MULTIVARTATE TRANSVARTATION THEORY
AMONG = SEVERAL DISTRIBUTIONS AND ITS

ECONOMIC APPLICATTIONS

Camilo Dagum

‘Econometric Research Program
Research Memorandum.No, - 100
June 1968

The research described in this paper was
supported in part by National Science
Foundation Grant NSF GS 1840 and in part
by Office of Naval Research NOOO1k-67

- A-0151-0007. Task No. OL7-086.

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Princeton University
Econometric Research Program
207 : Dickinson Hall
Princeton, New Jersey



MULTTVARTATE TRANSVARTATTON THEORY AMONG SEVERAL DISTRIBUTIONS

AND ITS ECONOMIC APPLICATIONS®

Camilo Dagum
Econometric Research Program
Princeton University

1. Introduction

The theory of transvariation was introduced by C. Gini [1916] and
developed by this author and his school of statistics.l

This paper dealt with nonparametric and Gaussian transvariation theory
between two or more than two multivariate distribution functions and its
applications to economics.

The following probabilistic notation and abbreviations will be used.

By Ai(i=1,...,s), we denote a random experiment or random observation
(r.e. . In each realization of an r.e. we are interested in the probabilities
that certain events will occur. Thus, we are interested in the measurement or
observation of numerical  quantities associated with each r.e.. For example,
one may be interested in the observations of prices, wages, measurements of
output and so on. Such numerical quantities are sample realizations of a

random variable. (r.v.) gi(i=l, «e.,8) that can assume values in a space of n

dimensions (n > 1). Hence, a random variable gi = éiﬁni) is a real valued

function defined for all sample point Wy of a basic probability space

*The subject of this paper was discussed in the Econometric Research Program
Seminar under the direction of Professor Oskar Morgenstern and in the Department
of Statistics Seminar under the direction of Professor John W. Tukey. The
author is very much indebted to them for their interest in this subject and
stimulating comments.

;For an exhaustive up-to-date bibliography on transvariation see Camilo
Dagum [1968].
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(Q.,F,P. ), for i=l,...,s. Qi denotes a sample space, wherein a sample point

i1
(elementary event) ®, e‘Qi, and a set Ei of sample points is a subset in
the sample space, such that Ei. (jni . Fi is a 0-field of sets in Qi and
Pi is a probability measure for sets in a O-field 'Fi .

Each r.v. gini), for i=1,...,s, induces a new probability space (Qi;Fi’P£>
from a basic probability (Qi,Fi,Pi)- In fact, the set of values that gihni)
can teke for all w, € O, defines Qi , that is the sample space (range space)
of gini). The inverse function ‘Egl takes every interval gi < xi into a
measureable W, set. Therefore, if Fi is a o0-field of sets in Qi, the
r.v. gikbi) maps the sample points wy in Qi into sample points gi in

1 . 1 H 3
Qi such that, for every Borel set Ei € Fi , there is an.event Ei € Fi’ Ei(: Q55

1
for which gicni) € Ei . Hence, the inverse image of the set -Ei is
- emln!
E, = & &)
and.
-1
P! (E') = E!
1B = Po(E &) )

By Fi(xil’°'°’xin) we denote a cumulative distribution function (c.d.f.),

where

j—.ul- K . s s 0 = . o e a N i= o e e 5
( 8,) Fl (Xll} }Xin) Pl(gil S Xll) 2 Ein S Xin)} lJ JSJ
or -in.a more compact notation

l‘l-b) F = < 1= . e .

( ) = Byls =xy) =108

The k-dimensional marginal c.d.f., for the first %k ordinates, is

(1.2) Fy (e o%y) = P



The sample spaces Qi of gi(i=l,...,s) are contained in the n-dimensional

Euclidean space. If nothing is specified, it will be clear from the contest,

whether we are working with. the entire Euclidean space or its non-negative sub-

space. Many economic variables (prices, outputs, incomes, etc.) are non-negatives.

2. Multivariate Transvariation Theory

2.1 Let Ai(i=l;...,s) be an r.e. and

(2.1) gi :(gil,...,gin)
a multivariate random variable -associated to the r.e. Ai . The multivariate
rov. & = Ei(wi)/induces the probability space
t f 1

2.2 Q
(2.2) ( R Pi)
where

. 1 < = = 1 v o e <
(2.3) e, <) = F(x) = ByE Sxpneenty <x )

is the c.d.f. of {(2.1).
Let

(2.&) A= (hil,..,,kin) € R

be an arbitrary real parameter vector.
Iet A= mi’Aj)’ i,3=1,...,8; 1 + Js - be a.combined r.e. to which is asso-
ciated the multivariate r.v.

(2.5) E=(;, E.)

that induces the probability space

1 t 1



where Q'. is the Cartesian product of the sample spaces Q; and Q' and Fij
1 : J

is the product O-field of Fi and ng. With -Pij is denoted the probablility

‘measure of the product measurable space -(Qij, F£j> .

The parameter vector

is associated to the r.v.(2.5).
Given a combined r.e. A = (Al’Aé) and using the r.v. (2.5) associated with

2
it, as well as the parameter vector.(2.7), we define

(2'8) T = §2 - E‘l = (‘521 - gll:"': E‘En'- gln)»= (Tl)"':Tn)
and
(2.9) S (7*21 = Moty "7.‘1n) = @y ’O‘n)

‘We assume, without a lost in generality, that « is a nonpositive vector,

with at least one element strictly negative, i.e.

(2.10) a <0, aat = Za, > 0

Definition of k-dimensional marginal transvariation (L <k <n): Given

a .combined r.e. A = (Al’AE) to which is associated the ©2n-dimensional r.v.
(2.5), we define a k-dimensional marginal transvariation between the multivariate.
and - §2 and the parameter vectors A and A

random variables § , when the

1 A 2
differences Koy - Xy = th are of opposite sign to the differences
-thv— %lh = ah for 'k values of h .

gFor the sake of notational simplification, we will deal from now on, with the
random variables -&. and § (i=1 and j=2) .until we arrive to the development
of multivariate transvaria%ion;theory among several distributions (s.>2) in
section 7 .



