
Mathematical Appendix

Here we present details of mathematical derivations of the results presented in the

text. The broad ideas and intuitions are discussed there; therefore here we focus on the

technical aspects.

A. Subgame where neither party uses an agent

As explained in the text, in this case party L chooses l to maximize

UL =
f(l, l)

f(l, l) + f(r, r)
V − l N

taking r as given. The first-order condition is

f(r, r)

[f(l, l) + f(r, r)]2
[ fc(l, l) + fs(l, l) ] V = N

or

f(l, l) f(r, r)

[f(l, l) + f(r, r)]2
fc(l, l) + fs(l, l)

f(l, l)
V = N

In symmetric equilibrium this becomes

1

4

fc(l, l) + fs(l, l)

f(l, l)
V = N

Using the no-agent Cobb-Douglas form of f in (3), then multiplying both sides by l

and using Euler’s Theorem gives

1

4
θp V = l N = IL

Similarly for party R. Then, with the victory probabilities of 1
2

each in the symmetric
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equilibrium, the parties’ objective function values are

Un = 1
2
V − 1

4
θ V = 1

2

[
1− 1

2
θ
]
V , (A.1)

where the subscript n on the utility indicates that neither party is using an agent.

B. Subgame where both parties use agents

Recall that we have a two-stage game: at the first stage the party leaders who

choose the budgets and bonuses (IL, BL), (IR, BR), and at the second stage the agents

choose the allocations (lc, ls), (rc, rs). We look for the symmetric subgame perfect

equilibrium.

The L agent maximizes AL defined in (5), subject to the budget constraint

lcNc + lsNs = IL

We are assuming that the party keeps the agent’s budget down to a level where he cannot

steal directly, or gets no utility from such cash stealing. Then the first-order conditions are

f(rc, rs)

[f(lc, ls) + f(rc, rs)]2
fc(lc, ls) BL + β Nc = λ Nc

f(rc, rs)

[f(lc, ls) + f(rc, rs)]2
fs(lc, ls) BL = λ Ns

where λ is the Lagrange multiplier.

Divide the first of these equations by Nc, the second by Ns, and subtract to

eliminate λ:

f(rc, rs)

[f(lc, ls) + f(rc, rs)]2

[
fc(lc, ls)

Nc

− fs(lc, ls)

Ns

]
BL + β = 0 (B.1)

Therefore

fc(lc, ls)

Nc

− fs(lc, ls)

Ns

< 0, or
fc(lc, ls)

fs(lc, ls)
<
Nc

Ns

(B.2)
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Sticky Note
 The people chosen to be agents are local party functionaries who get surplus from this role - payoff higher than their alternative opportunities. Therefore their participation constraint is slack and can be ignored.



To get further results, write (B.1) as

f(lc, ls) f(rc, rs)

[f(lc, ls) + f(rc, rs)]2

[
lc fc(lc, ls)

f(lc, ls)

1

lcNc

− ls fs(lc, ls)

f(lc, ls)

1

lsNs

]
BL + β = 0

Using the Cobb-Douglas form (2), this becomes

πL πR θa

[
α

lc Nc

− 1− α
ls Ns

]
BL + β = 0

Define zl = lc Nc/IL, that is, the fraction of the budget spent on core supporters. Then the

conditions simplifies to

zl − α
zl (1− zl)

=
β

θa

1

πL πR

IL
BL

(B.3)

A similar equation governs the R agent’s allocation.

Calculating (B.2) for the Cobb-Douglas case, we see that

α ls
(1− α) lc

<
Nc

Ns

, or
α

1− α
<
lcNc

lsNs

=
zl

1− zl
, so zl > α .

This is also consistent with (B.3).

Consider small changes around equilibrium. The logarithmic differential of the left

hand side (omitting l subscripts because a similar equation is valid with r subscripts also) is

[
1

z − α
− 1

z
+

1

1− z

]
dz =

z(1− z)− (z − α)(1− z) + z(z − α)

z(1− z)(z − α)
dz

=
z − z2 − z + z2 + α− α z + z2 − α z

z(1− z)(z − α)
dz

=
z2 − 2α z + α

z(1− z)(z − α)
dz

=
(z − α)2 + α(1− α)

z(1− z)(z − α)
dz

=
(z − α)2 + α(1− α)

(z − α)2

z − α
z(1− z)

dz
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Define

Ω =
(z − α)2

(z − α)2 + α(1− α)
(B.4)

Using this and (B.3), we have

[
1

z − α
− 1

z
+

1

1− z

]
dz =

1

Ω

β

θ

1

πL πR

I

B
dz (B.5)

If z = α (the party leaders’ ideal), Ω = 0, and as z increases to 1, Ω increases to

(1− α). We can then regard the magnitude of Ω in this range as an indicator of the

magnitude of the agency problem. Of course Ω is endogenous and determined by the party

leaders’ choices of I and B. This will emerge as a part of the solution below.

