ECO 317 – Economics of Uncertainty – Fall Term 2009 Tuesday October 6 Portfolio Allocation – Mean-Variance Approach

Validity of the Mean-Variance Approach

Constant absolute risk aversion (CARA):

$$u(W) = -\exp(-\alpha W)$$

Final wealth ${\cal W}$ will be a random variable, whose distribution is affected by the allocation choices

Assume normal distribution: mean $\mathsf{E}[W]$, Variance $\mathsf{V}[W]$

These are functions of the allocation choices

$$EU = - \mathsf{E}[\exp(-\alpha W)] = -\exp\{-\alpha \mathsf{E}[W] + \frac{1}{2} \alpha^2 \mathsf{V}[W]\}$$

So maximizing EU is equivalent to

minimizing
$$-\alpha E[W] + \frac{1}{2} \alpha^2 V[W]$$

or

$$\text{maximizing} \qquad \mathsf{E}[W] - \tfrac{1}{2} \ \alpha \ \mathsf{V}[W]$$

One Riskless, One Risky Asset

Safe asset: gross return rate R (1 plus interest rate)

Risky asset: random gross return rate r

Mean
$$\mu = \mathsf{E}[r] > R$$
, Variance $\sigma^2 = \mathsf{V}[r]$

Initial wealth W_0 . If x in risky asset,

final wealth
$$W = (W_0 - x) R + x r = R W_0 + (r - R) x$$

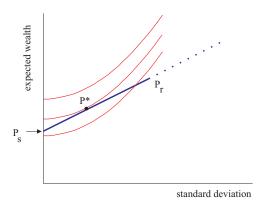
$$\begin{split} \mathsf{E}[W] &= W_0\,R + x\,(\mu - R) \\ \mathsf{V}[W] &= x^2\,\sigma^2; \quad \mathsf{Std. Dev.} = x\,\sigma \end{split}$$

Choose x to maximize $W_0\,R + x\,(\mu - R) - \frac{1}{2}\,\alpha\,x^2\,\sigma^2$ FOC $\mu - R - a\,x\,\sigma^2 = 0$, therefore optimum

$$x = \frac{\mu - R}{\alpha \, \sigma^2}$$

Observe x independent of W_0 . CARA-Normal model under uncertainty is like quasi-linear utility in ordinary demand theory.

As x varies, straight line in (Mean,Std.Dev.) figure.



 $P_s=(0,W_0\,R)$ safe; $P_r=(W_0\,\sigma,W_0\,\mu)$ risky; Beyond P_r possible if leveraged borrowing OK (In dotted line as shown if borrowing rate = safe rate R; with kink if borrowing rate > safe rate.) P^* is optimal portfolio

Two Risky Assets

 $W_0=1$; Random gross return rates r_1 , r_2 Means $\mu_1>\mu_2$; Std. Devs. σ_1 , σ_2 , Correl. Coefft. ρ Portfolio (x,1-x). Final $W=x\,r_1+(1-x)\,r_2$

$$\mathsf{E}[W] = x \,\mu_1 + (1 - x) \,\mu_2 = \mu_2 + x \,(\mu_1 - \mu_2)$$

$$V[W] = x^{2} (\sigma_{1})^{2} + (1 - x)^{2} (\sigma_{2})^{2} + 2 x (1 - x) \rho \sigma_{1} \sigma_{2}$$

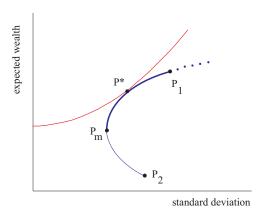
= $(\sigma_{2})^{2} - 2 x [(\sigma_{2})^{2} - \rho \sigma_{1} \sigma_{2}] + x^{2} [(\sigma_{1})^{2} - 2 \rho \sigma_{1} \sigma_{2} + (\sigma_{2})^{2}]$

$$\frac{\partial \mathsf{V}[W]}{\partial x} = \begin{cases} -2 \left[(\sigma_2)^2 - \rho \, \sigma_1 \, \sigma_2 \right] & \text{at } x = 0 \\ 2 \left[(\sigma_1)^2 - \rho \, \sigma_1 \, \sigma_2 \right] & \text{at } x = 1 \end{cases}$$

So diversification can reduce variance if $\rho < \min \left[\sigma_1 / \sigma_2, \sigma_2 / \sigma_1 \right]$

To minimize variance,
$$x = \frac{(\sigma_2)^2 - \rho \sigma_1 \sigma_2}{(\sigma_1)^2 - 2 \rho \sigma_1 \sigma_2 + (\sigma_2)^2}$$

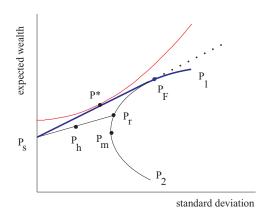
Optimum:
$$x = \frac{\frac{\mu_1 - \mu_2}{\alpha} + (\sigma_2)^2 - \rho \, \sigma_1 \, \sigma_2}{(\sigma_1)^2 - 2 \, \rho \, \sigma_1 \, \sigma_2 + (\sigma_2)^2}$$



 P_1 , P_2 points for each asset; P_m minimum-variance portfolio, P^* optimum Portion P_2 P_m dominated; P_m P_1 efficient frontier Continuation past P_1 if short sales of 2 OK