Range of a marginal transvariation: The absolute value of H(Xgh-xlh) =1II th 5

for the k dimensions considered, defines the range of its corresponding transvariation.

Convention 1l: Given a sample of independent replications of a combined r.e. A we

then compute as transvariations one half of the number of null differences, i.e.,

one half of the times we observe Xop = Ky S 0 , for at least one out of the k

coordinates, in the realization of each combined r.e..

s . - - H
Convention 2: If a, = hEh - th = 0 Tfor ©® components out of the k's

considered in . (2.9), then we drop their corresponding components in (2.8) and we

work with the (k-h)-dimensional marginal transvariation.

Counvention 3: We will assume from now on that the . k-dimensional marginal trans-

variation that we are dealing with are the first k coordinates of the r.v. (2.8).

Marginal transvariability: The k-dimensional marginal transvariability

between a multivariate r.v. £ = (gl,gg), or its linear transformation 7 = gg-gf
and an arbitrary parameter A = (hl"kg)’ where o = kg - xl , 1s the proba-
bility that the r.v.
(2.11) ?(k) = (TlJ...,Tk)
takes a value
(2.12) t(k) = (tl, .,tk)
of sign opposite to the parameter
. = e O



Hence, by definition of marginal transvariability and taking account of

Convention 3 and the sign of (2.10) we have

(2.14) Pk T P(Tl>0,...,'rk>_0l Q< 0,..,,00 <O)
= d G(t
J ® (k)
t, >0
(k)=
where G(t(k)) is the c.d.f. of the k-variate r.v. T(k) .
LEMMA 1: Let
(2.15) bk By ek by = 0
be a median hyperplane. If
(2.16) P(T) St,.0,T S8 ) = G(o,-.0t)

is symmetrically distributed with respect to the origin, then

(2.17) P = 2

The hyperplane (2.15) divide the k-dimensional space in two half spaces.
The k-variate marginal transvariability is part of the amount of probability (the
amount of the unit mass) lying on the half space that does not contain the vector
(2.13).

Let
(2.18) h = (" -n') = (b

be a variable vector such that



(2.19) @<h<o0
where o was specified in (2.9) and (2.10). Now we introduce a new r.v.

(2.20) ‘T-h = (& - h") - (& - 1)

1

and applying the k-variate marginal transvariability definition to (2.20) with

respect to the parameter vector (2.13), we have

(2.21) P = P(1, >h

1 100t

> hkl Gy <0, <A < B < 0)

k

The expression (2.21) is a non~decreasing and non-negative set function for
decreasing values of h(k) -within its domain specified in (2.19). The 1limit of

(2.21) when h tend to « defines the maximum of the k-variate marginal

(k) (k)
transvariability of the r.v.:(2.11) with respect to the parameter vector (2.13).

Therefore,
. =113 L) o= <O,... <

(2.22) pn,k;M 1lim pn,k (h(k)) P(Tl>oal, ,’L’k>04k oy 0, e 0)
h, \=>0
(k) "7 (k)

and

2.2 <

(2.23) Pn,k = Pn,xsm =t

Marginal probability of transvariation: The ratio between a k-variate
marginal transvariability and its maximum defines the k-variate marginal proba-

bility of transvariation. Hence,

Pn,k

(2.24) P =
pn,k;M

n,k



The relevant characteristics of the marginal probability of transvariation

are straightforward adaptation of those pointed out in. Dagum. (1968).

Convention.k: If the maximum of the marginal transvariability is null, a fortiori,

the marginal transvariability will also be null. In that particular case we

assign the value zero to the marginal probability of transvariation.

Marginal moment of transvariation: The expectation of the r power of the

_th
range of a k-variate marginal transvariation. defines the r marginal moment

of transvariation in a k-dimensional space. Hence

k ,
r .
(2.25) mr;n,k = E( i%& Tt > 0, a, < 0; i=1,...,k).

The marginal moment of transvariation of the r.v. (2.20) with respect to the

parameter vector (2.1%) is a function of h . Thus
k r
(2.26) mr;n,k(h(k)) = E( iii(ii - ) | 7> h,, a; <0; i=1,...,k) .

The limit of (2.26) for h(k) ff>-a(k) defines the maximum of the k-dimen-

sional marginal moment of transvariation of the order r .. Therefore
2.2 = i
(2.27) mr;n,k;M hllm s mr;n,k(h(k))

(k) (k)

T X
= E( I (t, - ai) IT.i>Oti, a; <0 i=l,...,k) .

The k-dimensional marginal moment of transvariation and its maximum contain,
as a particular case, the k-dimensional marginal transvariability and its corres-

ponding maximum. In fact, they are obtained when we give to r +the value zero.

a




As in the bivariate case, the marginal moment of transvariation and its

maximum satisfy  the following inequalities, that determine their corresponding

domain
. < <

(2.28) 0= mr;n,k - mr;n,k;M - Br;n,a(k)

) th s
where Br'n o defines the kr absolute product moment of the deviations

2 (k)
T(k>- a(k)’ with the proviso that the power of each component of the random
vector 'T(k>- a(k) is equal to r . Therefore
k E

(2.29) B . = E( 1|7, -o,|7)

r,n,a(k) jop T i

The marginal moment of transvariation, its maximum and the absolute product
moment of (2.28) are measures of the degree kr . Then, it is convenient, for
bractical and theoretical purposes, to introduce a zero degree measurement with
range in the unit interval. This is achieved by the introduction of the intensity
of transvariation concept.

th

Marginal intensity of transvariation: The r root of the ratio between

the rth marginal moment of transvariation (2.25) and its maximum (2.27)

t R . . .
.defines the r b marginal intensity of transvariation in a k-dimensional space.

Then L
m K r
(2.30) I = (SRR r=1,2,.
r;n,k m
r;n,k;M

For r=1 , we have

m
(2.51) I = _._:I;Lnié____
ml;n,k;M
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‘The relevant characteristics of the marginal intensity of transvariation are
similar to those of the marginal probability of transvariation. -In particular,
is
the range of Ir;n,k

< 1
(2.32) 0 < I <

We must observe that the probability of transvariation.deals with the sign
of the differences meanwhile, the intensity of transvariation deals with weighted
differences. That is why, in particular for small samples, both estimators give

estimates that can show a quite large difference.

