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THE ANALYSIS OF CONSUMER DEMAND IN THE UNITED 
KINGDOM, 1900-1970 

BY ANGUS S. DEATON' 

This paper considers the application of various models of consumer demand to United 
Kingdom time series from 1900 to 1970. As well as testing the various forms of the "Rotter- 
dam" model, reparametrization of that system is carried out in order to test the linear 
expenditure system and the direct addilog system on an exactly comparable basis. A further 
variant of the Rotterdam model is also introduced; this is intermediate between symmetry 
and additivity and allows for the calculation of all cross price elasticities from information 
on own price and income elasticities alone. The results of testing these models on a nine 
commodity model using maximum likelihood estimation are presented and discussed. 
Unlike most previous work, and in spite of some anomalous results, the United Kingdom 
experience seems broadly consistent with neoclassical demand theory. However, all restric- 
tions more stringent than those directly implied by the theory are rejected, though it is main- 
tained that these may still be of considerable practical significance in particular instances. 

1. INTRODUCTION 

THIS PAPER PRESENTS an analysis, within the context of twentieth century British 
experience, of the way in which income and prices influence demand. To some 
extent we shall be concerned with repeating for the United Kingdom the experi- 
ments on the validity of demand theory carried out by Barten [2, 3, and 4] on 
Dutch data and with investigating whether his negative conclusions recur here. 
But whereas his work and this extension of it are concerned with the appropriate- 
ness of behavioral restrictions within a given model (the Rotterdam demand 
system), we shall be concerned with somewhat wider issues. We wish to be able to 
make judgements not only between different variants of the same model but also 
between different models and between models of different structure. For example, 
the question arises as to the relative appropriateness of additivity as imposed 
within the Rotterdam model on the one hand, and the linear expenditure system 
on the other; or whether it is better, given the necessity to impose strong re- 
strictions in a practical context, to ignore the substitution effects of prices alto- 
gether or to impose additivity or some other constraint. These issues are likely to 
have real practical importance in situations for which degrees of freedom are 
scarce and strong a priori assumptions are necessary in order to allow price sensi- 
tivity at all. We thus wish to work with a general framework in which the full 
implications of different systems can easily be seen and which may be used to 
estimate the competing systems in a manner which will ensure the full comparability 
of the results. 

' The author wishes to acknowledge helpful comments on earlier drafts of this paper by Professors 
Richard Stone, David Champernowne, Anton Barten, and Henri Theil, and the two referees of this 
journal. Useful contributions were also made by participants of econometric seminars in Cambridge, 
London School of Economics, Warwick, and CORE. 
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It is perhaps instructive to examine to what extent this purpose has already been 
accomplished and in what areas previous studies have not achieved the purpose 
intended here. Within a rapidly expanding literature, a number of authors have 
presented the results of comparisons of alternative demand models of quite 
different structure. An excellent example of this is Parks' paper [15]. Here, the 
same data is used for the efficient estimation of three systems, the linear expenditure 
system, H-outhakker's indirect addilog model [13], and the Rotterdam model. This 
yields many insights into the powers and defects of these systems, and Parks 
uses Theil's informational measure [i8] as a common criterion to discriminate 
between the models. But it is the selection of this criterion and its relationship 
to the estimation of the models which is the central problem in this work. Unless 
each model is given the same opportunity to maximize its chance of acceptability 
by the given criterion, a convincing test will not result. In this case, of course, there 
is no close relationship between the criterion maximized by the parameter esti- 
mators and that used in the selection of the system: this can only be accomplished 
by the use of a common model of the type discussed above. 

The problem of selection is heightened by the basic dichotomy between utility 
and demand which runs through all of the empirical literature. Demand models 
may be derived either by the selection of a utility function or by the arbitrary 
specification of a system of equations which may then be modified according to 
the utility theory. If we choose the first course of action, we have the difficulty of 
the selection of functional form; if we choose the second, we have the difficulty of 
choice of variables to parametrize. In both cases, because of the mathematical 
complexity of a conversion from one to the other, a decision may have unexpected 
or untoward consequences. For example, it is well known that the use of linear 
demand functions satisfying the symmetry postulates involves acceptance of 
additive utility. Once again the use of a common framework for demand analysis, 
though in no way solving this problem, makes clearer the full ramifications of each 
system and thus enables us to discriminate more easily between alternative 
functional forms and parametrizations. Again to take an example, we may hope 
to discover, in the event additivity is proved unacceptable within the Rotterdam 
framework, whether this is due to the falsity of additivity in reality or alternatively 
merely to the choice of parametrization implicit in using that model. 

Fortunately, there is no difficulty in finding a framework general enough to 
allow the full range of experiment. Any model which imposes no constraints on 
behavior may serve this purpose. However, the system must possess two properties: 
it must be possible to change the parametrization readily, and it must be possible 
to apply constraints explicitly within the model. It is the fulfillment of this second 
requirement that is the peculiar strength of the Rotterdam system. Many of the 
important constraints are linear, and the computational convenience of this has 
outweighed doubts on other scores, in particular non-integrability over all but 
infinitesimal time periods. However, the model is equally useful in respect of the 
first requirement. The parametrization normally used, that suggested by Theil [18] 
when the model was introduced, though convenient, is not immutable. There are 
many other possibilities, and in the next section we shall show how some of these 
can be used to compare the Rotterdam with other demand systems. 
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In particular we shall concentrate on two other models of demand. The first of 
these is the linear expenditure system. This is a familiar tool of demand analysis, 
and no comparison of models would be complete without it. The second case, 
Houthakker's direct addilog system [13], is perhaps less universally familiar; 
nevertheless, it provides an excellent example of the advantages of working within 
a general framework. In the past, this system has proved analytically intractable, 
and its inconvenient form has made it difficult either to use or to compare with 
other models. Nevertheless, by the appropriate selection of parameters, this model, 
like the linear expenditure system, may be expressed within the Rotterdam frame- 
work. Once this is done, its empirical and theoretical properties can be compared 
directly with the other models in a way not otherwise possible. 

The field of comparison thus contains four variants of the Rotterdam system 
(free, homogeneous, symmetric, and additive) together with the direct addilog 
model and the linear expenditure system, making six models in all. To this we add 
two more. The first is the trivial model yielded by ignoring all substitution effects 
of prices. It is important to test this first since, if the substitution matrix is of little 
importance in explaining demand, the study of the appropriate constraints on its 
terms is not an interesting exercise. Secondly, we suggest a fifth variant of the 
Rotterdam model. Since three of our models so far are additive, and since, even 
when compared with symmetry, this is a very strong assumption, it is desirable to 
have some model more restrictive than symmetry but not as restrictive as additivity. 
An "intermediate" system is proposed to fill this gap. This model also allows the 
calculation of all cross price elasticities from income and own price elasticities 
only. It thus requires more information than Frisch's method [10] but is hopefully 
more accurate. 

We shall compare these eight models using United Kingdom time series 1900 to 
1970; all parameters will be estimated by maximum likelihood, and the con- 
centrated likelihood values for each of the systems will provide the basis for the 
comparisons between them. 

In 'Section 3, the maximum likelihood estimators used are described. There is 
now considerable familiarity with the methods appropriate in these cases, and 
only a brief restatement of the principles involved will be given together with the 
formulae used to calculate the estimates. This section concludes with a brief 
description of the data. Section 4 presents the results. All parameter estimates are 
given but the discussion centers around the properties of the data as revealed by the 
models. It is worth anticipating some of the conclusions here. Contrary to the 
results for the Netherlands reported by Barten [4] and Byron [6 and 7], the theory 
appears to be broadly acceptable. The homogeneity postulate holds for all but two 
of the commodity groups, and the much stronger symmetry restrictions are also 
consistent with the evidence. The symmetric substitution matrix derived from 
these results proves not to be negative semi-definite, thus violating the convexity 
requirements. Nevertheless, this violation seems not to be significant, and experi- 
ments showed that all the relative prices must change before any non-convex 
behavior can be induced; no simpler price change could induce such effects. 
Restrictions beyond symmetry were uniformly rejected. Even so the intermediate 
model performed considerably better than the additive systems: these latter 
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would be rejected even as a specialization of the former. Nevertheless, additivity 
was always preferable to the model without any form of price substitution. Finally, 
the results have some bearing on the question of how the marginal utility of money 
varies with the level of income and we shall have some evidence for slight modi- 
fication of the numerical values for the income flexibility of money suggested by 
Frisch [10]. 

2. THE DEVELOPMENT OF THE MODELS 

The Rotterdam system which we take as our starting point takes the form2 
(see, e.g. [4]) 

(1) w dlogq = bdlog,i + Cdlogp. 

