TYPICAL
PHYSICAL PROPERTIES OF SOME MATERIALS
|
|
|
Ultimate Strength |
|
|
|
|
|
|
|
Material |
kg/m3 |
Tension MPa |
Comp. MPa |
Strength |
Elasticity |
ratio |
Thermal Exp. |
Conductivity |
|
Aluminum 2014-T6 |
2800 |
470 |
|
410 |
72 |
0.33 |
23 |
210 |
|
(alloy)
6061-T6 |
2800 |
228 |
|
131 |
70 |
0.33 |
23 |
210 |
|
|
|
|
|
|
|
|
|
|
|
Brass cold rolled |
8470 |
540 |
|
420 |
105 |
0.35 |
19 |
105 |
|
annealed |
8470 |
330 |
|
100 |
105 |
0.35 |
19 |
105 |
|
|
|
|
|
|
|
|
|
|
|
Bronze Manganese |
8800 |
450 |
|
170 |
100 |
0.34 |
20 |
58 |
|
|
|
|
|
|
|
|
|
|
|
Cast Iron |
|
|
|
|
|
|
|
|
|
Gray |
7200 |
170 |
650 |
|
95 |
0.25 |
12 |
45 |
|
Malleable |
7200 |
370 |
|
250 |
170 |
0.25 |
12 |
45 |
|
|
|
|
|
|
|
|
|
|
|
Concrete |
|
|
|
|
|
|
|
|
|
Low
strength |
2400 |
2 |
20 |
|
22 |
0.15 |
11 |
1 |
|
High
strength |
2400 |
3 |
41 |
|
32 |
0.15 |
11 |
1 |
|
Medium
strength |
2400 |
4 |
62 |
|
40 |
0.15 |
11 |
1 |
|
|
|
|
|
|
|
|
|
|
|
Copper hard-drawn |
8900 |
380 |
|
330 |
120 |
0.33 |
17 |
380 |
|
|
|
|
|
|
|
|
|
|
|
Glass Silicon |
2400 |
80 |
400 |
|
70 |
0.17 |
8 |
0.8 |
|
|
|
|
|
|
|
|
|
|
|
Magnesium 8.5% Al |
1800 |
350 |
|
250 |
45 |
0.35 |
26 |
160 |
|
|
|
|
|
|
|
|
|
|
|
Steel |
|
|
|
|
|
|
|
|
|
0.2%C HR |
7850 |
410 |
|
250 |
200 |
0.30 |
12 |
42 |
|
0.2%C HR |
7850 |
550 |
|
350 |
200 |
0.30 |
12 |
42 |
|
0.2%C HR |
7850 |
690 |
|
370 |
200 |
0.30 |
12 |
42 |
|
0.8%C HR
quenched |
7850 |
830 |
|
700 |
200 |
0.30 |
12 |
42 |
|
|
|
|
|
|
|
|
|
|
|
Stainless 302 CR |
7920 |
860 |
|
600 |
194 |
0.30 |
17 |
18 |
|
|
|
|
|
|
|
|
|
|
|
Titanium 6% Al 4%V |
4460 |
900 |
|
830 |
110 |
0.34 |
9 |
14 |
|
|
|
|
|
|
|
|
|
|
Properties vary widely depending on changes in composition, temperature and treatment conditions.
