10.3 Stress_Model: Hyperelasticity Model
HYPERELASTIC
Material_name = HYPERELASTIC
Material_set_number = mset , etc...
The following hyperelastic stored energy function with uncoupled volumetric and deviatoric parts is employed:
![]()
where
![]()
It follows that the Kirchhoff stress is given
by:
![]()
Note Variable Name Type Default Description
• Keywords Read Method
Material_set_number integer [1] Material set number
Numat
Hyperelastic_case integer [0] Hyperelastic free energy function:
![]()
![]()
Mass_density real [0.0] Mass density![]()
Shear_modulus real [0.0] Shear modulus G
Bulk_modulus real [0.0] Bulk modulus B
(1) Solid_mass_density real [0.0] Mass density (Solid Phase) ![]()
(1) Fluid_mass_density real [0.0] Mass density (Fluid Phase) ![]()
(1) Fluid_bulk_modulus real [0.0] Fluid bulk modulus ![]()
(1) Porosity real [0.0] Porosity ![]()
(2) Initial_stress
initial_stress_11 real [0.0] Component 11 (
)
initial_stress_22 real [0.0] Component
22 (
)
(cont’d)
(cont'd)
Note Variable Name Type Default Description
initial_stress_33 real [0.0] Component 33 (
)
initial_stress_33 real [0.0] Component 33 (
)
initial_stress_12 real [0.0] Component 12 (
)
initial_stress_12 real [0.0] Component 12 (
)
initial_stress_23 real [0.0] Component 23 (
)
initial_stress_31 real [0.0] Component 31 (
)
• List Read Method
Material data must follow in the form:
<
m, IHyper(m), G(m), B(m),
(m),
(m),
(m),
(m), Pf(m) >
< (Stres(i, m), i = 1, 6) >
< terminate with a blank record >.
Notes/
(1) Only applicable to porous media models.
(2) Tensile stresses are positive.