The vector w represents the average value shares; q is a vector of quantities of each 
commodity; and p is a vector of prices. The term d log ,i is an index number of the 
change in real income and is given by 

(2) dlog,i = w'dlogq - dlog,u - w'dlogp 

where ,u is total money expenditure. The vector b and matrix C are the parameters 
of the system and are given by 

(3) b = A-q C = t-CASk; S = -q + q 

where S is the Slutsky substitution matrix. The vector b is thus a vector of marginal 
budget shares while C measures the contribution to the value shares of com- 
pensated price changes. Each of the matrices and vectors in equations (1) to (3) 
are of order n, the number of commodities; the time suffix implied by the equations 
will usually be omitted. 

Note that there is no strong a priori reason why b and C should be held constant. 
Nevertheless, some decision must be taken, and though it would be desirable only 
to parametrize those quantities which could conceivably be the parameters of 
some underlying utility function, this is not in general possible. Indeed, short of 
specifying a particular utility function, which is exactly what this approach manages 
to avoid, there is no way of recognizing these parameters from the demand func- 
tions alone. However, as indicated in the previous section, it is the great strength 
of this choice of parameters that the constraints of demand theory can be directly 
applied to these constants. 

In particular we have (again, see [4]) 

(4.1a) Engel aggregation b'i = 1, 

(4.1b) Cournot aggregation C'i = 0, 

2 Notationally, we use Greek letters for scalar quantities, small Roman letters for vectors, and 
capital Roman letters for matrices. The derivatives of vectors with respect to vectors, e.g. (Oq/Op) should 
of course be read as matrices. The "hat" notation, e.g. p, denotes a matrix with the vector p as its leading 
diagonal and with zeros elsewhere. - 
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(4.2) Homogeneity Cl = 0, 

(4.3) Symmetry C= C', 

(4.4) Convexity x'Cx < 0 for all x, 

(4.5) Additivity C = (b -bb'). 

Now equation (1) was derived by Theil by algebraic manipulation of a first order 
Taylor linearization of a quite general demand function. Thus (1) itself can be 
regarded as an expansion of the same sort and with the same degree of generality. 
Given this, it might seem at first glance that the testing of equations (4.1H4.5) is 
all that must be done to confirm or reject the postulates of utility theory. But as 
Goldberger [11] has shown, if (1) is used over a longer than infinitesimal time 
span, it loses its generality with the breakdown of the linearization and may only 
adequately represent systems where the quantities parametrized by (3) are truly 
constant over time. And as he has demonstrated elsewhere (Goldberger [12]), the 
only utility mapping consistent with (1) is a degenerate case of the additive function 
underlying the linear expenditure system (see (6) below) implying that all price 
elasticities are zero. In other words, over a sufficiently small time period, demand 
system (1) may be integrated into any utility function, but when taken as valid over 
periods long enough to be of interest from an econometric point of view, it is 
integrable only in a trivial and uninteresting sense. 

It would be a mistake to reject the Rotterdam system on these grounds alone 
in the same way that it is a mistake to claim that it is useless because infinitesimal 
changes cannot be observed in practice. A deductive system is only of practical 
significance to the extent that it can be applied to concrete phenomena and it is 
too easy to protect demand theory from empirical examination by rendering its 
variables unobservable and hence its postulates unfalsifiable. Furthermore, and 
from a more pragmatic viewpoint, the model remains an excellent vehicle for a 
purely empirical analysis of the way in which price behavior may be constrained 
and one would expect the conclusions to be relatively robust with respect to 
alternative parametrizations. Nevertheless the qualifications are important in 
that they make it necessary to compare the Rotterdam with alternative models, 
for we may no longer be sure that our conclusions are derived from the data alone 
and not from our choice of parameters. It is thus in this spirit that we go on to 
change the parameters of (1) to render it comparable with other models of demand 
analysis while preserving this as our basic model for the comparisons. We turn 
first to the linear expenditure system. 

The model is usually written in the form 

(5) pq = pc + b(4-p'c), b'i = 1, 

where the vectors b and c are the parameters of the system. The b's have the same 
interpretation as in the Rotterdam model, i.e., marginal budget shares, while the 
c's have the dimension of quantities and are sometimes interpreted as quantities 
to which the consumer is in some sense committed (though there is no presumption 
that they should be positive). The system may be derived from any monotonically 



346 ANGUS S. DEATON 

increasing transformation of the additive utility function, 

(6) u(q) = b'log(q-c), bli = 1. 

If we take first differences of equation (5), we have 

p dq = (c-q) dp + b(d - c' dp). 

Defining v = ,-1'p, i.e., the "committed" budget shares, and using the trans- 
form dx = i d log x, we have, after division by ,u, 

i dlogq = (vf - i) dlogp + b(dlogu - w'dlogp) + b(w - v)'dlogp. 

But from (5), w = v + b(1 - v'i), and writing 4 = -(1 - v'i), we have v-w = 

b4. Thus, after substitution, we may write the linear expenditure system, 

(7) idlogq = bdlogft + o(b - bb')dlogp, 

0 = -I +p-1 pc, b't = I. 

The quantity 0 is the inverse of the elasticity of the marginal utility of money and is 
the reciprocal of Frisch's "money flexibility" [10]. This result is well known (see, 
for example, [11]) and may easily be proved directly from the constrained maximiza- 
tion of the utility function (6). 

Note the additive structure of (7); indeed substitution of (4.5), the additivity 
postulate, into (1) gives a system identical to (7) but for the specification of q. Thus 
the additive Rotterdam model can be minimally altered to give rise to the linear 
expenditure system. On empirical grounds, it becomes clear that the difference 
between them will be resolved by finding out how indeed 0 does vary. The linear 
expenditure system in the form (7) can be estimated with respect to the parameters 
b and c. The extent to which the likelihood increases over the additive Rotterdam 
model will measure how much the extra flexibility of 4 is required by the data. 

Our third model is Houthakker's direct addilog system [13]. This may be derived 
from the utility function 

(8) u(q) = Z kqak 
k 

where x and ,B are parameters. To derive the demand functions we form the 
Lagrangian 

t = E akqCk + A()u -pq), 
k 

giving after differentiation and apart from the constraint, the first order conditions 

(9) eifiqil -Api = 0 for all i. 

Thus, dividing the ith equation by the jth and taking logarithms, we have 

(10) (fpi - 1) log q, - (fj - 1) log qj = logpi - logpj - log i . 
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These equations plus the budget constraint define the system; though the idea of 
demand functions defined only in terms of relationships between pairs of com- 
modities may be hardly appealing, it is perfectly acceptable. To the extent that the 
system has been used for empirical work, equation (10) has been used and pre- 
sumably the technique developed by Parks [15] for the indirect addilog system 
could be applied here. Nevertheless the form remains clumsy and it is not easy to 
see how the system relates to the other models. 

In order to write this system in the Rotterdam format, we proceed by deriving 
expressions for 4 and the elasticities of the model. This was done first in Deaton 
and Wigley [9] but the derivation there is inelegant and an alternative is given 
below. Differentiating equation (9) with respect to income, we have 

OA aiBi(fi - 1) qpi2aqi 
ap pi n ay' 

Thus 

OA2 aq. p 
ap S t = i-)f.-q=Uh-1)ei, 

where ei is the income elasticity of the ith good. Defining Iyi = (1 - fi)- ', we may 
write - y = e+, and thus from Engel aggregation (w'e = 1), 

(11) = -w'y. 

Differentiating (10) first with respect to log p and then with respect to log Pk, and 
writing eij for the typical price elasticity, we have 

(12.1) (p3i - 1)ej - (3j - l)ej = 0, 

and 

(12.2) (fi - 
l)eik 

- (P3 - l)eJk = bik - bjk, all i,j, k. 

Applying Engel aggregation to (12.1) gives 

(13.1) ei =-0- Yi, 

and applying Cournot aggregation (Zk wkeki + wi = 0) to (12.2), 

(13.2) eij = -1ryiwj(l - Y) - YAb,j 

From equations (13.1H 13.2) we may now calculate the expressions corresponding 
to the b and C parameters of the Rotterdam model. We have 

bi = piOqilOp = wiei =- - 1 wiyi, and 

Cij= wi(eij + eiwj) =-wiwjyiyjo- 1-Wi,Aj- 

Thus we may write the addilog system in the form 

(14) w d log q-b d log ji + M(b bb') d log p, b =_ y- 

0 = -w'y. 
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Note that it is the parameters y which are now constant. Thus the marginal budget 
shares are now functions of the average budget shares and will behave differently 
from those of the Rotterdam or linear expenditure systems. Similarly, for this 
system, estimation will be with respect to the y parameters, but once again the 
value of the likelihood function will enable us to compare the performance of this 
with the other models. 