Convention 5: If, as in Convention U4

(2.33) P(te) >0 lay <o) = P(Te) > %glagy <0) = o

(k

then we assign the value zero to the marginal intensity of transvariation.

3. Case of Two Independent Multivariate Random Variables

3.1. If the two multivariate random variables gl and 52 are independents,

we still have the same results obtained in the Pbreceding section for the marginal
probability and intensity of transvariation. But, under this assumption of in-
dependence we can introduce the concepts of marginal space of transvariation

-and marginal discriminative value.

3.2. Marginal space of transvariation: Let gl and §2 be two independent

random vectors. Hence, for their marginal c.d.f., we have, from (1.2)

(3.1) 'Fi(xi(k)) = Fi(Xil,...,xik) ; i=1,2.
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Let Nl and NE represent. the size of the populations corresponding to each
of the sample spaces Qfgl and §2 . Then we introduce the function g(x) of a

new r.v.1 defined as follows

(3.2.a) g(x(k)) = N fl(x(k)) if N fl(x(k)) < N fg(x(k>)

(3.2.v) g(x(k)) = N.T (x(k>) if N, f (x(k)) > Ngfg(x(k)),

55) g(x(k)) i g(xgk))
N N+,

The k-dimensional (1 <k < n-1) marginal space of transvariation is,

by definition, the common.frequencies of the k-dimensional random vector gl(k)

and g2<k> - divided by the size of the combined populations. (or samples).

Therefore
(3.4) -cn)k = % f dG(X(k)) % fdG(x(k>)
2 ()M (1) 2 (g )
and
(3.5) d G( ) = 0
\é;k *(x)
where ( )
(3.6) Loy = M) M%) C Ry
and
C H 1
(3.7) ‘Q(k)= Rk'\ Ql(k>n92(k)

Because of the definition given in (3.2) for g(x(k)), the space of

transvariation has the domain
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(3.8) ©.0<C <0.50 .

It takes the maximum value of Q.50 when Nl = N2 and gl(k) and g2(k) are

equivalent k-dimensional random vectors.

Ratio of the space of transvarigtion: The ratio between the marginal space

of transvariation (3.4) and its maximum, assuming -Nl = N2 and equivalent random

~vectors, defines the ratio of the marginal space of transvariation. Therefore

2
(3.9) Hn)k = 2 cn’k = 3 L/pd G(x(k))
Q

k)

3.3 Marginal discriminative value: Let gl, £o fl(x(k))’ fE(X(k))’Nl and N2

stand as in. section 3.2. Let nl(x(k)) be the error resultant from the assump-
tion that gli(1=l,...,k) is greater  (less).than Xi(1=l,...,k) and gg(x(k))
resultant from the assumption.that égi(i=l,...,k) is less (greater) than

x, (1=1, .. k).

Therefore, we define the error function by

) pl(x(k))+ QE(X(k))

(3.10) e(x
) N+

The value Z(k) of x( that minimizes the error function in‘(B.lo)

k)

defines the marginal discriminative value between the random vectors gl(k) and §2(ky

?This assumption does not imply that all components of the random vector gl(k>

will be taken respectively as greater (or less) than the corresponding com-
ponents of X(i) and the opposite behavior for sgg(k), but rather that when one
component . of El(k) is taken as greater than its corresponding components in X(k)’

the corresponding component. in '§2(k) is taken as less than, and vice versa.
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L. Case of Independence Between the Components of Each

Random Vector

If the n components of each random vector gi(i=l,2) in. (2.1) are
independents, we have, for the marginal transvariability, its maximum, and the

marginal probability of transvariation, from. (2.14), (2.22) and (2.24),

respectively
k k
° = < =
.1) pn,k r? P(Ti > OI ai 0) .H P,
i=1 i=1
k | k
(k.2) P o = IP(t.>a.|a, <0) = I o,
n,k;M i=1 1 174 i=1 i,M
k P(Ti > o|ai <0) k
+.3) P = I = I P,
n,k =1 P(Ti >'ai|ai <0) sop 1

where Pi is the one-dimensional marginal probability of transvariation between

the random component Ti = - & and its corresponding parameter .ai = A=A,

1i 21 11

For the marginal moment of transvariation, its maximum and the marginal in-

E21

tensity of transvariation, under the hypothesis of independence, we have, from (2.25),

(2.27)and (2.30), respectively.

k k
r :
. = T T, >0, 0. < = I
(k) Tk T B(vy |7, >0, 0, <0) op i
k - k
. = T, - O, > Q.. < =
(+.5) Mrin, kM ifﬁﬁf( 3 -y fry >aa <o) i?lmr,M,l
1
k mr 5 T k
(.06) I,y = D(77=—) =11
Tahs i=1 "r,M,1 i=1 ot



T

Then, the k-dimensional marginal intensity of transvariation.is equal to the
productof the one-dimensional marginal intensity of transvariation of each of the k

components.

If ai(i=l,.=.,k) is the median of T, , we have for .2)

-k
(Ll'"_() Pn,k,'M . = 2
and (4.3) becomes
k
_ k
4.8) an,k = 2 11 P,
i=1

If ai(i=l,...,k) is the mean of T,, then we have, for k.5)

x Kk

4.9) m = 2 II
r;n,k;M i=1 Br,ai

If we suppose further, that the random components gli and §2_ , for
i
i=1,...,k, are independent random variables and the size of their corresponding
populations are N.. and NEi respectively, for i=1,...,k, the marginal space

A

of transvariation defined in. (3.4) becomes

= by
l_l
o
Fop)
.
2
]
e e
o
[EN

(4.10) Cox = I WS

=}
\»
w
I
Il
ot
-
I
n
I

and, for (3.9)

'k
(&.11) B = I H

-
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5. Hypothesis of Normal Distributions

5.1 The n-variate normal distribution. The p.d.f. of the n-variate normal

distribution is

A N 1
(5.1) f(xl,...,xn) = T exp[ - 5 Q(xl,...,xn)]
(2m)?
where
i3
(5.2) Qlxpsesx ) = @A) (07) (x-2)
= X GlJ(Xi—Ki) (xj_xj)
1,
(5.3) Moo= E(x) i=1,...,n
(5-4) o5 = cov(xi,xj) = E(Xiexi) (Xj -Aj) ;0 i,3=1,...,n .
(5.5) C = (oij) .= covariance matrix
(5.6) C-l = (GlJ) = the inverse of the covariance matrix
(5.7) Rn = the sample space of the n-dimensional random variable,

i.e., the entire n-dimensional space.