CR = Cold rolled HR = Hot rolled
IMPORTANT
CONSTANTS
|
Constant |
|
SI Unit |
|
Absolute zero |
-459.67 °F |
-273.15 °F |
|
Acceleration of gravity |
32.174 ft/s2 |
9.8066 m/s2 |
|
Atmospheric pressure |
14.694 psi |
0.10132x106 Pa |
|
Stefan-Boltzmann constant |
0.1714x10-8 Btu/hr ft2 °R4 where °R
= °F + 459.67 |
5.669x10-8 W/m2 °K4 where °K = °C +
273.15 |
APPROXIMATE
PROPERTIES OF MILD STEEL AT ROOM TEMPERATURE
|
Quantity |
|
SI Unit |
|
Conductivity |
28.9
Btu/ft hr °F 2.4 Btu/in hr °F |
50 W/m °C |
|
Density |
15.13
slug/ft3(lbf s2/ft4) 0.730x10-3 lbf s2/ft4 0.282 lbm/in3 |
7800 kg/m3 |
|
Elastic modulus |
30x106 psi |
207x109 Pa |
|
Specific
heat |
0.11 Btu/lbm °F |
460 J/kg °C |
|
Yield
stress |
30x103 psi |
207x106 Pa |
SI
System – Units
|
|
|
|
|
||||||
|
Temperature |
Kelvin |
K |
|
||||||
|
|
|
|
|
||||||
|
Length |
meter |
m |
|
||||||
|
Time |
second |
s |
|
||||||
|
Mass |
kilogram |
kg |
|
||||||
|
|
|
|
|
||||||
|
Force |
newton |
N |
kg·m/s2 |
||||||
|
Pressure |
pascal |
Pa |
N/m2 |
||||||
|
Work and energy |
joule |
J |
N·m |
||||||
|
Power |
watt |
W |
J/s |
||||||
|
|
|
|
|
||||||
|
Electric current |
ampere |
A |
|
||||||
|
Electric charge |
coulomb |
C |
s·A |
||||||
|
Electric potential |
volt |
V |
W/A |
||||||
|
Electric resistance |
ohm |
|
V/A |
||||||
|
Electric conductance |
seimens |
S |
A/V |
||||||
|
Capacitance |
farad |
F |
C/V |
||||||
|
Permittivity |
|
|
F/m |
||||||
|
|
|
|
|
||||||
|
Magnetic flux |
weber |
Wb |
V·s |
||||||
|
Magnetic flux density |
tesla |
T |
Wb/m2 |
||||||
|
Inductance |
henry |
H |
Wb/A |
||||||
|
Magnetic field |
|
|
A/m |
||||||
|
Permeability |
|
|
H/m |
||||||
|
|
|
|
|
||||||
|
Concentration |
|
|
mol/m3 |
||||||
|
Frequency |
hertz |
Hz |
cycle/s |
||||||
|
|
|||||||||
|
Common SI Prefixes |
|||||||||
|
Tera |
T |
1012 |
|
milli |
m |
10-3 |
|||
|
Giga |
G |
109 |
|
micro |
|
10-6 |
|||
|
Mega |
M |
106 |
|
nano |
n |
10-9 |
|||
|
Kilo |
k |
103 |
|
pico |
p |
10-12 |
|||
Constants
|
|
Symbol |
|
|
|
|
|
|
|
|
|
|
Electron charge |
e0 |
1.602 x 10-19 C |
|
Electron mass |
me |
9.1091 x 10-31 kg |
|
Bohr magneton |
|
9.273 x 10-24 J/K |
|
Boltzmann constant |
k |
|
|
Avogadro’s number |
Nav |
|
|
Gas constant |
R |
8.314 J/(mol K) |
|
Faraday’s constant |
F |
9.6485 x 104 C/mol |
|
Permeability of free space |
|
4 |
|
Permittivity of free space |
|
8.854 x 10-12 F/m |
|
Characteristic impedance of free space |
z0 |
377 |
|
Speed of light in vacuum |
c0 |
2.998 x 10-8 m/s |
|
Atmospheric pressure |
patm |
101.325 kPa |
|
Zero degrees Celsius |
0°C |
273.15 K |
|
Gravitational constant |
G |
6.673 x 10-11 N·m2/kg2 |
|
|
|
|
Notes:
· 1Å = 1 ångström = 10-10 m
· Avogadro’s number is the number of elementary entities in one mole. The elementary entity must be specified; it may be atoms, molecules, ions, electrons or other particles. Values found for Avogadro’s number range within 1% of the listed value.
·
Relationships between constants:
.