If we compare the Rotterdam additive model (equations (1) and (4.5)), the linear 
expenditure system (7), and the direct addilog model (14), we see that in each case 
the additivity relation, C = (b -bb'), is enforced. The difference between the 
systems lies only in the specifications of 0 and b; thus, though for each system the 
constraint holds at any given moment of time, the way in which the price responses 
relate to the income responses over the time span of the data varies from model to 
model.-We shall thus be able to see whether the validity of the additivity assumption 
is dependent upon the selection of parameters or functional form. 

But no matter how additivity is specified, it remains a very strong assumption, 
and it is worth considering its effects in relation to empirical work with time 
series data. It is a characteristic of most information of this type, and it is certainly 
true of the data used in this study, that there is considerable collinearity between 
quantities purchased, the prices, and total money expenditure. In consequence, 
most, though not all, of the information contained in the series relates to relative 
rates of growth of the various categories. Furthermore, the information contained 
in the price series which is independent of income is of the second order of import- 
ance even over long time periods. Thus, the marginal budget shares, which deter- 
mine the relationship between demand and income, are always very well and 
precisely determined by the relatively abundant income information in the data. 
Parameters determining price effects are less well determined and play a subsidiary 
role. So, when additivity is introduced, all price information is absorbed into the 
single quantity 4, and the whole structure of the price substitution matrix is 
determined solely by the way in which expenditures relate to income. This is just as 
true of the own price substitution effects as it is of the cross terms; and it is perhaps 
this that would seem to be less acceptable than any of the other consequences of 
additivity. 

In the light of these arguments we now suggest an intermediate system which, 
while preserving many of the assumptions of additivity introduces considerably 
more flexibility. Working again within the Rotterdam framework, we see from 
(4.5) that one of the consequences of additivity is that the ratio Cik/Cjk is independent 
of k if k # ij. This property extends to the compensated price elasticities, i.e., 
the ratio of the cross compensated price elasticities of any two goods is independent 
of the price being varied. Now this in itself, while a consequence of additivity, is a 
weaker condition, and the intermediate system will have this property alone in 
common with additivity. Thus while the additive structure of the substitution 
matrix is preserved, it will no longer be linked to the income terms. 

Consider the model defined by 

(15) X d.log q = b d logft + X(c - cc') d log p, b'i = c'i = 1, x < O, 
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where c is a vector of n parameters. It is immediately clear that system (15) not only 
satisfies the constraints (4.1) to (4.5) but that the independence discussed above is 
achieved. For Cik/Cjk = ci/cj, k # i, j, which is independent of k. Thus (15) is sufficient 
for this weak independence. We now show that it is necessary. First it is clear that 
the matrix C, apart from the diagonal, must have all its rows proportional to one 
another. Thus, we may write 

(16) C = d + ef'. 

However, C must be symmetric, implying ef' = fe', .-. e = Kf, for some constant K. 

Define c = flf'i; then if x =-K(f'I)2, we have 

(17) C = d - xcc'. 

Finally, we must impose homogeneity and aggregation: Ci = d - xc = 0, giving 
d = xc, and 

(18) C = x(c - cc'), C'i,= 1. 

Clearly C is negative semi-definite if x is negative, thus establishing the necessity 
of (15). Note finally that additivity is a special case of (15) with b = c. 

We conclude this section by listing the models which will be tested in the re- 
mainder of this paper. Each system may be written in the form wi d log q = 
b d log ft + C d log p; the particular forms of b and C are given for each case below: 

MODEL 1. Rotterdam System Unconstrained: b, C parametrized; b'l = 1, I'C = O'. 
MODEL 2. Rotterdam System with Homogeneity: b, C parametrized; b'l= 1, 

'C = 0', Cl = 0. 
MODEL 3. Rotterdam System with Symmetry: b, C parametrized; b'i= 1, 

'C = 0', C = C'. 
MODEL 4. Rotterdam System: Intermediate: b,c,x parametrized; b'l = 1, 

C = x(c - cc'). 
MODEL 5. Rotterdam System with Additivity: b, 4 parametrized; b'i = 1, 

C = 4(b - bb'). 
MODEL 6. Linear Expenditure System: b, c parametrized; b'i = 1, C = -(1 - 

p'clt ')(b - bb'). 
MODEL 7. Direct Addilog System: y parametrized; 4=-w'y, b = -Wy5- ', 

C = q(b - bb'). 
MODEL 8. No Substitution Model: b parametrized; b'i = 1, C = 0. 

3. ESTIMATION METHODS AND DATA 

Estimation 

We may write the models of the previous section 

(19) Yt = f(xt, f) + Et 

where yt is a vector of n independent variables, X d log q, xt is the vector of inde- 
pendent variables, i.e. x' = (d log At, d log p'), ,B is a vector or matrix of parameters, 
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and st is a vector of residuals. The stochastic specification for all models will be 
taken to be 

(20) (sti) = 0 for all t, i, 

4(ti, st'j) = bttwij for all t, t, i,j. 

In other words, only contemporaneous covariances are permitted between the 
residuals of the various commodities. The matrix whose i,jth term is Wij will be 
denoted Q. 

Now each of the systems is subject to an exact non-stochastic constraint, either 
satisfied automatically or imposed via restrictions on the parameters. In every case 
this ensures that 

(21) (Yt -f)'i = s'i = 0 for all t, 

i.e., the predicted values for each commodity add exactly to the actuals. Thus, from 
(20) and (21), we have 

E Zij = E Asit, = s )it, Sit = (O? ?jt) = 0. 

This singularity of Q implies that, on the assumption of a multivariate normal 
distribution for s, unless we drop one of the equations of the system, the likelihood 
function of the sample is not defined. Barten [4] has shown that we may avoid this 
asymmetry by writing the likelihood function 

L1 = n2(27) W(n'lIlQ + ii| exp {-- t(Q + ii')f'?}, 

where i is a normalized vector of units, i.e., i = i/,/n. Thus, given T observations, 
the logarithmic likelihood function is 

(22) log L = T(log n - (n - 1) log 27c) - T log IQ + ii' 

- EtZ(QW + ii') -,t. 

Since Q is unknown, we derive the concentrated likelihood function by maximizing 
(22) with respect to the elements of Q subject to the constraint Qi = 0. This may be 
done in the usual way giving an estimator of Q, Q: 

(23) Q= - = 4E'E, 

where E is the matrix whose T rows are made up of the vectors st. If we substitute 
(23) in (22), we find that the last term reduces to - T(n -1), and we have a 
concentrated likelihood function 

(24) logL* = 'Tlogn - 'T(n - 1)(1 + log 27r) - 'Tlog -T 9 + ii' 
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Thus the estimation of the model (19) becomes equivalent to that of minimizing 
the determinant 

(25) | T s,s' + ii' subject to s'i = 0 for all t. 

How this is best done varies from model to model. There are four groups which 
must be treated separately: 

(i) linear models with restriction (models 1 and 8); 
(ii) linear models without restrictions which are within equations and are the 

same for each equation (model 2); 
(iii) linear models with restrictions running across equations (model 3); 
(iv) non-linear models with or without linear constraints (models 4, 5, 6 and 7). 
Only the first two give rise to maximum likelihood estimates which may be 

calculated without iteration. In this paper we shall confine ourselves to stating 
the estimator for cases (i) to (iv) and indicating briefly how they are derived in each 
case from rule (25). 

Case (i): The model may be written 

(26) Y= X, + E 

where Y and X are the matrices formed from the vectors Yt and xt respectively. 
Given the adding up constraint, Yi = Xa1, where a1 is a vector of which the first 
element is unity and the others are zero, we must have fli = a,. Writing 

1 
(27) V = -E'E + ii', 

T 

the minimization problem (25) becomes that of minimizing log det V subject to 
f1i = a,. The resulting estimator is the OLS estimator 

(28) P = (X'X)-'X'Y. 

Case (ii): Within equation identical constraints are easily fitted into this frame- 
work. We now have an additional constraint (or constraints) of the form fi'a2 = 0; 

in the case of homogeneity, a2 has a zero for its first element and ones elsewhere. 
The estimator in this case is derived by adding one more constraint to the 
Lagrangian of case (i) and we finally reach an estimator 

a'(X'X) 
- 

a2a (29) XX'2a'2 (29) ig = {~I-a 
(xlx) 

- laI3 

Like (28) this estimator may be evaluated directly and is in fact no more than the 
constrained OLS estimator. 