The logarithmic differential of πL πR is

d(πL πR)

πL πR
=
dπL
πL

+
dπR
πR

=
dπL
πL
− dπL

1− πL
=

1− 2 πL
πL (1− πL)

dπL (B.6)

which vanishes at a symmetric equilibrium where πL = 1
2
.

This property simplifies the algebra of the first-stage calculation. In principle, the

first-stage choices (IL, BL), (IR, BR) of the leaders of both parties will affect the

second-stage choices (lc, ls), (rc, rs) of both agents. The party leaders’ first stage choices

will look ahead to this in the subgame perfect equilibrium. But as (B.3) shows, the

R-party leaders’ choice affects zl only via πR (and of course πL = 1− πR). But (B.6) shows

that this effect fortunately vanishes at the symmetric equilibrium.

Therefore the comparative statics of the agent’s choice at the symmetric equilibrium

(again omitting l subscripts) are given by the effects only of the budget and bonus set by

that party’s leaders:

1

Ω

β

θa

1

πL πR

IL
BL

dzl =
dIL
IL
− dBL

BL

, (B.7)

and similarly for dzr.
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Now consider the first-stage symmetric equilibrium of the party leaders’ choices.

Start with

πL
1− πL

=
f(lc, ls)

f(rc, rs)
=

Aa l
θa α
c l

θa(1−α)
s

Aa rθa αc r
θa(1−α)
s

=
lθa αc l

θa(1−α)
s

rθa αc r
θa(1−α)
s

observe how Aa cancels

=
zθa αl (1− zl)θa(1−α) IL

θa

N θa α
c N

θa(1−α)
s

1

rθa αc r
θa(1−α)
s

(B.8)

Party L’s leaders choose their (IL, BL) taking the other party leaders’ choice of (IR, BR)

and therefore the R-party agent’s choice of (rc, rs) as given, because those have zero

first-order effect on πL as seen above. Logarithmic differentiation gives

dπL
πL

+
dπL

1− πL
= θa α

dzl
zl
− θa (1− α)

dzl
1− zl

+ θa
dIL
IL

or

dπL
πL πR

= θa

[
α

zl
− 1− α

1− zl

]
dzl + θa

dIL
IL

= − θa
zl − α

zl (1− zl)
dzl + θa

dIL
IL

(B.9)

= − θa
β

θa

1

πL πR

IL
BL

+ θa
dIL
IL

using (B.3)

= − θa ΩL

[
dIL
IL
− dBL

BL

]
+ θa

dIL
IL

using (B.7) for party L

= θa

[
(1− ΩL)

dIL
IL

+ ΩL
dBL

BL

]
(B.10)

The line (B.9) in this calculation illustrates another aspect of the agency distortion:

an increase in zl when it is already above α reduces πl and therefore goes against the party

leaders’ interest. But there is also the beneficial direct effect of an increase in IL. When

everything is added together, the final result (B.10) shows that the net effect of a larger

budget is beneficial for the victory probability.
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Now we can calculate the effects of variations in (IL, BL) around the symmetric

equilibrium on the objective function (4) of L-party leaders.

dUL = (V −BL) dπL − πL dBL − dIL

= (V −BL) πL πR θa

[
(1− ΩL)

dIL
IL

+ ΩL
dBL

BL

]
− πL dBL − dIL

= [ (V −BL) πL πR θa (1− ΩL)− IL ]
dIL
IL

+ [ (V −BL) πL πR θa ΩL − πL BL ]
dBL

BL

Therefore the first-order conditions for the optimum choice of (IL, BL) are

(V −BL) πL πR θa (1− ΩL) = IL

(V −BL) πL πR θa ΩL = πL BL

or, using πL = πR = 1
2
, and dropping subscripts since the same condition holds for both

parties,

(V −B) θa (1− Ω) = 4 I (B.11)

(V −B) θa Ω = 2 B (B.12)

Divide these to write

Ω

1− Ω
=

1

2

B

I
(B.13)

or

(z − α)2

α (1− α)
=

1

2

B

I
(B.14)

We know from (B.3) and (B.7) that z is an increasing function of I/B, and z > α;

therefore the left hand side of (B.14) increases as I/B increases. The right hand side

decreases as I/B increases, and spans the whole range from ∞ to 0. Therefore this

equation yields a unique solution for I/B. Then z and Ω can be calculated.
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Next, (B.12) gives

B =
θa Ω

2 + θa Ω
V (B.15)

This completes the solution. Note that B < V , and the ratio B/V is higher when θa is

higher (the agent has higher marginal productivity) and when Ω is higher (when the

agency problem is more severe).