USEFUL RELATIONSHIPS AMONG
ISOTROPIC
ELASTIC CONSTANTS

Also Useful
Are
![]()
Constant Names
Lame's constants
Shear modulus
Bulk modulus
Young's modulus
Poisson's ratio
UNITS, CONVERSIONS AND
ABBREVIATIONS
General
Prefixes
10 deka
(da) 10-1 deci (d)
102 hecto (h) 10-2 centi (c)
103 kilo (k) 10-3 milli (m)
106 mega (M) 10-6 micro (m)
109 giga (G) 10-9 nano (n)
1012 tera (T) 10-12 pico (p)
1015 peta (P) 10-15 femto (f)
1018 exa (E) 10-18 atto (a)
Length
1 meter (m) = 100
centimeters (cm) = 3.281 feet (ft) = 39.37 inches (in)
1 mile = 5280 ft = 1.609
kilometers (km)
1 micron (m) = 10-6 m
1 angstrom (Å) = 10-10 m
Area
1 hectare (ha) = 104 square meters (m2) = 2.47 acres
1 acre = 43,560 square feet
(ft2)
1 barn (b) = 10-24 cm2
Volume
1 cubic meter (m3) = 1000 liters = 264.2
1 liter (1) = 103 cubic centimeters(cm3 or ml) = 1.057
1 acre foot = 1.234 x 103 m3
1 cord = 128 ft3
1 board foot = 2.36 x 10-3 m3
1 cubic mile = 4.17 cubic
kilometers (km3)
1 barrel of petroleum (bbl)
= 42
Angles
360 degrees (°) = 2p radians
1 degree = 60 minutes (') of
arc
1 minute of arc = 60 seconds
(") of arc
Time
1 year (y or yr) = 3.1536 x 107seconds (s or sec)
= 8.76 x 103 hours (h or hr)
1 day (d) = 8.64 x 104 sec = 1440 minutes (min)
Mass
1 kilogram (kg) = 2.205
pounds (lb)
1 metric ton (tonne or MT) = 103 kilograms (kg)
= 1.102 short tons
= 0.9842 long tons
1 pound (lb) = 16 ounces
avoirdupois (oz) = 453.6 grams (g)
Energy
1 joule (J) = 1 kg m2/sec2
= 107 ergs = 0.2390 calories (cal)
= 9.484 x 10-4 British thermal units (Btu)
= 1 watt-second (Ws)
= 6.242 x 1018 electron volts (eV)
= 1 newton-meter (Nm)
1 kilowat-hour (kWh) = 3.6 x 106 J
= 3414 Btu
1 quad = 1015 Btu = 1.05 x 1018 J
1 Calorie = 1 kilocalorie
(Kcal) = 103 cal
1 therm = 105 Btu
1 foot pound = 1.356 J
1 kiloton of TNT (KT) = 4.2
x 1012 J
Power
1 watt (W) = 1 joule/second
1 horsepower (hp) = 0.746
kilowatts (kW)
Force
1 newton (N) = 1 kg m/sec2 = 105 dynes (dyn)
Pressure
1 pascal = 1 N/m2 = 1 J/m3
1 bar = 105 pascal = 0.9869 atmospheres (atm)
1 atmosphere (atm) = 76 cm of mercury
= 14.7 lb/in2
= 760 torr
Viscosity
1 poise (p) = 1 dyn-sec/cm2 = 0.1 kg/m sec
Permeability
1 Darcy = 10-12 m2
Quantity |
Units /
Conversion |
|
General |
|
|
Acceleration |
1
in/s2 = 0.0254 m/s2 |
|
Area |
1
in2 = 645.16 mm2 |
|
Density (i) |
1
lbm/in3 = 27679.905 kg/m3 |
|
(ii) |
1
slug/ft3 = 515.379 kg/m3 |
|
Force |
1
lb = 4.448 N (N = |
|
Frequency |
Hz
(hertz = cycle/s) |
|
Length |
1
in = 0.0254 m; 1 ft = 0.3048 m |
|
Mass (i) |
1
lbm = 0.45359 kg |
|
(ii) |
1
slug = 14.594 kg |
|
Moment |
1
in-lb = 0.1130 N
• m |
|
Moment of
inertia (area) |
1
in4 = 416231.4 mm4 |
|
Moment of
inertia (mass) (i) |
1
lbm-in2 = 2.9264 10-4 kg • m2 |
|
(ii) |
1
slug-in2 = 0.009415 kg • m2 |
|
Power (i) |
1
in-lb/s = 0.1130 W (watt = J/s) |
|
(ii) |
1
hp = 0.746 kW (1 hp = 550 ft-lb) |
|
Pressure |
1
psi = 6894.8 Pa (psi = pounds/in2; Pa = N/m2) |
|
Stiffness |
1
lb/in = 175.1 N/m |
|
Stress (i) |
1
psi = 6894.8 Pa |
|
(ii) |
1
ksi = 6.8948 MPa; 1 MPa = 145.04 psi |
|
Time |
s (second) |
|
Velocity |
1
in/s = 0.0254 m/s |
|
Volume |
1
in3 = 16.3871 10-6m3 |
|
Work,
energy |
1
in-lb = 0.1130 J (joule = N • m) |