Case (iii): Case (i) must now be modified by the addition of q independent 
constraints, each involving elements from more than one of the columns of f,. 
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In the case of symmetry there are n(n - 1) of these restrictions. The easiest way to 
write these restrictions is in the form 

n 

Z Ripi = 0, 
i = 1 

where the f3i are the n columns of the matrix f3, and there are n matrices Ri each of 
dimension q x n. Once again an estimator may be derived from consideration of 
the appropriate Lagrangian; in this case we may derive 

(30) Pi E X 'R {Z Z XjkRj(XXX) RRk} E Rkk kk 
j ~~~~j k k 

where coij is the typical element of Q as defined by (23). Now in the case where Q 
is known, (30), like (29) and (28), defines an MLE which can be directly evaluated; 
furthermore, it may be shown (see Deaton [8]) that these three estimators are also 
best linear unbiased. However, when Q is defined only by (23), , is involved on 
both the right and left hand sides of (30), and we must thus use iterative methods to 
derive the estimator. One possibility is to linearize an expression for Q; alterna- 
tively, starting from some estimate of Q, a sequential process of re-evaluation of , 
according to (30) and (23) in turn may be followed. This latter, though unlikely 
to be powerfully convergent, is convenient and will be adopted here.3 

Case (iv): In the non-linear models, the adding-up constraint is linear within a 
non-linear framework except in the case of the addilog model where no constraint 
is necessary; any set of parameters will yield a properly singular estimate of the 
variance-covariance matrix. Dealing with this case first, we simply seek to minimize 
log det V with respect to the vector ,B of the parameters. If we define the matrix B, 
as follows: 

{Bt}ij= 
- p O 

the minimization conditions are simply 

Z {B V1(yt -ft)} = 0. 
t 

Here we shall use the linearization ft = f (xt, /3) + Btb3, giving a Gauss-Newton 
iterative procedure defined by 

(31) 3 = {BV- 'Bt} {BVV 1(y - f )}- 

3 For arguments for replacing i by Q, the OLS estimator, and thus directly evaluating (30), see 
Byron [7] and Barten [4] and for further counterarguments see Deaton [8]. In the light of the results 
presented in the next section, I would now argue that additional effort required to iterate on (30) is 
justified because it ensures that the likelihood function is indeed maximized and guarantees against 
rejections of the hypothesis arising from underevaluation as compared with other models. 
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This linearization has the advantage of yielding estimators with obvious similarities 
to Aitken estimators; note however that not onlyf ? but also Vmust be recalculated 
at each step. 

Use was made of the Marquandt [14] minimization algorithm; this algorithm, 
though designed for least squares minimization, was modified fairly easily to 
deal with determinental minimization. In cases other than the addilog, a further 
modification to (31) was necessitated by the linear constraints of the form Rf3 = r. 
This was done by selecting starting values for /3 satisfying the constraint and apply- 
ing R65f = 0 at each step. It is easy to show that the appropriate estimators are 
given by 

(32) 3/p = 
3/ 

- {B'V1Bt}R'[R{ZBIV1'Bt}Rj R 3. 
{t '} [{ t t B} R]R 

For the four non-linear systems, the definitions of /3 and B are given below; see 
the end of the previous section for the definitions of f 

MODEL 4. Intermediate System: 

#' = (b',c',X), 
B = (I d log u, (d lo^g p-c d log p'), (c - cc') d log p). 

MODEL 5. Additive Rotterdam System: 

,B' = (b', 4), 
B = {I(d logu - /b'd log p) + 0(d log p-b d log p'), (b-bb') d log p}. 

MODEL 6. Linear Expenditure System: 

f = (bl, c), 

B = {I(d log g - /b'd log p) + 4(d log p 

- bd log p'),(b -bb')d log p,itp'} 

where = + VC 1p C. 

MODEL 7. Addilog System: 

/3 = 7, 

B = {w/w' -W w'/(w')2}-W d log p + wy d log p'w/w'y, 

and 

ar = dlog u + dlogp'Wy. 



354 ANGUS S. DEATON 

The Data 

The observations relate to the United Kingdom personal sector for the years 
1900-1970; the earliest years are based on Prest [16], the inter-war years on Stone 
and Rowe [17], and post-war years have been added from time to time by members 
of the Department of Applied Economics, Cambridge. The series, as it stands now, 
is consistent with the latest national income estimates in the United Kingdom 
Central Statistical Office [20], though inevitably not all the categories have 
precisely the same definitions. The years affected by wars and rationing have been 
excluded, namely 1914 to 1921 and 1939 to 1953 inclusive. After this deletion and the 
loss of three observations to first differencing, we are left with forty-five observa- 
tions in all. 

The basic information relates to some forty commodities, thirty-six after the 
exclusion of durable goods. This is considerably too many for the type of experi- 
mental work being done here; iterative estimation is expensive enough without 
dealing with over one hundred parameters. In consequence the commodities 
were aggregated into nine groups; these with their components were as follows: 

1. Food: bread and cereal; meat and bacon; fish; oils and fats; sugar and 
confectionery; dairy products; fruit; potatoes and vegetables; beverages; and 
other manufactured food. 

2. Footwear and Clothing: consisting of these two categories alone. 
3. Housing and Household: rents, rates, and water charges; household main- 

tenance and improvements; household textiles and hardware; matches, soap, and 
cleaning materials; domestic service. 

4. Fuel and Light: coal and coke; electricity; gas; other fuels. 
5. Drink and Tobacco: beer; wines and spirits, cigarettes, other tobacco. 
6. Travel and Communication: postal charges; telephone and telegraph; 

running costs of vehicles; railway travel; other travel; consumers' expenditure 
abroad. 

7. Entertainment: books and magazines, newspapers, other entertainment. 
8. Other Goods. 
9. Other Services. 
This aggregation means that, even in the worst case and symmetry apart, it is 

not necessary to estimate by non-linear means more than twenty-eight parameters. 
And even though some of the interesting detail is lost by this aggregation, some 
of the hypotheses, e.g., additivity, are often claimed to be more appropriate for 
broad classifications of this kind. 

Each series was deflated by mid-year population. The infinitesimals of the fore- 
going analysis were replaced by forward differences and, following previous work, 
the value shares were approximated by the average of the observed value shares 
in successive periods. 

4. ANALYSIS AND RESULTS 

The parameter estimates are presented in Tables I to V. Each model was 
estimated twice, once with and once without intercepts. These constants, though 
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TABLE 
I 

ROTrERDAM 

MODEL 

UNRESTRICTED 

WITH 

INTERCEPTS 

B 

C.1 

C.2 

C.3 

C.4 

C.5 

C.6 

C.7 

C.8 

C.9 

1. 

Food 

0.135072 

-0.103773 

-0.009268 

0.016353 

0.001008 

-0.001308 

-0.034550 

0.014085 

-0.006625 

0.078700 

(0.04418) 

(0.03548) 

(0.03129) 

(0.03448) 

(0.01168) 

(0.02792) 

(0.04447) 

(0.03033) 

(0.01472) 

(0.04868) 

2. 

Footwear 

and 

0.177639 

0.018906 

-0.030411 

-0.016823 

-0.004209 

0.023468 

-0.023264 

-0.004787 

0.012913 

0.025128 

clothing 

(0.03335) 

(0.02684) 

(0.02366) 

(0.02608) 

(0.00883) 

(0.02112) 

(0.03363) 

(0.02294) 

(0.01113) 

(0.03681) 

3. 

Housing 

0.084590 

0.025374 

-0.029457 

-0.016667 

-0.000010 

-0.012011 

0.037734 

0.010112 

-0.000796 

-0.028316 

(0.01788) 

(0.01439) 

(0.01268) 

(0.01398) 

(0.00473) 

(0.01132) 

(0.01803) 

(0.01230) 

(0.00597) 

(0.01973) 

4. 

Fuel 

0.089326 

0.006438 

-0.003114 

-0.004935 

-0.022042 

0.001125 

0.050402 

-0.009050 

-0.014028 

0.003279 

(0.03003) 

(0.02416) 

(0.02131) 

(0.02348) 

(0.00795) 

(0.01901) 

(0.03028) 

(0.02066) 

(0.01002) 

(0.03315) 

5. 

Drink 

and 

0.229275 

0.009825 

0.040699 

-0.007015 

0.009880 

-0.042878 

-0.005588 

-0.003446 

0.008205 

0.012928 

tobacco 

(0.02549) 

(0.02051) 

(0.01808) 

(0.01993) 

(0.00675) 

(0.01614) 

(0.02570) 

(0.01753) 

(0.00851) 

(0.02813) 

6. 

Travel 

and 

0.103688 

0.041007 

-0.000546 

0.025342 

-0.003091 

0.019203 

-0.058615 

0.016429 

0.007308 

-0.013219 

communication 

(0.01489) 

(0.01198) 

(0.01056) 

(0.01164) 

(0.00394) 

(0.00943) 

(0.01501) 

(0.01024) 

(0.00497) 

(0.01643) 

7. 

