expenditure over 
the years 1954 to 1974. Columns 1-3 show the Divisia indices for total non-durable 
expenditure, prices and quantities according to equation (25). These are simply the 
annual changes in logarithms weighted by last period's value shares; no attempt has been 
made to improve the approximations. Column 4 shows the percentage increase in total 
expenditure in each of the years. Other indices are expressed in comparable form so that, 
for example, the column labelled Q1 is given by 

Q = (Q(qt, qt1; ut)-1) x 00, ...(42) 

i.e. the base is constantly updated. Thus columns 5 and 6 show that in 1954, substitution 
in response to price changes meant that a 3 9 per cent increase in quantities would have 
been required to match a 3-6 per cent increase in total expenditure, and both would have 
resulted in 1955's welfare level. 

Columns 7 and 8 give the same figures using base level welfare levels; 1954's welfare 
level would have resulted in 1955 either if quantities had been reduced by 3 2 per cent or 
total expenditure by 3 *6 per cent. As one might expect, the four quantity or real-expenditure 
indices are not very different from one another but this is a consequence of working with 
time-series rather than with, say, cross-country comparisons. Note however that the two 
price-based quantity indices, (6) and (8), are much closer together than are the two quantity- 
based quantity indices, (5) and (7). This appears to be due to the inelasticity of demand 
inherent in the calculations. Changes in prices cause less than proportionate changes in 
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quantities so that variations in weights cause greater alterations in quantity indices, which 
essentially use prices as weights. Although one might reasonably expect such inelasticity 
to characterize a relatively aggregated breakdown of consumers expenditure such as that 
used in the present study, inelasticity is also an inherent property of the linear expenditure 
system. Note finally that the whole exercise could be repeated with price indices rather 
than quantity indices, comparing P1 with X/Q1 and PO with X/Qo. All these numbers 
can easily be constructed from the information in the table. 

TABLE I 

per cent 

Divisia indices Expenditure Quantity indices 
index 

dlog x dlog P+dlog Q X Qj = Uqo Upo = X/P1 Qo = Uq I X/Po U, 

(1) (2) (3) (4) (5) (6) (7) (8) 
55-4 707 3 47 3 53 7 32 3-87 3 62 3-20 3 61 
56-5 5 69 3 96 1-71 5 86 1-79 1P74 1-67 1-74 
57-6 4-55 3 48 1-05 4-65 1P07 1.05 1-04 1-06 
58-7 4-10 3 03 1-04 4-18 1 05 1P03 1-03 1.05 
59-8 3 81 1P21 2-58 3-89 2-71 2-62 2-50 2-63 
60-59 4-50 1-23 3-22 4 60 3-42 3-28 3-14 3 31 
61-0 510 3-28 1P80 5-23 1-86 1-82 1-79 1-83 
62-1 5*09 4-23 0-85 5-22 0-86 0-85 0-85 0-86 
63-2 5 13 2-54 2-57 5.27 2-67 2-61 2 55 2-62 
64-3 5-56 348 2107 5-72 2-13 2-09 205 2-10 
65-4 5 98 5 10 0-87 6 16 0-87 0-87 0-86 0-87 
66-5 5 94 4-28 1 65 6 12 1 68 1-66 1 65 1 67 
67-6 4 15 2-99 1.15 4-24 1-17 1.16 1.15 1P16 
68-7 6 65 4 87 1 76 6 87 1-79 1-77 1-76 1-78 
69-8 6-42 5 64 0-77 6-63 0-78 0-77 0-77 0*77 
70-69 7.49 5.59 1P88 7-77 1 92 1.90 1 89 1 91 
71-0 9.33 8-02 1-29 9-78 1-31 1-30 1-30 1-30 
72-1 11-07 6-84 4-20 11-71 4-38 4 30 4-20 4 30 
73-2 13-07 8-95 4-10 13-97 4-25 4-18 4-08 4-17 
74-3 14 93 14 22 0 70 16 10 0 70 0-69 0-69 0 70 