The p.d.f. (5.1) will be denoted by

(5.8) /N[O‘-i); (G)]J i,3=1,...,n .
1d

The characteristic function of the n-variate normal distribution is

n

(5.9) Pluy,e-ou ) = Efexp i jfl u, xj)

o 1

= exp (i " ZAu, -=> Z a, u.w )
. 2 . h
o1 9 jon 9B J



5.2.
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LEMMA 2: let x = (Xl,...,x,) be a vector random variable having the
e 2 ; n

n-variate normal distribution. (5.1). Then, the marginal distribution of

Xy = (xl,...,xk), (k. < n), is the k-variate normal distribution
»N‘[ O‘-i): (Gij)]; i;J=lJ"':k.~
If in (5.9) we put tk+l = oeee. = tn.= O ,  we have
k k
1
. “eo . = i - 2 . .
(5.10) ¢(Ql) Uy o, ,0) .= exp (1 .% %juJ - h=103h ujuh)
J——l Jds

Hence, X(k) = (xl,...,xk) has the distribution

(5.11) -M@Q,WUH; i,J=1,...,k; 1 <k<n .

Distribution of linear functions.of normally correlated random variables

LEMMA 3: Let x = (xl,...,xn) be an pn-dimensional random variable having

the n-variate normal distribution _N[(hi, (Gij)]_; i,j=1,...,n. That is,

its p.d.f. is given by (5.1) and its characteristic function by (5.9). Then,

the linear funetion
n

_(5.12) L = % ux,

PRCHR
where the u, are uot all zero, has the distribution

n

(5.13) ' N[ . Z uXN , Z o ujuh]

=1 99 4m

The characteristic. function of the random variable (5.12) is

n
(5.14) %fv) E(exp i L v) =E(exp i v iZ ujx.),= $X(vul,..,,vu )

j=1 97 "

.2
vou Gjh ujuh)

]

n
exp(i v Zu,h, -

N
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‘Therefore, the random variable (5.12) has the distribution (5.13).

LEMMA 4: ILet the n-dimensional random variables
(5-15) *s 7 (Xsl’ FEep’ 28T 1,2

have the n-variate normal distribution

(5.16) N[(M_.), (0,015 i,3=1,...,n; s=1,2.

Then, the k-dimensional random variable

(5.17) t(k) = (Xgl-xll""’ XEK'Xlk) , 1<k<n
has the k variate distribution
(5.18) N[ai),(gij>] 3 i,3=1,...,k
where
(5.19 O = Moyt My om Bl -oxgy)
(5.20) Gij = E(ti—ai) (tj-aj) = cov (ti,tj)
= cov(ag X s KoK g) S

cov(xli,xlj) + cov(xgi,xgj) - COV(Xli’X23> - cov(xljp%i)

Applying Lemmas 2, and 3, and the method of mathematical induction,

we prove Lemma 4.

5.3. Transvariation theory assuming normal distribution.

5.3.1. If the n-dimensional random variables (2.1) (i=1,2), are normally
. distributed, then the k-dimensional random variable (2.11) has a normal distri-

bution (by application of Lemma 4). Using (5.18) in (2.14), (2.22), (2.24),
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(2.25), (2.27) and (2.30), we then dotain the parameters of the transvariation. In

particular, because of (5.19) and Lemma 1, we have for (2.22)

. . 1
.2 =
OB T T gk

It X and XE in (5.15) are independent random variables, (5.20) becomes

(5.22) g,, = COV(xli,x .} + cov(x

1 15 21 )

)XEJ-

-Assuming normality and independence between two n-dimensional random varigbles,
we obtain the marginal space of transvariation and the marginal discriminative value

2

replacing (5.16) in the corresponding formulas of section 3.

5.3.2. If we assume further +that the components of the n-dimensional random

variable T in (2.8) are independent (and normally distributed ), we have

(5.23) %5 = cov('ri,rj) = cov(ggi-gli,ggj-gli) =0 if 1#
(5.24) oy = var(Ti) = var(gli) + Var(ggi)
2
n (t.-c. )
(5.25) 8(tlJ"“1tn) = = 1 IE dgl: exp( - _;Tl- )
(2x)20 =140, 4 11
where
(5.26) ai = E(Ti) = E(gEi-gli) 21-kli <0 ; i=1, ,n
and %
n —%n n I 1 2
(5.27) @(ul,,..,un) = 'Hl @(gi) = (2n) I L/—exp(_ §ti) dti
1= i=1 )

Therefore, the k-variate marginal transvariability (4.1) becomes

k k o,
LP(r, >0|a, <0) = I[1-0(- )]
i=1 1t 1 i=1

(5.28) P

n,k

a; k
o ) = I p.

i=1 Vo i
11

i
==




- 19 -

Tts maximum (4.2) is

(5‘29> Pn,k;M = 2

For the k-dimensional moment of transvariation and its maximum we have,

from (4.4) (4.5) and (4.9) in conjunction with (5.24), (5.26)_and (5.27)

k k
T
. 30 = I E(tlt. >0, a. <0 = ITm |
(5-30) frin,k =1 ( il i 771 ) j=7 L1
k a k r 1 04
r 1 1 r r-s 35S 1
= Do, of ) + I (7)ol o=” G(s; - )
j=1 * '/Uii vor j=1 g=1 s 1 11 ,/gll
r_1 r
k ) k —_
-k 2 r+l g 2
(5.31) m .. =2 1B = [ N==r1 o o,
Tin,kM ioq r,ai /;r‘ 2 121 id
where G(s;-b), for s = 2k [Dagum 1960.a and 1968]
2k
y 1,2 k-1 e oy ) pi
(5.32) G(ek;-b) = (Ek)' N ER IO _(E_U_i.l__ pek-2i-1
2 k! =0 i, (,)
271 1
and for s = 2k+1 ,
1.2 k. .
-] k 2k-2
(5.33) G(ek+1;-b) = e 2%zt i1 T pFe
i=0