Entertainment 

0.023798 

-0.011800 

0.016214 

0.000476 

0.003617 

0.007844 

0.003895 

-0.018019 

0.001462 

-0.002538 

(0.00920) 

(0.00740) 

(0.00653) 

(0.00719) 

(0.00244) 

(0.00582) 

(0.00928) 

(0.00633) 

(0.00307) 

(0.01016) 

8. 

Other 

goods 

0.069496 

0.003932 

-0.005816 

0.014819 

0.001975 

-0.005145 

0.012303 

-0.023728 

-0.005415 

0.009458 

(0.01556) 

(0.01252) 

(0.01104) 

(0.01216) 

(0.00412) 

(0.00985) 

(0.01569) 

(0.01070) 

(0.00519) 

(0.01717) 

9. 

Other 

services 

0.087225 

0.010089 

0.003164 

0.021156 

0.012872 

0.009702 

0.017683 

0.018405 

-0.003024 

-0.085420 

(0.01913) 

(0.01539) 

(0.01357) 

(0.01495) 

(0.00506) 

(0.01211) 

(0.01929) 

(0.01316) 

(0.00638) 

(0.02111) 

Intercepts 

0.000477 

-0.000955 

0.001525 

-0.000445 

-0.002424 

0.000648 

0.000132 

0.000096 

0.000946 

(0.00081) 

(0.00061) 

(0.00033) 

(0.00055) 

(0.00047) 

(0.00027) 

(0.00017) 

(0.00029) 

(0.00035) 
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TABLE 
II 

ROTTERDAM 

MODEL 

HOMOGENEOUS 

WITH 

INTERCEPTS 

B 

C.1 

C.2 

C.3 

C.4 

C.5 

C.6 

C.7 

C.8 

C.9 

1. 

Food 

0.120611 

-0.134691 

0.048744 

-0.000833 

0.008813 

0.028916 

-0.084481 

0.033611 

-0.017958 

0.117878 

(0.04773) 

(0.03670) 

(0.03032) 

(0.03708) 

(0.01235) 

(0.02799) 

(0.04428) 

(0.03215) 

(0.01541) 

(0.05075) 

2. 

Footwear 

and 

0.177833 

0.019384 

-0.031022 

-0.017063 

-0.004330 

0.023001 

-0.022492 

-0.005089 

0.013089 

0.024522 

clothing 

(0.03264) 

(0.02510) 

(0.02073) 

(0.02536) 

(0.00844) 

(0.01914) 

(0.03028) 

(0.02199) 

(0.01053) 

(0.03470) 

3. 

Hiousing 

0.081181 

0.018086 

-0.020151 

-0.013008 

0.001829 

-0.004887 

0.025964 

0.014715 

-0.003467 

-0.019080 

(0.01814) 

(0.01395) 

(0.01153) 

(0.01409) 

(0.00469) 

(0.01064) 

(0.01683) 

(0.01222) 

(0.00586) 

(0.01929) 

4. 

Fuel 

0.091287 

0.010631 

-0.008467 

-0.007040 

-0.023101 

-0.002974 

0.057173 

-0.011698 

-0.012491 

-0.002034 

(0;02952) 

(0.02269) 

(0.01875) 

(0.02293) 

(0.00764) 

(0.01731) 

(0.02738) 

(0.01988) 

(0.00953) 

(0.03139) 

5. 

D:rink 

and 

0.234766 

0.021565 

0.025710 

-0.012908 

0.006917 

-0.054354 

0.013370 

-0.010860 

0.012508 

-0.001948 

tobacco 

(0.02611) 

(0.02008) 

(0.01659) 

(0.02029) 

(0.00676) 

(0.01531) 

(0.02422) 

(0.01759) 

(0.00843) 

(0.02777) 

6. 

Travel 

and 

0.111821 

0.058567 

-0.022966 

0.016527 

-0.007523 

0.002038 

-0.030257 

0.005339 

0.013745 

-0.035469 

communication 

(0.01861) 

(0.01431) 

(0.01182) 

(0.01446) 

(0.00482) 

(0.01092) 

(0.01726) 

(0.01254) 

(0.00601) 

(0.01979) 

7. 

Entertainment 

0.024077 

-0.011203 

0.015451 

0.000176 

0.003467 

0.007261 

0.004859 

-0.018397 

0.001681 

-0.003295 

(0.00901) 

(0.00693) 

(0.00572) 

(0.00700) 

(0.00233) 

(0.00528) 

(0.00836) 

(0.00607) 

(0.00291) 

(0.00958) 

8. 

Other 

goods 

0.070075 

0.005170 

-0.007396 

0.014198 

0.001662 

-0.006355 

0.014301 

-0.024510 

-0.004962 

0.007890 

(0.01525) 

(0.0X172) 

(0.00969) 

(0.01185) 

(0.00394) 

(0.00894) 

(0.01414) 

(0.01027) 

(0.00492) 

(0.01621) 

9. 

Other 

services 

0.088349 

0.012492 

0.000097 

0.019950 

0.012266 

0.007353 

0.021563 

0.016888 

-0.002144 

-0.088464 

(0.01878) 

(0.01444) 

(0.01193) 

(0.01459)' 

(0.00486) 

(0.01101) 

(0.01742) 

(0.01265) 

(0.00606) 

(0.01997) 

Intercepts 

-0.000514 

-0.000940 

0.001292 

-0.000311 

-0.002048 

0.001212 

0.000151 

0.000136 

0.001023 

(0.00079) 

(0.00054) 

(0.00030) 

(0.00049) 

(0.00043) 

(0.00031) 

(0.00015) 

(0.00025) 

(0.00031) 
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TABLE 

III 

ROTTERDAM 

MODEL 

SYMMETRIC 

WITH 

INTERCEPTS 

B 

C.1 

C.2 

C.3 

C.4 

C.5 

C.6 

C.7 

C.8 

C.9 

1. 

Food 

0.151593 

-0.072760 

0.021231 

0.010511 

0.002436 

0.010733 

0.042088 

-0.013969 

-0.001375 

0.001104 

(0.04085) 

(0.02559) 

(0.01548) 

(0.00993) 

(0.00921) 

(0.01128) 

(0.00960) 

(0.00504) 

(0.00770) 

(0.01117) 

2. 

Footwear 

and 

0.191381 

0.021231 

-0.016513 

-0.027013 

-0.003534 

0.031628 

-0.025480 

0.01401.3 

0.010209 

-0.004541 

clothing 

(0.02588) 

(0.01548) 

(0.01529) 

(0.00829) 

(0.00630) 

(0.00870) 

(0.00749) 

(0.00434) 

(0.00608) 

(0.00826) 

3. 

Housing 

0.074695 

0.010511 

-0.027013 

-0.016036 

0.000133 

-0.004457 

0.019958 

0.002228 

-0.001190 

0.015867 

(0.01659) 

(0.00993) 

(0.00829) 

(0.01019) 

(0.00403) 

(0.00741) 

(0.00765) 

(0.00431) 

(0.00449) 

(0.00834) 

4. 

Fuel 

0.099717 

0.002436 

-0.003534 

0.000133 

-0.022519 

0.010799 

-0.005137 

0.003282 

0.001571 

0.012969 

(0.02360) 

(0.00921) 

(0.00630) 

(0.00403) 

(0.00671) 

(0.00499) 

(0.00390) 

(0.00192) 

(0.00347) 

(0.00422) 

5. 

Drink 

and 

0.214030 

0.010733 

0.031628 

-0.004457 

0.010799 

-0.062191 

-0.000752 

0.005481 

-0.001934 

0.010692 

tobacco 

(0.02172) 

(0.01128) 

(0.00870) 

(0.00741) 

(0.00499) 

(0.00992) 

(0.00693) 

(0.00377) 

(0.00481) 

(0.00750) 

6. 

Travel 

and 

0.092968 

0.042088 

-0.025480 

0.019958 

-0.005137 

-0.000752 

-0.046522 

0.000775 

0.005448 

0.009621 

communication 

(0.01608) 

(0.00960) 

(0.00749) 

(0.00765) 

(0.00390) 

(0.00693) 

(0.01011) 

(0.00457) 

(0.00416) 

(0.00826) 

7. 

Entertainmnent 

0.019279 

-0.013969 

0.014013 

0.002228 

0.003282 

0.005481 

0.000775 

-0.019404 

0.001275 

0.006318 

(0.00763) 

(0.00504) 

(0.00434) 

(0.00431) 

(0.00192) 

(0.00377) 

(0.00457) 

(0.00419) 

(0.00221) 

(0.00567) 

8. 