3. THE DISTANCE FUNCTION APPLIED TO OPTIMAL TAX THEORY 

One of the most celebrated results in optimal tax theory is the formula called the Ramsey 
rule. This applies to the situation where a government, in an economy where there is 
effectively only one consumer, is unable to levy lump sum taxes or a non-linear income tax, 
and wishes to raise a predetermined revenue by ad-valorem taxes while creating as little 
distortion as possible. We shall treat leisure as good zero (qo) with price po (= wage rate) 
and, since demand functions are homogeneous so that one tax can always be zero, we 
assume leisure is untaxed. We also assume that all income is earned (or that unearned 
income is taxed at 100 per cent without meeting the government's revenue requirement) so 
that the consumer's budget constraint is 

yn Pkfk = poT ... (43) 

where T is the consumer's time endowment. The relevant cost function is now the " full" 
cost function c(u, po' p) which takes the value p0T. If we let the government's revenue 
requirement be R = ppoT, say, then following Mirrlees (1976), the government's problem is 

max u subject to c(u, po' p) = poT and Ej tkqk = ppoT. ...(44) 

The Lagrangean is 
= u + )4poTo -c(u, Po' p)} + 4{ppoT- Etkqk}, . . .(45) 
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which is to be maximized with respect to u and t under the assumption that producer 
prices, p - t, are constant. 

The first-order condition with respect to pi gives immediately the Ramsey rule 

k =q' = Siktk c Constant(=--) ...(46) 

qi 

i.e. if the taxes are small, the distortion introduced by imposing them should be equi- 
proportionate, or, more exactly, that at the optimum, ignoring income effects, a small 
intensification of the tax system should lead to equiproportionate reduction in quantities 
consumed. 

gooas 

A 

laO (u, q) T 

d (ul, q) =1 

B / 

- _ leisure 
D T 

FIGURE 5 

The use of the cost function to formulate the problem as (44) produces a very rapid 
and simple way of deriving the Ramsey rule (46). However, this simplicity is really due to 
the mathematical properties of the cost function rather than to the fact that either (44) or 
(46) are the natural ways to formulate and solve the problem. In particular, (46) charac- 
terizes the tax indirectly, in terms of its consequences for quantities, rather than giving an 
explicit, direct result. This is because the original problem is formulated in price space 
leading to a solution in quantity space. If we turn to the distance function we can 
reformulate the original problem in quantity space and, with equal simplicity, derive a 
solution in price space. 

Figure 5 illustrates the tax problem in quantity space. AT is the budget line with no 
tax revenue; equilibrium at E on ul is reached. With a revenue requirement, the feasible 
set is BD with first best optimum E* on u2. Without the possibility of lump sum transfers 
the government is restricted to the offer curve, here characterized by 

ao(u, q) _ adlaqo = lT, 
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i.e. the price of leisure, po, divided by full income, p0T, must be on the compensated inverse 
demand curve. Second-best equilibrium is thus at R on U3. 

Formally, the government must maximize u by choosing quantities of goods and 
leisure subject to the offer curve and to its own revenue requirements: 

Maximize u, subject to ... (47) 

(i) d(u, q) = 1 

(ii) ad(u, q)/8qo = T- 

(iii) 1 - - Zkqk = Ps 

where Zk is the producer price of good k as a proportion of poT. According to 47(iii), 
the government chooses the q's so that the consequent prices are such as to yield the 
necessary revenue. It proves convenient to take u and q1, ..., qn as instruments, allowing 
(47)(ii) to determine qo as a function of these, i.e. qo = C(u, q). Differentiating (47)(ii) 
and using the implicit function theorem gives 

_c_ aoi ...(48) 
aqi aoo 

where, as before, aij is the i, jth element of the Antonelli matrix. The Lagrangean is 

L = u+ 4{1-d(u, C, q)} +r{p-1 +qOqao(u, C,q) + z.q} ...(49) 

Differentiating with respect to qi holding u constant, using (10) and rearranging, gives 

t= (-(-A aO1aO" ...(50) 

Pi a00aoi 

where ti is the tax on good i so that the LHS of (50) is the tax rate. Applying the revenue 
constraint gives at once 

ti p (l + 'lio ) (51) 

Pi a0oo 
where liO alog ri/a log q0 and oo =-a log r0/a log q0 are compensated inverse price 
elasticities, or more appropriately, compensated flexibilities. 