Finally, using (B.13), we get the size of each party’s budget assigned to its agent

transfers to the electorate:

I =
1

2

1− Ω

Ω
B = 1

2
θa (1−Ω)
2+θa Ω

V .

Therefore each party’s utility in equilibrium is

Ub = 1
2

(V −B)− I = 1
2

[
1− θa

2 + θa Ω

]
V , (B.16)

where the subscript b on the utility indicates that both parties are using agents.

Now we can compare utilities in the equilibria of the subgames where neither party

is using an agent and where both are using agents. From (??) and (B.16), we have

Ub − Un =
θa θp Ω− 2 (θa − θp)

4 (2 + θa Ω)
V .

In the limiting case where θa = θp, this is positive. If the equilibrium of the full game is one

where both parties use agents, it cannot be a prisoner’s dilemma. But if θa is sufficiently

greater than θp, such a dilemma is possible. In the text we discuss this in the context of

numerical results and historical applications.
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C. Subgame where only party L has an agent

Here we have a two-stage game. At the first stage, party L chooses the budget IL

and bonus BL for its agent while party R chooses its uniform per capita transfer amount r.

In the second stage, L’s agent chooses the targeted transfers lc and ls. As usual this is

solved by backward induction, starting with the second-stage decision problem given

(IL, BL) and r.

The agent wants to maximize AL subject to the given budget IL. This is the same

problem as in Appendix C, and leads to the same condition (B.3), which I rewrite as

πL (1− πL)
zl − α

zl (1− zl)
=
β

θa

IL
BL

, (C.1)

where zl = lcNc/IL is the fraction of the budget the agent allocates to the core supporters.

Also, the same calculation that led to (B.8), but now remembering rc = rs = r,

yields

πL
1− πL

=
f(lc, ls)

f(rc, rs)
=
Aa l

θa α
c l

θa(1−α)
s

Ap rθp

=
Aa
Ap

zθa αl (1− zl)θa(1−α) IθaL

N θa α
c N

θa(1−α)
s

1

rθp
(C.2)

These two equations define zl and πL as functions of (IL, BL) and r.

Consider how zl and πL change as (IL, BL) and r change. Logarithmic

differentiation of (C.1) yields

dπL
πL
− dπL

1− πL
+

[
1

zl − α
− 1

zl
+

1

1− zl

]
dzl =

dIL
IL
− dBL

BL

,

or, using (B.5), which remains valid because the L agent’s optimality conditions thus far
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are the same,

1− 2πL
πL (1− πL)

dπl +
1

Ω

β

θa

1

πL (1− πL)

IL
BL

dzl =
dIL
IL
− dBL

BL

.

This simplifies to

(1− 2 πL) dπl +
1

Ω

β

θa

IL
BL

dzl = πL πR

[
dIL
IL
− dBL

BL

]
. (C.3)

Next, logarithmic differentiation of (C.2) yields

dπL
πL

+
dπL

1− πL
= θa

dIL
IL

+ θa

[
α
dzl
zl
− (1− α)

dzl
1− zl

]
− θp

dr

r
,

or

1

πL (1− πL)
dπL = θa

dIL
IL
− θa

zl − α
zl (1− zl)

dzl − θp
dr

r
,

or, using (C.1),

1

πL (1− πL)
dπL = θa

dIL
IL
− β

πL (1− πL)

IL
BL

dzl − θp
dr

r
.

This simplifies to

dπL + β
IL
BL

dzl = πL πR

[
θa

dIL
IL
− θp

dr

r

]
(C.4)

The two comparative statics equations (C.3) and (C.4) can be solved for dzl and

dπL to get

dzl =
1

∆

πL πR
β

BL

IL

{
[1 + θa (2πL − 1)]

dIL
IL
− dBL

BL

− θp (2πL − 1)
dr

r

}
(C.5)

dπL =
1

∆
πL πR

{
1− Ω

Ω

dIL
IL

+
dBL

BL

− θp/θa
Ω

dr

r

}
(C.6)
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where (C.4):

∆ =
1

θΩ
+ 2 πL − 1 . (C.7)