Other 

goods 

0.076850 

-0.001375 

0.010209 

-0.001190 

0.001571 

-0.001934 

0.005448 

9.001275 

-0.008633 

-0.005370 

(0.01366) 

(0.00770) 

(0.00608) 

(0.00449) 

(0.00347) 

(0.00481) 

(0.00416) 

(0.00221) 

(0.00470) 

(0.00462) 

9. 

Other 

services 

0.079567 

0.001104 

-0.004541 

0.015867 

0.012969 

0.010692 

0.009621 

0.006318 

-0.005370 

-0.046659 

(0.01685) 

(0.01117) 

(0.00826) 

(0.00834) 

(0.00422) 

(0.00750) 

(0.00826) 

(0.00567) 

(0.00462) 

(0.01274) 

Intercepts 

0.000371 

-0.000806 

0.001113 

-0.000721 

-0.002073 

0.000977 

0.000102 

0.000244 

0.000793 

(0.00068) 

(0.00041) 

(0.00025) 

(0.00040) 

(0.00034) 

(0.00027) 

(0.00012) 

(0.00021) 

(0.00026) 
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TABLE 

IV 

INTERMEDIATE 

AND 

LINEAR 

EXPENDITURE 

SYSTEMS 

Intermediate 

Linear 

Expenditure 

System 

Intercepts 

No 

intercepts 

Intercepts 

No 

intercepts 

a 

b 

c 

b 

c 

a 

b 

c 

b 

c 

1. 

Food 

.000530 

.138484 

.053729 

.158535 

.110380 

-.000090 

.174824 

337.480 

.168125 

495.844 

(.000674) 

(.038941) 

(.051361) 

(.027065) 

(.047845) 

(.049694) 

(.033247) 

(382.614) 

(.023543) 

(408.493) 

2. 

Clothing 

and 

-.000781 

.163657 

.059816 

.131905 

.058833 

-.000544 

.128547 

-413.996 

.112502 

-410.743 

footwear 

(.000420) 

(.024525) 

(.033506) 

(.018723) 

(.031220) 

(.049691) 

(.020151) 

(236.939) 

(.015072) 

(265.888) 

3. 

Housing 

.001063 

.094835 

.072285 

.141458 

.067913 

.001009 

.118373 

11.458 

.152647 

33.554 

(.000251) 

(.015105) 

(.026041) 

(.013477) 

(.023830) 

(.049690) 

(.015734) 

(592.954) 

(.013723) 

(643.173) 

4. 

Fuel 

-.000608 

.095099 

.088868 

.073927 

.060140 

-.000301 

.084510 

-217.513 

.072944 

263.735 

(.000382) 

(.022572) 

(.018770) 

(.016468) 

(.015956) 

(.049691) 

(.014541) 

(284.662) 

(.012762) 

(308.247) 

5. 

Drink 

and 

-.002233 

.204766 

.195931 

.110405 

.236785 

-.002255 

.215157 

571.554 

.133030 

260.552 

tobacco 

(.000368) 

(.021842) 

(.037527) 

(.020102) 

(.044854) 

(.049691) 

(.017380) 

(223.377) 

(.017899) 

(231.680) 

6. 

Travel 

.000819 

.113302 

.143209 

.146716 

.202631 

.000844 

.122475 

192.443 

.154542 

342.221 

(.000299) 

(.017212) 

(.038622) 

(.012967) 

(.040235) 

(.049690) 

(.015162) 

(371.626) 

(.011580) 

(382.825) 

7. 

Entertainment 

.000160 

.013998 

.064059 

.022656 

.060828 

.000130 

.018692 

118.735 

.024042 

-110.098 

(.000124) 

(.007362) 

(.015218) 

(.005384) 

(.012705) 

(.049690) 

(.007007) 

(336.650) 

(.005528) 

(312.015) 

8. 

Other 

goods 

.000161 

.074296 

.019529 

.081806 

.013981 

.000575 

.039508 

-23.610 

.061054 

-182.681 

(.000203) 

(.012153) 

(.011760) 

(.008794) 

(.010200) 

(.049690) 

(.008414) 

(328.829) 

(.008336) 

(314.398) 

9. 

Other 

services 

.000889 

.101563 

.302575 

.132592 

.188509 

.000632 

.097914 

-405.899 

.121114 

-469.183 

(.000241) 

(.014729) 

(.055717) 

(.013106) 

(.038328) 

(.049690) 

(.017451) 

(725.893) 

(.013030) 

(751.634) 

X 

(-.353888 

X=-.421969 

(.039378) 

(.042751) 
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TABLE 
V 

ADDITIVE 

ROTTERDAM, 

DIRECT 

ADDILOG, 

AND 

No 

SUBSTITUTION 

SYSTEMS 

Additive 

Rotterdam 

Direct 

Addilog 

No 

Substitution 

No 

No 

No 

Intercepts 

Intercepts 

Intercepts 

Intercepts 

Intercepts 

Intercepts 

a 

b 

b 

a 

y 

a 

b 

b 

1. 

Food 

-.000097 

.181283 

.169167 

-.000088 

.232138 

.252501 

.000654 

.136515 

.163248 

(.000697) 

(.034027) 

(.024044) 

(.000602) 

(.051976) 

(.041684) 

(.000708) 

(.041497) 

(.029681) 

2. 

Clothing 

and 

footwear 

-.000327 

.119813 

.108771 

-.000489 

.494100 

.453247 

-.000681 

.167827 

.139968 

(.000504) 

(.020651) 

(.015384) 

(.000413) 

(.091773) 

(.073752) 

(.000430) 

(.025218) 

(.018375) 

3. 

Housing 

.001052 

.108853 

.149475 

.001132 

.242911 

.322940 

.001028 

.085039 

.127071 

(.000371) 

(.015219) 

(.013729) 

(.000242) 

(.042364) 

(.047271) 

(.000253) 

(.014854) 

(.012371) 

4. 

Fuel 

-.000390 

.081949 

.073213 

-.000353 

.669404 

.651908 

-.000739 

.111338 

.081133 

(.000430) 

(.014512) 

(.012216) 

(.000331) 

(.123568) 

(.112885) 

(.000447) 

(.026202) 

(.019138) 

5. 

Drink 

and 

tobacco 

-.002208 

.214316 

.136484 

-.002161 

.661383 

.478304 

-.002538 

.238433 

.134643 

(.000423) 

(.017027) 

(.017943) 

(.000323) 

(.068368) 

(.070092) 

(.000482) 

(.028221) 

(.025647) 

6. 

Travel 

.000778 

.126153 

.155801 

.000659 

.657646 

.830241 

.001077 

.110671 

.154703 

(.000399) 

(.015565) 

(.011608) 

(.000247) 

(.092628) 

(.088692) 

(.000330) 

(.019312) 

(.015283) 

7. 

Entertainment 

.000073 

.022542 

.025346 

.000115 

.245636 

.388880 

*.000243 

.006915 

.016832 

(.000306) 

(.007254) 

(.005519) 

(.00124) 

(.092679) 

(.082520) 

(.000148) 

(.008659) 

(.006322) 

8. 

Other 

goods 

.000474 

.046430 

.061908 

.000401 

.467823 

.602024 

.000145 

.078719 

.084652 

(.000341) 

(.008658) 

(.007589) 

(.000190) 

(.078387) 

(.078653) 

(.000207) 

(.012107) 

(.008624) 

9. 

Other 

services 

.000646 

.098660 

^.119834 

.000785 

.351319 

.528337 

.000812 

.064543 

.097751 

(.000381) 

(.016358) 

(.012906) 

(.000256) 

(.073153) 

(.078236) 

(.000319) 

(.018699) 

(.014207) 

= 

-.358052 

-.349673 

(.037803) 

(.036094) 
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not strictly allowable within the theory, are included to try to remove the bias which 
is liable to result from the possible omission of important variables. It is un- 
doubtedly true that factors other than prices and income affect demand and 
while, within the Rotterdam framework, one might reasonably expect their 
combined effects about their means to be adequately represented by the stochastic 
structure, it would not be reasonable to expect the means themselves to be zero. 
Thus the intercepts should be interpreted as indicating those commodity groups 
where variables not discussed here were important over the period. As we shall see, 
they are significant for all goods; thus, for reasons of space, only the intercept cases 
are tabulated for models 1 to 3. 