This extremely elegant form is, as we shall check in the Appendix, precisely equivalent 
to the Ramsey rule (46). For example, when labour supply is inelastic, fo00 is infinite so 
that all taxes are p. Similarly if good i is in inelastic demand so that fliO is infinite, then 
that good attracts all the tax. In those two cases, there is no distortion. More generally, 
of course, distortion is inevitable, and since, on average, fliO is positive, while loo is always 
positive, the average tax rate must be above p. Equation (51) shows very clearly through 
the two flexibilities how it is that substitution gives rise to this distortion. We can also see 
that individual tax rates will deviate from p according to the substitutability or complement- 
arity with leisure of the good concerned. The distortion which the revenue requirement 
induces takes the form of a fall in labour supply so that the tax system should attempt to 
remedy this by taxing relatively heavily those goods which are (q-) complementary with 
leisure. This distinction is even clearer if we write (50) in the form 

tj tj oca log (ailaj) ... (52) 

Pi Pi aqo 
The RHS of (52) is the effect of a change in leisure on the MRS between goods i and j 
along an indifference surface and is a measure of the relative complementarity between i 
and j and leisure. (This formula is very close to but different from the optimal tax formula 
derived by Atkinson and Stiglitz (1976) in the context of non-linear taxation in a many 
person economy.) 



404 REVIEW OF ECONOMIC STUDIES 

Equation (52) gives us very simply the conditions for uniform commodity taxes in 
those cases where the Ramsey rule holds. The RHS of (52) is zero if, and only if, the 
distance function takes the form 

d(u, qo, q) D(u, qo, d1(u, q)) .(53) 

which implies an identical structure for the cost-function, see Gorman (1976), 
c(u, po, p) = C(u, po, c1(u, p)). ...(54) 

This functional structure is known as implicit or quasi-separability between leisure and 
goods, see Gorman (1970), Blackorby and Russell (1976). This condition for uniform 
taxation has been derived in the form of equation (54) by Simmons (1974). Leisure is 
singled out because the offer curve in Figure 5 is the main determinant of the possibilities 
open to the government. Neither (53) nor (54) are particularly restrictive and although 
obviously precluding close substitutability or complementarity between individual goods 
and leisure, they do not impose any clearly objectionable empirical requirements. This is 
not the case if they are combined with weak separability between goods and leisure. Weak 
and implicit separability are only compatible in the separable homothetic case when total 
expenditure elasticities are unity. However, such stringent conditions are not required for 
uniform taxes under the Ramsey rule. 

This analysis is merely illustrative of the use of the distance function in optimal tax 
theory. We have made no attempt to discuss the more interesting cases where there are 
many consumers and equity issues are taken seriously. These problems are left for another 
paper. 

4. CONCLUSIONS 
I believe that the examples given above demonstrate that the distance function has important 
uses in economics but they do not begin to exhaust its potential. Just as the cost function 
can be used in dozens of areas of economic analysis, see particularly Gorman (1976), so 
can its dual. Armed with both concepts we can choose between them, not on the basis 
of mathematical convenience, but according to which is better suited to the economics of 
the problem at hand. 

APPENDIX 
DIRECT PROOF OF THE EQUIVALENCE OF THE TWO TAX RULES 

Starting from the conventional Ramsey rule (46), since to = 0, (46) can be rewritten, 
i = 0, . .., n 

EkZ =Siktk = xqi + 4biO ... (A. 1) 
where oc and /3 are independent of i and bij is the Kronecker delta. But, from (21), 

X Yi ajiSik = bjk -rjqk .. (A2) 
Hence, since Ei ajiqi = 0 by (12) 

X1 k (3jk-rjqk) tk = fiajo. ... .(A.3) 

But x-1Etkqk= p and since to 0 /3 = -aop/aoo, so that, finally 

ti _ p Il- ajoao} ... (A.4) 
Pj ajaoo 

as before. Similarly, using xSA = I-qr', we can proceed from (A.4) to (A.1). 
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