In (5.31), we have [Dagum 1960a and 1968]

(5.34) B, = E(TTi'ailr
2%y

From (5.28) and (5.29) we have, for the marginal probability of transvariation

k.3)

.k .k or
(5.35) Pox = & Tp =2 _Hl @(7(%)

and from (5.30) and (5.31) we have, for the marginal intensity of transvariation

(L.6)
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1
% kK oom T K
.36) I o= 2" 1 %l - 11
(5.3 T;0,k izl Br,ai jop T
For r=1 we have
: 1. k (07 O (01
(5.37) T = @) [0 (—=) + —— 0 (—)]

6. Linear Transformation

The k-variate (1 <k < n) parameters of transvariation give us a complete
set of measurements that will allow a comprehensive analysis of the relevant
.characteristics of both n-variate distributions.

In the preceding sections we introduced and mathematically formalized the
marginal parameters of transvariation. However, their operational complications
increase tremendously with the number of dimensions, except for the case of in-
dependence developed in section 4 and, for the normal distribution, in section
5.3.2. For this reason we need some transformation that will reduce the computations
required to estimate the parameters of transvaria.tionl. With this purpose we in-
troduce a linear transformation that will result in some information loss (cf.
preceding section where we worked with full information).

Given the n-variate random variables of (2.1)

(6'1) E'S = (gsl:"'Jgsn); s=1,2
. th . .
we define the n reduced random variables
n n E_.
11
(6.2) , = 7., = & =
e ]
n n &..
. 21
(6.3) T, = & M, = %
T
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The sample spaces of the reduced random variables (6.2) and (6.3) are the
real line Rl .

Aﬁi denotes Gini's mean difference between the random variables gli and
§21 . Hence,

(6.4) A, = B(|(e

11

) - (e n, 1) = EB(lr-a]) = B

A
117714 21 21 1,0,

i
where Xli’kEi and. ai are the means of their corresponding random variables as
in (5.26) and T, as defined in. (2.8)

. The 1 8 marginal reduced random variables corresponding to (6.2) and (6.3)

are, respectively

k
k

By virtue of the linear transformation (6.2) and (6.3), including the marginal
cases (6.5) and (6.6), we now have unidimensional random variables. Then we
apply to these new random variables the theory developed in Dagum (19602 ) and
(1968 ), in order to estimate the parameters of transvariation.

Given two n-variate random variables we can apply the bivariate transvariation
.theory to the nth reduced random variables (6.2) and (6.3%) and to the kth mar-
ginal reduced random variables (6.5) and (6.6), for k=1,...,n-1. Therefore,

n
) possible cases of k™ reduced random variables. TFor

“we have a total of ‘(k

each of these cases we can.estimate the parameters of transvariation, making a
total of 2@—1 estimates for each parameter of transvariation. For k=1 we
have the same results, working with either the reduced or the original random

variables.
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(. Transvariation Among Several Distributions

(-1 Introduction. In this section we will deal with more than two multivariate

distributions and we will work with the marginal reduced random variables intro-

duced in section 6.

Let Ai(izl,...,s) be a random experiment to which is associated an n~-variate

r.V.
(7"1) E‘l = (gilJ""}gin)
and an arbitrary real parameter vector

(7.2) Ki = (kil,,..,hin)

Let Ni(izl,.u.,s) be the size of the populations (or the samples ), and

(7-3) N = %N

Convention 6: The N elements of (7.3) are a complete set of independent and

equally possible events.
Let

(7-%) 7 IR P FORNE R PF S PRSPESE B £

be a combined r.e. with which is associated a combined vector random variable
(808,) -

(7-4) is the r.e. under consideration, where the two- populations are chosen
at random-and thereafter the combined r.e. is performed upon them. Hence, we have
s(s-1) possible random experiments and the probability of having one observation

- belonging to the ith population and another to the jth population, in this

order, in the realization of a combined r.e., is

NiNj
(7.5) Ay T OEGED
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The marginal reduced random variables associated to the combined r.e. (7.4)

are, according with (6.5) and (6.6)

| k £ by
(7:6) T 5 e TN Ry
(i,3=1,...,8; k=1,...,n)
X < b
(7-7) k)3 _h=l Ny = hillzhz
Their corresponding parameters are
k k 'kih
(7-5) g El ELI hfl N
(i,3=1,...,8; k=1, ,n)
k k iiﬁ
{7-9) feog T o e T n “n

7.2 Probability of transvariation.

T.2.1. Denoting by pij the bivariate transvariability between the reduced
random variables (7.6) and (7.7) and the parameters (7.8) and (7.9), we have,

for the realization of the combined r.e. (7.4); its transvariability

p Nl P
(701.0) S = 2
(k) i%j N(N-Ni
 its maximum
N.N.p,.
. M
(7.11) &P = 0y —=d M
M(k) i3 N(N-Ni)
and, the probability of transvariation
D
5% (k)
(7.12) sP(k

sM (k)
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If Nl = N2 == N:,3 , we have for (7.10, (7.11).and (7.12), respectively
p, . = == 5
(7.13) Py T oS- 2 Fig
1<J
(7.14) sP - A D
Al M(k) s(s-1) i<y ij,M
L. P
Z. P
(7.15) sp, , = L=l
(k) S T
i<y P

If the parameter (7.8) and (7.9) are the median of their corresponding

reduced random variables in (7.6) and (7.7), we have

N.N. p

(7.16) Py = 2.Pk) = Qiij —ﬁ%ﬁ%ﬁ;%i——

n
(7.17) Fa) T ) T S 7 P

7.2.2. Gini's Aggregative method. The results obtained in (7.16) and

(7.17) imply the computations of % s(s-1) +transvariability. It is possible to
reduce them to 2(s-1) in (7.16), when s >4 and to s-1 in (7.17), when
s> 2 . With that end we order the g reduced random variables n(k)i(i=l,,..,s)

according to the increasing or decreasing order of their corresponding medians.