Tables I to III, which show the first three forms of the Rotterdam system, list 
the b vectors and C matrices for each of the systems; the first column is the vector of 
b values; those subsequent are the columns of the C matrix. Thus, for example, 
the entry in the row "fuel" under column heading C.5 gives the compensated 
response of fuel demand to a change in the price of drink and tobacco. These 
numbers may be converted to elasticities by division by the corresponding value 
share; i.e., the income elasticity ei is given by ei = bi/wi and the compensated price 
elasticity e?* by ei* = ceywi. To give an idea of the magnitudes involved, the average 
shares in 1963 were as follows: food, 28.4 per cent; clothing and footwear, 10.0 per 
cent; housing, 15.3 per cent; fuel, 5.3 per cent; drink and tobacco, 13.3 per cent; 
travel and communication, 9.7 per cent; entertainment, 3.3 per cent; other goods, 
5.1 per cent; and other services, 9.6 per cent. Thus to take examples from Table I, 
we calculate the income elasticity for demand for fuel as 1.67, the compensated own 
price elasticity as -0.41, and the compensated cross price elasticity with respect 
to say the price of housing services as -.09. The results of the other models are 
presented in Tables IV and V. 

The final concentrated likelihood values for each of the models are presented 
in Table VI. The numbers in each column are twice the logarithm of the con- 
centrated likelihood; the number in brackets is the number of free parameters in 
each of the respective models. For the nested models, i.e., 1, 2, 3, 4, 5, and 8, the 
difference between any two of the numbers in the table is asymptotically distributed 
as x2 with q degrees of freedom where q is the number of restrictions imposed, 
i.e., the difference between the numbers in brackets. For models 6 and 7, which are 
not nested either within one of themselves or within the most general model 1, no 

TABLE VI 

Intercepts No intercepts 

1. Free Rotterdam 4353.75 (88) 4306.50 (80) 
2. Homogeneous Rotterdam 4322.70 (80) 4267.35 (72) 
3. Symmetric Rotterdam 4279.50 (52) 4222.80 (44) 
4. Intermediate 4209.30 (25) 4161.60 (17) 
5. Additive Rotterdam 4173.75 (17) 4119.75 (9) 
6. Linear Expenditure System 4183.20 (25) 4125.15 (17) 
7. Direct Addilog 4187.70 (17) 4127.40 (9) 
8. No Substitution 4137.75 (16) 4054.95 (8) 
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such test is possible. Nevertheless, it could well 'be argued that the likelihood 
values are the best criteria of discrimination that we have in the present state of 
knowledge. Even so we cannot say whether the difference between the values for 
the linear expenditure system and the direct addilog system is in any sense 
significant. 

However, difficulties are not confined to the non-nested models. The use of a 
testing distribution which is only asymptotically correct involves considerable 
danger, especially in small sample work, of rejecting valid hypotheses. Since the 
true distribution will always have fatter tails than its limiting counterpart, a test 
based on the latter which leads to acceptance could never be reversed by appeal 
to the true distribution but this does not hold for rejections. Indeed, for small 
numbers of observations, the horizontal distance between the two distributions 
may be quite large at the confidence levels which are of interest. In the cases where 
the restrictions on the parameters fall within equations, i.e., the imposition of 
zero intercepts, homogeneity, and zero price substitution, the correcting factors 
to the likelihood ratio test,are known4 (see, e.g., Anderson [1, pp. 207-210]). There 
is thus no problem in testing these three types of constraint. Also for models where 
the number of parameters being estimated or restricted is small relative to the 
number of observations (in our case the tests between intermediate, additive and 
zero price substitution models), the correction is likely to be small and to have little 
effect on the test outcome. This only leaves symmetry as an awkward case. One 
possibility is to make a correction of the same order as is made in the within 
equation models; this proced,ure seems to give sensible results in practice. Never- 
theless, it must be recognized that this problem does not as yet have a general 
solution. 

Looking at the table of likelihood values we see that in no case is the hypothesis 
of zero intercepts acceptable. This rejection seems due to the necessity for con- 
stant terms for two categories in particular. These are housing and drink and 
tobacco. The former contains a large element of imputed rent which one would 
not expect to be closely related to current income and prices and the latter, due to 
the considerable increases in indirect taxation since the turn of the century, is also 
somewhat of a special case. These results then should be taken as not so much 
contrary to the theory as indicative of its incompleteness. 

Before passing on to the comparison of the principle models we must first 
establish that the substitution effects of price changes are indeed of importance. 
This can be done by comparing the likelihood values of models I and 8 from the 
table. Applying the correction to the likelihood ratio we find that the probability 
that such a decrease could be random given the truth of the null hypothesis to be 
less than one thousandth of one per cent. This would seem to establish a firm base. 
for the other experiments; compensated price effects are important in demand 
analysis and the way in which we allow for them is thus a matter of more than 
trivial importance. 

If no constraints are placed upon the C matrix, the maximum likelihood para- 
meter estimates are those given in Table I. The intercepts conform to the general 

4 I am grateful to A. P. Barten for indicating this reference to me. 
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pattern, i.e., groups 3 and 5 are significantly different from zero at the one per cent 
level; otherwise there is little difference between the estimates with and without 
intercepts. Given the general importance of the constants, the models which include 
them are probably the more reliable. Thus from Table I, taking the one per cent 
level as our criterion of significance, we see that all the marginal budget shares are 
significantly different from zero. However, this is only true of seven out of eighty- 
one price responses, six of these lying along the diagonal. Note that all the own 
price values are negative in accordance with the theory; the full sign conditions 
are difficult to test on a non-symmetric matrix. These overall results are not out 
of line with expectations; the data have a great deal of income information but 
relatively little on prices. By calculating the R2 statistics5 we see that factors other 
than prices and incomes are important. 

One might expect, from these somewhat attenuated price effects, that the 
imposition of homogeneity would follow without difficulty and this expectation 
would receive superficial support from the apparent similarity between Table I 
and Table II. However, inspection of the likelihood values indicates that this is 
not the case; with intercepts the probability of these likelihoods arising under the 
null hypothesis is 0.87 per cent; without intercepts, it is 0.08 per cent. Once again 
the null hypothesis is firmly rejected. This rejection may be traced further by 
inspecting F ratios for each of the commodity groups. This shows that homo- 
geneity is rejected at the 0.1 per cent level by category 6, travel and communication, 
and at the 5 per cent level by category 1, food. In other words, a proportional 
increase in all prices and income will cause an increase in expenditure on travel 
and communication and a decrease in expenditure on food. There is no problem 
with other commodities. 

The fact that this rejection was also suffered by Byron [6 and 7] as well as by 
Barten in his later experiments [4, though not 3], does not make it any the more 
palatable. Though it is of course possible to think of reasons why it might occur, 
none of these are really convincing. Homogeneity is a very weak condition. It is 
essentially a function of the budget constraint rather than the utility theory and 
it is difficult to imagine any demand theory which would not involve this assump- 
tion. Indeed to the extent that the idea of rationality has any place in demand 
analysis, it would seem to be contradicted by non-homogeneity. It is of course 
possible that changes in the distribution of income have systematically favored 
transport users rather than food consumers, but this too seems implausible. 

Now we may accept this rejection, implying our acceptance of the framework 
within which the experiment was carried out, or we may refuse to do so, claiming 
that the experiment was wrongly performed and that a correct experiment would 
have led to the opposite result. The first implies the acceptance of non-homogeneous 
behavior and would seem to require some hypothesis of "irrational" behavior; 
this is not an attractive alternative. We are thus left to excuse our failure but without 
further information it is difficult to do this in a convincing fashion. Obvious 

Drink and tobacco and travel and communication are over 0.8; the others cluster around 0.6, 
except for entertainment which is less than 0.5 
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possible causes are measurement errors or inappropriate aggregation of com- 
modities or of consumers. In favor of the first of these, it might be argued that the 
high level of significance of the positive substitution elasticity of travel with 
respect to the price of food is itself anomalous and that it is this term which causes 
much of the difficulty over the restriction. If this coefficient is due to errors in the 
data (which are very likely in a series of this length), it is quite appropriate to 
enforce homogeneity; indeed, we should expect better estimates of the other 
parameters by doing so. Whether or not we are justified, this is what we shall do 
here. The formal rejection must go on record but it would seem that to continue 
with further tests having imposed homogeneity is more acceptable than turning 
away altogether. 

The symmetric estimates are given in Table III. The likelihood tests give 
acceptance as compared with homogeneity but rejection as compared with the 
unrestricted model. Clearly this latter is due to the unacceptability of homogeneity; 
the additional restrictions of symmetry do not make the situation any worse. This 
is perhaps surprising; symmetry imposes twenty-eight constraints over and above 
the eight of homogeneity. Nevertheless, this fact would be quite consistent with 
our interpretation of the rejection of homogeneity and could perhaps be interpreted 
as justifying our enforcement of the constraint. Thus, if we accept the previous 
result as anomalous, this much more powerful test yields considerable evidence 
in favor of the acceptability of the utility theory. For symmetry, unlike homogeneity, 
derives from assumptions about the utility function rather than the budget 
constraint; evidence in this regard is thus more valuable for the testing of this 
theory. Indeed in order to test whether or not it is possible to imagine the data as 
having been generated within the theory, it is now only necessary to examine the 
further postulate, that of negativity. 