|
|
|
|
Heat
Transfer |
|
|
Convection
coefficient |
1
Btu/h.ft2 °F = 5.6783 W/m2 °C |
|
Heat |
1
Btu = 1055.06 J (1 Btu = 778.17 ft-lb) |
|
Heat flux |
1
Btu/h.ft2 = 3.1546 W/m2 |
|
Specific
heat |
1
Btu/°F = 1899.108 J/°C |
|
Temperature (i) |
T °F = [(9/5)T + 32] °C |
|
(ii) |
T °K = T °C + 273.15 (K = kelvin) |
|
Thermal
conductivity |
1
Btu/h.ft °F = 1.7307 W/m. °C |
|
|
|
|
Fluid Flow |
|
|
Absolute
viscosity |
1
lb.s/ft2 = 478.803 P (poise = g/cm • s) |
|
Kinematic
viscosity |
1
ft2/s = 929.03 St (stroke = cm2/s) |
|
|
|
|
Electric
and Magnetic Fields |
|
|
Capacitance |
F (farad) |
|
Charge |
C (coulomb) |
|
Electric
charge density |
C/m3 |
|
Electric
potential |
V (volt) |
|
Inductance |
H (henry) |
|
Permeability |
H/m |
|
Permittivity |
F/m |
|
Scalar
magnetic potential |
A (ampere) |
|
|
|
FORMAT OF DYNAFLOW OUTPUT
FILES
This Appendix defines the format of files generated by DYNAFLOW. The data may then be read and converted into the form required by a post-processing program.
Each data set starts with a header of the form:
title
which contains up to 80 characters and is the same as the title defined by the command "DEFINE_PROBLEM" (see Sections 2.1 and 2.2).
Each output file is closed by the following data lines:
title
-1
E.1 TAPE90.name: Nodal
Coordinates/Connectivity Data
title
numnp, nsd, ndof, numeg
for node = 1, numnp
node, (x (i, node), i=1, nsd)
end
-1
for neg = 1, numeg
neg, idum, nen, numel, iopt, el_shape, el_name, reg_name
for ne = 1, numel
ne, mat(ne), (ien(i,ne), i=1, nen)
end
end
where:
numnp = number of nodal points
nsd = number of spatial dimensions
ndof = number of degrees of freedom per node
numeg = number of element groups
neg = element group number
nen = number of nodes per element
numel = number of elements
iopt = 0 2d plane analysis
1 1d analysis
2 axisymmetric analysis
3 3d analysis
el_shape = element shape (character string)
el_name = element name (character string)
reg_name = region name (character string)
ne = element number
mat = material number
ien = connectivity list
E.2 TAPE87.name:
Nodal Results
title
ns, io, label, ‘step’, ns
for node = 1, numnp
node, (d(i, node), i=1, ndof)
end
-1
where:
ns = step number
label = ‘displacement’ (io=1)
‘velocity’ (io=2)
‘acceleration’ (io=3)
‘reaction’ (io=4)
‘eigenshape’ (io=5)
E.3 TAPE96.name: Strain
Energy
title
ns, io, ‘field_w’, ‘step’, ns
for ne = 1, numel_tot
ne, neg, energy
end
-1
E.4 TAPE89.name: Field Results
title
for neg = 1, numeg
for ne = i, numel (neg)
ne, (field (i,ne), i=1, ncomp)
end
end
-1
E.5 TAPE88.name: Time Histories
title
nts, ‘time’
(time(i), i=0, nts) (8 values per line)
title
nts, i1, i2, io, neg, label1, label2, label3, i1, label4, neg
(comp(i), i=0, nts)
where:
nts = number of time steps
i1 = node/element number
i2 = component number
label1 = ‘displ.’ for diplacement (io=4)
‘veloc.’ for velocity (io=5)
‘acc.’ for acceleration (io=6)
‘react’ for reaction (io=15)
‘stress’ for solid element (io=1,2,3)
label2 = component name (character string)
label3 = ‘node’ for nodal time history
‘elmnt’ for field time history
label4 = ‘group’ for field time history
neg = group number (for field time history)
Notes . .