If πL >
1
2
, which in turn ensures ∆ > 0, all comparative static effects have the

intuitive signs. (1) An increase in IL increases zL, the fraction the agent spends on core

supporters: the more relaxed budget enables him to indulge more in his preference. (2) An

increase in BL decreases zl: the incentive works to align the agent’s choice more closely

with the party leaders’ preferred level zl = α. (3) An increase in r decreases zL: greater

pressure of competition from the other party’s transfers forces the agent to reduce his

spending to indulge his own preference for a larger core club. (4) An increase in IL

increases πL: worsening of the agent’s moral hazard (higher zl) is not so severe as the

reduce the party’s probability of victory. (5) An increase in BL increases πL and an

increase in r reduces πL: these are obvious.

The property πL >
1
2

is intuitively appealing: an important reason to employ the

agent is to use his ability to make transfers with better targeting and higher productivity,

which should increase the probability of winning. But the general theory does not allow us

to prove this definitively. We will examine the issue using numerical solutions.

The comparative static results for stage 2 are needed for analyzing the stage 1 Nash

game between the party leaders. The L leaders choose (IL, BL) for given r to maximize

UL = πL (V −BL)− IL ,

and the R leaders choose r for given (IL, BL) to maximize

UR = (1− πL) V − r N .

We can use the comparative statics results of (C.6) to find the parties’ calculation of effects

of changes in their strategies (IL, BL) and r respectively, taking into account the L agent’s
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response at the second stage. We have total differentials of the objective functions:

dUL = (V −BL) dπL − πL dBL − dIL

= (V −BL)
πL πR

∆

{
1− Ω

Ω

dIL
IL

+
dBL

BL

}
− πL dBL − dIL

and

dUR = −V dπL −N dr

= V
πL πR
∆ Ω

θp
θa

dr

r
−N dr

Note the absence of dr in the expression for dUL and of (dIL, dBL) in the expression for

dUR, reflecting the Nash noncooperative assumption where each party takes the other’s

strategy as given.

Now party L’s first-order conditions can be found by setting the coefficients of dIL

and dBL separately equal to zero in the expression for dUL:

(V −BL)
πL πR

∆

1− Ω

Ω

1

IL
− 1 = 0 , (C.8)

(V −BL)
πL πR

∆

1

BL

− πL = 0 . (C.9)

The R party’s first-order condition is found by setting the coefficient of dr equal to zero in

the expression for dUR:

V
πL πR
∆ Ω

θp
θa

1

r
−N = 0 . (C.10)

The complete solution for the two stages together – for all five endogenous variables

IL, BL, r, zl and πL – is then implicitly defined by the five equations (C.1), (C.2), (C.8),

(C.9) and (C.10). No general inferences can be drawn from the algebra, so we resort to

numerical solution.
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D. Deriving θ from a Contest success function

From the text recall that Skaperdas shows in his Theorem 2 that the only form

satisfying certain desirable axioms is that when players 1 and 2 expend scalar efforts x1

and x2 respectively, the probability of winning for the first player should take the form

π1 =
xθ1

xθ1 + xθ2
,

and of course π2 = 1− π1 is the probability that player 2 wins.∗ The parameter θ captures

the marginal (incremental) returns to expending effort.

This is more easily understood by considering the odds ratio

π1

π2

=

(
x1

x2

)θ
.

Taking logarithms of both sides and differentiating,

d ln(π1/π2)

d ln(x1/x2)
= θ .

Thus θ is the elasticity of the odds ratio with respect to the effort ratio: increasing x1 by

1% relative to x2 will shift the odds ratio by θ% in player 1’s favor. Second-order

conditions of maximization impose limits on θ; for our purpose θ ≤ 1 will suffice.

Numerical Appendix

The two tables below provide more information about some of the equilibria that

figure (1) depicts. The tables contain all of the endogenous outcomes of the model, the

values of θa and V , and the four possible payoffs for each party. Table (1) contains the

endogenous outcomes of the model for both the case when only one party employs an agent

∗ . Skaperdas 1996.
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and when both parties employ an agent. Table (2) contains the payoffs for the parties for

all of the subgames in the model.
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Table 1: Equilibria Outcomes for β = 0.5