Therefore, we have for (7.16)

o s-1 Ni 8 s Ni i-1
(7.18) P = =( = 2 Np.. + I 5 N.p..) -
() = N BN gy I g BNy TR

If we denote by ‘Qij the number of transvariabilities between the, reduced
random variables n(k)i and n(k)j , We have

(7-19) - .Q.. = N.N. D

iJ iYg i
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Hence, because of the requirement set above, i.e., ordering the s reduced
random variables n(k)i(i=l,.--,s) gccording to the increasing or decreasing
values of their corresponding medians, we have for the number of transvariabilities

between n(k). and the remaining random variables with greater and less medians,

i
respectively
S S
- (1.20) U, ...,s) T j=§+l Qij:Nijzi_l Nipyy =
S
= Ny j:izﬂ NJ) Pi(i+1,...,8)
| i1 i1
(7-21) U@,...,1m1) T J.fl Yy = N J_fl Ny Py
i-1
= J.le,j) Pi(r,...,1-1)

where we denote by pi( the transvariability between the reduced r.v.

l,e00,i=1)
n(k)i and the (i-1) reduced random variables with medians less than (or greater
than) the median of n(k)i and, therefore pi('+l, ) ) denotes the transvaria-
bility between the ith reduced r.v. and the (s=1) reduced random variables
with medians greater than (or less than) the median of the ith reduced random
variable.

After replacing (7.19), (7.20) and (7.21) in (7.18) we have the following

simplified result

S i-1
N, Z N, s N, N,
s-1 i, 7.7 ig=1
. 2 N e R - "
(7.22) Py = gl 151 T-, Pi(i41,...,8) dmp NNy st 1)
In a similar way we obtain for (7.17)
I s=-1
(7-25) SP(k) = S(S-—l) E (S_l)pi(l‘l‘ly ;S)
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(.3. Intensity of Transvariation.

f.3.1. We denote by m_,, and m the roh moment of transvariation
r,iJ r,ij,M

and its maximum between. the reduced random varisbles (7.6) and (7.7) and the
parameters (7.8) and (7.9). Then we have, in the realization of the combined r.e.

(7-4), for the moment of transvaristion
NN m

: iJ
(7.24) Srk) T iij -Nl(N-Nir5

its maximum

NN e i
(7.25) m = X . e
s r(kM 143 I\T(N-Ni)
and for the intensity of transvariastion
" 1
(7.26) sIr(k) _ <§mﬂ_l-_§_L)r s =1,2,...
s rk WM
It Nl = NE"'=NS we h§ve
(7.27) m 2
: s rik). = X om_ ..
(k) s (s-1) i< r,ij
(7-28) m = 2 Z m
s r(k)M S(s-1) 1< r,ij,M
and
iéj r, 15 %
(7.29) I = ( )
s rk) s
r,ij,M

1<

If the parameter (7.8) and (7.9) are the means of their corresponding

random variables we have, for m .,
1,1J,M

o=

1
=3 B = Aﬁj

(7.30) 1,15

m, ..
i,ij,M
where Aﬁ' 1s now Gini's mean difference between the reduced random variables
J

(7.6) and (7.7). Therefore, we have for the first order intensity of trans-

variation in (7.26)
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N.N.A, T

s Cigi§l,ig

i3 N(N"Ni)
(7.31) shik) = NN A, .

s L J1j

if; WO
and for (7.29)

, 2o g Z B85

(7.32) éIl(k) _ 3 _i

iij "1,15,M iij “13

7.3.2. Gini's aggregative method. If we denote by ’Tij the sum of the
absolute differences of all the transvariations between the random variables

(7.6) and (7.7) and their corresponding means, we have

M, 27145
(1.33) I i3 T 7 = N N,AR
- M,igM TNy

Ordering the s reduced random variables n(k)i (i=1,...,8) according to

the increasing or decreasing order of their corresponding means, and taking account

of the relation (7.33), we obtain

n. 4+ n
1 2
(7.34) I - =
s 1(k) d, + d2
where <]
Lo Sil N &y I
1 i=1 N-N, 1(i4+1, .0 .,8)71,1 (14, ..,8)
i-1
n. = % Ni jgﬁ Nj A
27 oo N-Ni i(l,...,i-1)71,1(2,...,1-1)
5 N
A - Rl B
1 5o N-NL 1 (i+l,...,8)
i-1
s Nl by Nj
= — A
d2 ifg N-Ni i(1, ,i-1)

and for (7.3%2)
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-1
. (s-1 I R
.% (s-1) Aﬁ.(i+l,...,s) 1,i(i+l,.-.,s)
(7'55) SIl (k) — i=1
’ s-1
_Z (Sﬂl)'éi(i+l,...,s)
i=1
where the notations A s A I and

1 (141,...,8) 7 Ti(1,...,i-1) 7 TLi(il,...,8)

I have an interpretation similar to the transvariabilities P

and Pi(l,...,i-l) in section 7.?.2.

7.4. Hypothesis of normal distributions. If the random variables in (7.1),

i=1l,...,8, have a k-variate normal distribution, then, the reduced random variables

(7.6) and (7.7), by application of Lemmas 2 and 3, have univariate normal distri-

‘butions with means, respectively

k k kih
(7.36) Mg)s S E(n(k)i) = hfl E(nih) = hfl N
K s M
(751 bayy T Elgy) T B B = 2R
and variances
; k var(gih) . COV(Eih,_éi,&)
(7.38) Var(n(k)i) =h§l AEh — hi/ﬂ Ahh A»ﬂ»&
‘ : k  var(t.. ) cov (€, ,E.p)
(7-39) var(n ) o= Z —d s2 3 i’ gt
' (k)3 h=1 Aih nd S B

Therefore, the linear transformation

M)y ™ Mo

(7:40) ()13

by Lemma 4, has a normal distribution with mean

l)i(lj"‘)i“l) 'i(i+l,...S)
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(7.h1) Faory = BOgss) = Paoy T Paos
and variance
(7.42) Tao1s T Mgeag) = s o ver(iges))- B eov (e Ny )

We then substitute in (7.16) and (7.17) the transvariability pij(i,j=l,”a}s;i%j)
for the result obtained in the bivariate normal distribution [Dagum 1960a and 1968]
and already applied in section 5.3.2. We deal similarly with the moment of trans-
variation and its meximum in (7.2k), (7.25), (7.27) and (7.28).