To do this the eigenvalues of the estimated C matrices with and without inter- 
cepts were calculated; in both cases one of the eight non-zero values proved to be 
positive. Thus neither of the estimates satisfy the negative semi-definiteness of the 
theory. In order to test the significance of this shortcoming it would be best to 
estimate the symmetry model subject to the negativity constraint and compare 
the resulting likelihood values with those of model 3. Though this presents no 
difficulty in principle, the programming difficulties have so far prevented a satis- 
factory outcome to this test. A second-best solution is to calculate an asymptotic 
standard error6 for the offending eigenvalue. This is an expensive operation, and 
since both sets of symmetric estimates are very similar, it was carried out only for 
the model without intercepts. This gave a standard error of 0.2738 corresponding 
to the eigenvalue of 0.0246 and would suggest that the violation is not serious. 

It may be noted at once that all the diagonal elements of both symmetric 
substitution matrices are negative; thus, if only one price alters, the consumers' 
response has the appropriate maximization characteristics. We may then go on 

6 The calculation uses the matrix of derivatives of the eigenvalue i with respect to the elements of 
the matrix V = C - A. This derivative matrix is the adjoint of V scaled by its trace and is used to 
map the four-dimensional covariance tensor of C into the scalar variance of A. 
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to investigate responses to all possible changes in two prices, three prices, and so on 
until the maximization conditions cease to hold. That they will do so we are 
assured in advance by the presence of the positive eigenvalue. It has been suggested 
by Professor John Wise of Southampton University that the maximization 
conditions are more likely to break down in the higher rather than the lower 
orders. The basic hypothesis is that consumers can respond correctly to simple 
price changes but tend to become confused, if they become confused at all, 
only when large numbers of prices change together. This hypothesis is completely 
consistent with the present evidence. When the diagonal determinants of each of 
the C matrices were calculated, it was found that up to the seventh order all had 
the appropriate sign; only at the eighth order are the signs incorrect7. Thus every 
price in the model must change simultaneously before non-maximizing behavior 
can be observed. With respect to all other stimuli, the behavior patterns are 
appropriate to the utility maximizing consumer. 

Whether this result is in fact the outcome of Wise-type behavior or whether it 
is due to the insignificance of the deviation from negativity cannot be decided at 
present. However, taking all the evidence together it would seem that the utility 
maximizing consumer is, a paradigm which can take us a considerable way in the 
interpretation of the United Kingdom experience. Given this, attention shifts to 
the problem of whether or not it is possible to restrict behavior even further. Even 
with symmetry there are (-in + 1)(n - 1) independent parameters, and for large n 
this is too many to be estimated in many empirical situations. We thus turn to the 
other models, each of which restricts behavior considerably more than does the 
theory alone. The parameter estimates for these models are given in Tables IV 
and V, and we discuss the most important aspects of these below. 

Looking at additivity first, the likelihood values make it clear that this is not an 
acceptable restriction. The additive Rotterdam model which is a subcase of the 
symmetric model is rejected at a very high confidence level, and the likelihoods for 
the direct addilog and linear expenditure systems suggest that they, too, suffer 
from the same inadequacies. Now while it may be true that a different aggregation 
of commodities might reverse this result, it seems unlikely given the strength of the 
rejection. Rather we must accept that there exist specific substitution effects even 
between fairly broad categories of goods. Note, too, that the choice of functional 
form seems less important than additivity itself; the likelihood values for all three 
systems are quite close together. However, if we compare these models with model 8, 
we see that to allow even the limited substitution effects of additivity is better than 
ignoring such terms altogether. This result, though a negative argument in favor 
of additivity, is still of practical importance. For it provides some justification of 
the use of this assumption where no other model can be used. It would indicate that, 
at least for the United Kingdom, the results of the Frisch method of calculating 
price elasticities or of the linear expenditure system would be of more practical 
use than those derived from a system which allowed only for the income effects of 
price changes. 

As to the choice between the additive models tested here, the direct addilog 
system does best. The linear expenditure system yields very little for the extra 

' The ninth order determinant is of course zero. 
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parameters it absorbs; indeed, it has a likelihood function less than that of the 
direct addilog system which has fewer independent parameters. Each of these 
systems does better than the additive Rotterdam system. Evidently there is some 
return to allowing ? to vary over time though not enough to compensate for the 
nine degrees of freedom permitted to it in the linear expenditure system. The reason 
for the superiority of the addilog system presumably rests in the formulation of the 
income coefficients; this model allows each of the income elasticities to drift 
slowly downwards over time. This situation is clearly preferable to the constant 
tending towards unity of the other models. This result is not followed up here; yet 
there is clearly useful work to be done on the correct formulation of income 
elasticities and their dependence on the level of income. 

We can also derive from these models evidence on ? and thus on Frisch's J1, 
the flexibility of the marginal utility of money. The Rotterdam additive model 
holds 4) fixed, and our estimate of -0.3581 is quite close to the value -0.4888 
estimated by Barten for Holland. The United Kingdom estimate gives a value for 
Ji of - 2.79, which lies between the values given by Frisch for the median and 
poorer parts of the population and is consistent with the results of other studies; 
see, e.g., Section IV.3 of Brown and Deaton [5]. If we move to the addilog system, 
4 now increases very slowly in absolute value, from -0.3815 in 1900 to -.4117 
in 1970, most of the increase taking place after the Second World War. This change 
is in the direction envisaged by' Frisch, yet is much smaller than one might expect. 
For the linear expenditure system 0 varies quite dramatically; it is in order to 
allow this that the values of the c parameters in Table IV deviate so violently from 
those which result from the normal estimation of the system.8 Here 0 follows the 
trade cycle quite closely from 1900 to 1938, decreasing from just below zero to 
- 0.6; in the post-war period there is relative constancy around - 0.4, the trade 
cycle relationship seemingly having disappeared. This variation is however 
unlikely to be significant and though we have some evidence for Ji increasing with 
income, this would not be strong enough to contradict earlier negative results, 
e.g., Theil and Brooks [19]. It is notable, however, that no values of 0 numerically 
greater than unity or even close to it have appeared in any of these models, though 
Frisch indicates values of co of -0.7 and -0.1 for the better off and rich. However, 
the assumption that utility is bounded above, that bliss is finite, implies that Ji 
should be bounded above by a number strictly less than - L. This seems to me 
more attractive than the alternative possibility and would provide a rationale for 
a much slower increase in the flexibility than originally imagined. 

Having rejected additivity we turn finally to the intermediate system; this 
though much weaker in implication is still unacceptable. Equally, however, the 
additive model is an unacceptable restriction of the intermediate model; the latter 
thus lies truly between symmetry and additivity. Note from Table IV that the 

8 These extraordinary estimates require further comment. Since the system is not solved for pre- 
dicted values of q, it is not obvious that the convexity requirements qi > cj are violated. But if not, 
the model must fit very badly. Either way the model is being stretched beyond its limits. 

' This excludes 6)J - I as i -- oo, as is the case for the linear expenditure system, the direct addilog 
utility (8) is bounded for 0 < f,B < I and the estimated values satisfy this. I am particularly grateful to 
David Champernowne for help on these points. He assures me from personal experience that bliss is 
finite. 
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ordering of the elements of the b and c vectors is quite different; other services and 
entertainment are much more price-sensitive than they are income-sensitive; the 
opposite is true of food and clothing and footwear. This extra freedom over the 
enforced equality of the vectors under additivity does give a considerable improve- 
ment. Thus though we may not take these restrictions as valid, the system offers 
us a way of using extra price information where it is available. For example, we 
often have information on income and own price elasticities only; this model allows 
us to construct a complete system of demand equations from that alone. This 
requires more knowledge than the Frisch method, but for the United Kingdom, at 
least, it will give more accurate results. 

This concludes the comparison of the alternative models. Though our consistent 
use of the Rotterdam format has enabled us to make direct comparisons in a way 
not so far possible, it must not be thought that this provides the final word on these 
systems. The selection of an optimal model depends on the use to which it is to be 
put and on the circumstances surrounding its estimation. Furthermore, our results 
are valid only for the United Kingdom, and only to the extent that the error 
structures we have assumed are appropriate. It is, of course, possible that the 
selection of similar error structures for all the modelsdiscriminates unfairly against 
one or the other of them. These questions can only be settled by further work, not 
only with different stochastic assumptions but with data from different countries. 

University of Cambridge 

Manuscript received March, 1972; revision received March, 1973 
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