One Riskless, Two Risky Assets

First combine two riskies; this gets all points like P_h on all lines like $P_s\,P_r$ Then mix with riskless; this gets Efficient frontier $P_s\,P_F$ tangential to risky combination curve



Then along curve segment $P_F P_1$ if no leveraged borrowing; continue straight line $P_s P_F$ if leveraged borrowing OK

With preferences as shown, optimum P^* mixes safe asset with particular risky combination P_F "Mutual fund" P_F is the same for all investors regardless of risk-aversion (so long as optimum in $P_s P_F$) Investors who are even less risk-averse may go beyond P_F including corner solution at P_1 or tangency past P_1 if can sell 2 short to buy more 1

Capital Asset Pricing Model

Individual investors take the rates of return as given but these must be determined in equilibrium Suppose one safe and two risky assets Investor h with initial wealth W_h Invests x_1^h dollars in the shares of firm 1, x_2^h dollars in the shares of firm 2, and $(W_h - x_1^h - x_2^h)$ in the safe asset. Expression for random final wealth W =

$$(W_h - x_1^h - x_2^h) R + x_1^h r_1 + x_2^h r_2 = W_h R + x_1^h (r_1 - R) + x_2^h (r_2 - R),$$

Maximizes

$$\mathsf{E}[W] - \tfrac{1}{2} \, \alpha_h \, \mathsf{V}[W]$$

where

$$\begin{split} \mathsf{E}[W] &= W_h \, R + x_1^h \, (\mathsf{E}[r_1] - R) + x_2^h \, (\mathsf{E}[r_2] - R) \\ \mathsf{V}[W] &= (x_1^h)^2 \, \mathsf{V}[r_1] + 2 \, x_1^h \, x_2^h \, \mathsf{Cov}[r_1, r_2] + (x_2^h)^2 \, \mathsf{V}[r_2] \end{split}$$

FOCs for optimal portfolio choice (allowing short sales etc. if necessary)

$$E[r_1] - R = \alpha_h \{ x_1^h V[r_1] + x_2^h Cov[r_1, r_2] \}$$

$$E[r_2] - R = \alpha_h \{ x_1^h Cov[r_1, r_2] + x_2^h V[r_2] \}$$

like "inverse demand functions".

Rewrite these equations as

$$\tau_h \; \{ \; \mathsf{E}[r_1] - R \; \} \quad = \quad x_1^h \, \mathsf{V}[r_1] + x_2^h \, \mathsf{Cov}[r_1, r_2]$$

$$\tau_h \; \{ \; \mathsf{E}[r_2] - R \; \} \quad = \quad x_1^h \, \mathsf{Cov}[r_1, r_2] + x_2^h \, \mathsf{V}[r_2]$$

where $\tau_h = 1 / \alpha_h$ is the investor's *risk-tolerance*.

Sum these across all investors. Impose equilibrium condition:

Total dollars invested = total values of the firms F_1 , F_2 .

Take F_1 , F_2 as given here; related to firms' profits in Note 6.

$$T\{ E[r_1] - R \} = F_1 V[r_1] + F_2 Cov[r_1, r_2]$$
 (1)

$$T\{ E[r_2] - R \} = F_1 Cov[r_1, r_2] + F_2 V[r_2]$$
 (2)

where $T = \text{sum of } \tau_h \text{s is the } \textit{market's risk tolerance}.$

The market rate of return r_m is weighted average

$$r_m = (r_1 F_1 + r_2 F_2) / (F_1 + F_2)$$

Then multiply (1) by F_1 , (2) by F_2 and add:

$$T (F_1 + F_2) \{ E[r_m] - R \}$$

$$= (F_1)^2 V[r_1] + 2 F_1 F_2 Cov[r_1, r_2] + (F_2)^2 V[r_2]$$

$$= V[r_1 F_1 + r_2 F_2] = (F_1 + F_2)^2 V[r_m]$$

or

$$\mathsf{E}[r_m] - R = \frac{F_1 + F_2}{T} \, \mathsf{V}[r_m]$$

Risk premium on the market as a whole is

 \sim variance of the market rate of return, and

 ~ 1 / market's risk tolerance

Factor $(F_1 + F_2)/T$ is the market price of risk It is endogenous in the whole equilibrium.

Similar work with FOC for asset 1 yields:

$$\begin{split} \mathsf{E}[r_1] - R &= \frac{F_1 + F_2}{T} \, \mathsf{Cov}[r_1, r_m] \\ &= \frac{\mathsf{Cov}[r_1, r_m]}{\mathsf{V}[r_m]} \, \left\{ \, \mathsf{E}[r_m] - R \, \right\} \end{split}$$

This gives two important conclusions

$$\mathsf{E}[r_1] - R = \frac{\mathsf{Cov}[r_1, r_m]}{\mathsf{V}[r_m]} \ \{ \ \mathsf{E}[r_m] - R \ \}$$

Risk premium on firm-1 stock depends on its systematic risk (correlation with whole market) only, not idiosyncratic risk (part uncorrelated with market) Coefficient is beta of firm-1 stock

- The risk premium in the market on any one stock depends on the covariance of returns between the stock and the market not on variance of the stock itself.
- The "idiosyncratic" risk in one stock (the part that is not correlated with the market) can be diversified away, so investor not paid for bearing it
- The risk in the whole market must be borne by the collectivity of investors, so this earns a risk premium proportional to their collective risk aversion 1/T.