We can easily develop the corresponding result in (7.22), (7.23), (7.34) and
(7.35) under the assumption of normal distributions. For those cases we work with

the following normal random variables

(7-43) V)1 (141,00 ,8) T V) (141, ... ,8) T D)1 S TS
and.
(7.5 M) (L, e eyim1) T V) (L, .. ,001) T Mx)g P MRS

8. Sample Estimators and Their Variances

8.1. The unbiased sample estimators for the parameters of transvariation in the
bivariate case and their corresponding variances were obtained elsewhere [Dagum
1960a and 1968]. Because of the linear transformation introduced in section 6,
we may transform the multivariate distributions into bivariate cases. Then we
can apply to these transformations the sample estimators and the corresponding

variances obtained for the bivariate distributions.

8.2. C(ase of several distributions. The transvariability, the moment of

transvariation and their corresponding maximums are linear combinations of their

bivariate estimators.



Assuming independence among the parameters of transvariation corresponding

to each combined r.e.

Aij = (A‘i)A‘j) 3 iJj:l)"°}S; 1%(]. 2

we obtain the following variances of their estimators:

2
(8.1) var(sp(k)A) = iij Aij var (pij,A)
~ 2
8.2) var By o) _'iazlj Ay e (Pgg )
(8.3) cov (_p o ) = = A%, covip P )
) s (k)N s"M(k)A 143 i 13,07 Ti3,M, A
2
8.4) Var(smr(k)A) - iij Aij var(mr,ij,A)
(8.5) ( ) = = A var( )
.5 var smr(k)M,A = A Ry var mr,ij,M,A
i#]
2
(8.6) oo (P, ()2 smr(k)M,A) = iij A7 S COV(mr,ij,A’ mr,ij,M,A)

where Aij is given in (7.5).

The variance estimator of the sample probability of transvariation is

var( p ) var(, ) 2 cos(_p P )]
6.7) var (P, 1) - sPe(k)[ sPac)n’ TR P )A s® (1 )A? s™M (i )A

7k ) 5%24 () s (k) sPM (k)

where the variances and covariance of the right hand member are given by (8.1)
to (8.3).

The variance estimator of the sample intensity of transvariation is
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2
( o) e on) TG e, ) 2eov (. o )42 6™ (i )M,_A_>]
sIr(k)A) N -l ey * 2 - m m

T s rk) s, (3 )1 srk) srkM

(8.8) wvar

where the variances and the covariance of the right hand member are given by
(8.4) to (8.6).

The variances of the sample estimators, when Nl = N2 =...= N, can be
easily obtained.

A similar procedure is applied in order to obtain the variance of the sample

estimators corresponding to sections 7.2,2 and 7.3.2 where we deduced a simplified

result for the parameters of transvariation by an aggregative method.

9. Applications

9.1. The problem. The applications herein suggested are illustrative of the

possibilities that the transvariation theory offers to quantitative analysis in
economics.

These applications deal with comparative cost-o0f-living indexes, by family
size and income before taxes,covering twenty cities of the United Statesh, in 1963.
These indexes are meant to apply to families residing in the suburbgs of the 20
metropolitan statistical areas for which consumer price indexes have been computed.
These families own their own homes; they range in size from two to six persons and,
in income, from $6,000 to $24,000 before taxes. The indexes of the various areas
are expressed as a percentage of the indexes of Washington, D.C., which is taken

to be 100.

hSOURCE: United States, Bureau of the Census, Statistical Abgtract of the
United States, Department of Commerce, 1967.
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For our purposes, a more meaningful statistical approach would be to
expresé the indexes of each in terms of a percentage of the indexes for that city
in some base year; e.g. 1959. Then, the result would be a quantitative statement
regarding the relative changes of intersize (by family size), andlor‘interincome

(by level of income ).

9.2. The random variables: We have three random variables, whose domains are the

three dimensional spaces Qi (i=1,2,3) that are the nonnegative orthants of
Fueclidean. space R_ . We denote their corresponding statistical observations by

)

(9.1) X, = (x.l,xig,xi5) ;0 1=1,2,3

where, the first subscript 1 stands for the size of the families, in our case:
.two, four and six, respectively. The second subscript stands for the level of
income; in our case: six, Ttwelve and eighteen thousand dollars per annum res-
pectively. Therefore, XEB e.g., stands for a vector of fTwenty observations of
cost-of-1iving indexes corresponding to families of four, with an income of
$18,000 per annum.

Given the criterion of the Bureau of Census used in the formulation of these

indexes, one may expect a high degree of transvariation. Much more interesting

would be the case of indexes arrived at according to the criterion previously

suggested.

9.%, The cases estimated: The parameters of transvariation were estimated for

nine cases out of a larger number of possible combinations. These nine cases
were worked out and their corresponding sample means are given in Table 9.1.