V θa-θp BL1 IL1 lc1 r1 πL1 BL2 IL2 lc2

100 0.8 6.526 2.731 3.579 0.974 0.837 17.718 9.655 9.35
100 0.6 7.333 2.926 3.809 1.338 0.784 15.501 7.037 7.298
100 0.4 7.996 2.829 3.699 1.838 0.703 12.721 4.55 5.172
100 0.2 7.621 2.005 2.749 2.339 0.587 9.054 2.294 2.99
100 0. 3.988 0.517 0.87 2.503 0.473 3.796 0.507 0.862
80 0.8 5.569 2.405 3.094 0.836 0.825 14.174 7.724 7.48
80 0.6 6.194 2.526 3.237 1.131 0.771 12.401 5.629 5.838
80 0.4 6.655 2.377 3.072 1.52 0.69 10.177 3.64 4.137
80 0.2 6.221 1.634 2.227 1.89 0.578 7.243 1.835 2.392
80 0. 3.19 0.414 0.696 2.003 0.473 3.037 0.406 0.69
60 0.8 4.538 2.039 2.561 0.686 0.808 10.631 5.793 5.61
60 0.6 4.979 2.086 2.619 0.909 0.753 9.301 4.222 4.379
60 0.4 5.25 1.895 2.413 1.189 0.672 7.632 2.73 3.103
60 0.2 4.787 1.253 1.695 1.435 0.566 5.433 1.376 1.794
60 0. 2.393 0.31 0.522 1.502 0.473 2.278 0.304 0.517
40 0.8 3.399 1.61 1.954 0.518 0.782 7.087 3.862 3.74
40 0.6 3.658 1.585 1.934 0.666 0.725 6.2 2.815 2.919
40 0.4 3.754 1.371 1.709 0.837 0.646 5.088 1.82 2.069
40 0.2 3.307 0.86 1.152 0.972 0.548 3.622 0.918 1.196
40 0. 1.595 0.207 0.348 1.001 0.473 1.519 0.203 0.345
20 0.8 2.07 1.061 1.214 0.318 0.729 3.544 1.931 1.87
20 0.6 2.152 0.976 1.134 0.387 0.67 3.1 1.407 1.46
20 0.4 2.108 0.776 0.935 0.454 0.596 2.544 0.91 1.034
20 0.2 1.753 0.449 0.591 0.496 0.518 1.811 0.459 0.598
20 0. 0.798 0.103 0.174 0.501 0.473 0.759 0.101 0.172
4 0.8 0.646 0.359 0.358 0.095 0.551 0.709 0.386 0.374
4 0.6 0.615 0.28 0.291 0.1 0.504 0.62 0.281 0.292
4 0.4 0.54 0.188 0.21 0.102 0.464 0.509 0.182 0.207
4 0.2 0.398 0.096 0.122 0.101 0.444 0.362 0.092 0.12
4 0. 0.16 0.021 0.035 0.1 0.473 0.152 0.02 0.034
The number after the outcome variables indicates the number of agents.
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Table 2: Party Utilities for β = 0.5

V θa-θp 1 No Agent 1 Agent No Agent 2 Agent

100 0.8 15.365 75.47 47.5 31.486
100 0.6 20.22 69.764 47.5 35.213
100 0.4 27.822 61.888 47.5 39.09
100 0.2 38.92 52.259 47.5 43.179
100 0 50.198 44.895 47.5 47.595
80 0.8 13.186 58.98 38. 25.189
80 0.6 17.174 54.393 38. 28.17
80 0.4 23.272 48.238 38. 31.272
80 0.2 31.865 41.015 38. 34.543
80 0 40.159 35.916 38. 38.076
60 0.8 10.828 42.78 28.5 18.892
60 0.6 13.911 39.344 28.5 21.128
60 0.4 18.478 34.909 28.5 23.454
60 0.2 24.614 29.989 28.5 25.907
60 0 30.119 26.937 28.5 28.557
40 0.8 8.204 27.01 19. 12.595
40 0.6 10.334 24.762 19. 14.085
40 0.4 13.339 22.03 19. 15.636
40 0.2 17.094 19.261 19. 17.272
40 0 20.079 17.958 19. 19.038
20 0.8 5.107 12.005 9.5 6.297
20 0.6 6.21 10.985 9.5 7.043
20 0.4 7.621 9.892 9.5 7.818
20 0.2 9.149 8.998 9.5 8.636
20 0 10.04 8.979 9.5 9.519
4 0.8 1.702 1.489 1.9 1.259
4 0.6 1.883 1.427 1.9 1.409
4 0.4 2.041 1.419 1.9 1.564
4 0.2 2.121 1.505 1.9 1.727
4 0 2.008 1.796 1.9 1.904
“1” indicates the payoff is when 1 party uses an agent.
“No Agent” indicates that the payoff is for the party that is not using an agent.
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