10.13 Stress_Model:
Mohr_Coulomb Elasto-(Visco-)Plastic Model
MOHR_COULOMB
Material_name = MOHR_COULOMB
Material_set_number = mset , etc...
The yield function is of the following type:
![]()
where a = attraction = c/tanφ, c=cohesion and
φ=friction
angle,
![]()
in which
![]()
![]()
and
material parameter:
![]()
The following hyperelastic stored energy function with uncoupled volumetric and deviatoric parts is employed:
![]()
where
![]()
Note Variable Name Type Default Description
• Keywords Read Method
Material_set_number integer [1] Material set number
Numat
(1) Hyperelastic_case integer [0] Hyperelastic free energy function:
![]()
![]()
Mass_density real [0.0] Mass density ![]()
Shear_modulus real [0.0] Shear modulus G
Bulk_modulus real [0.0] Bulk modulus B
Activation_time real [0.0] Time at which nonlinearities are activated.
Friction_angle real [0.0] Friction angle
> 0.0
Cohesion real [0.0] Cohesive coefficient c
Dilation_angle real [0.0] Dilation angle
0.0
Tension_cutoff list [off] Tension cutoff options
on / off
Relaxation_time real [0.0] Relaxation time constant
0.0
0.0,
Elastoplastic
> 0.0, Elastoviscoplastic
Variable_cohesion integer [0] Variable cohesion load time function number
Variable_friction integer [0] Variable friction angle load time function
number
(2) Initial_stress
initial_stress_11 real [0.0] Component 11 (
)
initial_stress_22 real [0.0] Component 22 (
)
initial_stress_33 real [0.0] Component 33 (
)
initial_stress_12 real [0.0] Component 12 (
)
initial_stress_23 real [0.0] Component 23 (
)
initial_stress_31 real [0.0] Component 31 (
)
(cont’d)
(cont'd)
Note Variable Name Type Default Description
(3) Solid_mass_density real [0.0] Mass density (solid phase) ![]()
(3) Fluid_mass_density real [0.0] Mass density (fluid phase) ![]()
(3) Fluid_bulk_modulus real [0.0] Fluid bulk modulus ![]()
(3) Porosity real [0.0] Porosity ![]()
• List Read Method
Material data must follow in the form:
< m, IHyper(m), G(m), B(m),
(m),
(m),
(m),
(m), Pf(m) >
<
(m), c(m),
(m),
(m),
ltime_coh(m), ltime_phi(m) >
< (Stres(i, m), i = 1, 6) >
< terminate with a blank record >.
Notes/
(1) Only applicable to finite deformation case (see Section 9.2.1).
(2) Tensile stresses are positive.
(3) Only applicable to porous media models.
Notes . .