In section 9.4 we performed an application of transvariation between several
distributions by considering the three univariate marginal distributions of the

).

r.v. vector 'x =

1 %1100 3
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The nine estimates were in the following correspondance: a) three to the

1= %%
the combinations (le’x5j)’ J=1,2,3, between the trivariate vectors Xy and x5 3

15 F xlj’ X}i + xBJ)'; i,§=1,2,3; 1<

Case a) can be regarded as transvariations among the components of a multivariate

binary combainations of the trivariate vector x ); b) three to

and c) three to the combinations (x

random variable; case b)) represents marginal transvariations of the first order

between =z, and x_; and case c) marginal transvariations of the second order

1 p)
Table 9.1

Variables ' A
*11 7 *1e -0-160
11 7 %13 -0.055
X5 = ¥pp -0.105
X5l - Xqq -0.025
X1p " ¥z ‘ -0.270
X15 = XBB -0.210
(xll+x12) - (x5l+x5é) -0.245
.(xll+xl3) - (X51+X55) o -0.185
(x12+x13) - (x52+x55) -0.480

between Xl and x All the estimates are nonparametrics. For the parametric

5
cases we will follow the method set out in [Dagum 1960.a and 1968]. In this



- 3.

particular. case it was not necessary, for the estimates of the marginal transvariation
of the second ovder, to introduce Gini's mean difference (as was pointed out in

(6.2) and (6.3))because the components of the vectors are already additive. - In

fact, they are index numbers and therefore dimensionless.

The following nonparametric sample estimators were applied to the nine cases
listed in Table 9.1: marginal transvariability, its maximums ; the rth marginal
moment of transvariation for r=1 and 2, their maximums; and the moment miIE,M .
The estimates of these are given in Table 9.2.

The variances and covariances corresponding to the first four columns estimates

of Table 9.2 are given in Table 9.3.

Table 9.3

Variables P PM ml o m, Moy miII,M

X, 7 %, 0.480 0.493 2.793 ]2.871 |24.288 | 25.194 |24.735

Xpq - Xy 0.485 | .0.490 2.767 | 2.79% |23.244 | 23.549 | 23.396

Xp - %5 1 0.495 0.518 | 2.301 |2.354 |17.203{ 17.692 |17.445

Xzq = X 0.488 0.493 2.889 |2.902 |27.569 | 27.71% | 27.497

Xp = Xzp 0.489 0.505 | 2.199 |2.333 [15.%21 | 16.544 | 14.727

13 = Xgz 0.498 0.513 2.062 | 2.168 |13.676 | 14.564 |13.243
(Xllfxlg) - (g hess) 0.496 | 0.518 | 5.060 |[5.185 |78.636 | 81.146 | 77.397
(xll+x15) - (x51+x55) 0.505 0.512 4.889 | L.984 | 73.188 | 75.014 | 72.28%
(x12+X15) - (x52+x55) 0. 49k o.§08 h.ohe | 4.486 |57.5%4 | 61.725 j55.496
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Table 9.3
cov Ccov
Variables var(pA) .var(pM;A) .(pA,pM,A),var(ml)A) Var(merA) (mlA’mlM,A
X1 - %, 0.000624 0.000626 [.0.000611 | 0.0413 0.0425 0.0419
X1~ %3 0.000624 0.000626 | 0.000620 {0.0391 0.0395 0.0393
X1p = %5 -0.000625 | -0.000626 |0.000599 | 0.0298 0.03%05 .0.0301
Xz = Xy 0. 000626 0.000626 | 0.000620 | 0.0482 0.0485 0.0479
X1p = Xgp 0.000626 0.000627 | 0.000606 |-0.0263 0.0278 0.0241
X)5 = %z - 0.000627 | 0.000626 |0.000608 [0.0236 0.0247 0.0220
(Xll 12 (x51+x52) -0.000627 0.000626 | 0.000600 | 0.1329 0.1360 0,1282
(xll 15 - (x5l+x55) 0.000627 | . 0.000626 o.ooo617 0.1235 0.1258 0.1201
(x12+xl5 - (x52+x55) -0. 000624 0.000626 |.0.000609 | 0.0990 0.1043 0.0914

In Table 9.4 we have the estimates of the marginal probability of
transvariation, fhe . first order marginal intensity of transvariation and their

corresponding mean square errors.
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Table 9.4
Variables P ’ Il GP GIl
*q " %5 0.975 0.973% . ;O'Oll 0.001
X - x15 0.990 0.990 0.007 0.000k4
Xpp - ;;15 0.955 0.978 0. 01k 0.001
X = % 0.990 0.996 0.007 0.010
X1p - x52 0.968 0.938 0.012 0.0%2
- 0. . . .
X5 %5 971 0.951 0.012 0.030
(xll+x12) - (x5l+x52) 0.959 0.976 0.015 0.021
(xll+x15) - (x51+x55) 0.985 .0.981 0.008 0.019
(x12+x15) - (x52+x55) 0.973 0.946 -0.011 0.031

According to the statistical criterion;introduced in [Dagum 1968],

~the differences between the distributions consideréd above are not

statistically significant.
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9.4. Transvariation among several distributions: As an illustrative example of

the transvariation among several distributions we will deal with the three com-

ponents of the r.v. vector x

4 = (Xll’XlQ’X15>' Because Nl’= N

N, = N5 = 20 ,

-we apply (7.15) to the probability of transvariation and (7-32) to the first order

-intensity of transvariation. Hence from Table 9.2 we have

(1)

Pip ¥ P13 * Ppy 1.460
P + P +P 1.501 0.97
12,M T P13,1"Pe3 M '

Il

and
I M,10F M 13T on 7.861
51Q) = m +m +m = 8019 T 0.98
1,12,M '1,13,M " 1,23,M
Their corresponding variances are, from Tables 9.2 and 9.3
var (P = 0.0000L0
and
var(gll(l)) = 0.0000014k%
therefore
7 p = 0.0063
3 (1)
and
o = 0.0012

‘511(1)
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ABSTRACT

We have developed the theory of transvariation for multivariate distribution
functions. Further, we have defined and deduced the parameter; of transvariation;
first, without any assumption of parametric distribution functions (nonparametric
case); and second, under the assumption of multivariate normal distributions. Our
research continued with the study of the theory of transvariation among several
(three or more) multivariate distribution functions.

For the purpose of simplifying computation, we have introduced a linear
transformation that allows the application of bivariate transvariation theory to
the transformed variables. The multivariate normal distribution is considered
after the proof of two Lemmas regarding the distribution of a linear function of
correlated normal random variables.

For the case of more than two multivariate distributions, Gini's aggregative
method 1s applied to simplify further the computations in the applications.

The applications. of this paper are in the field of comparative static
economics. They affirm the fruitfulness of transvariation theory as a quantitative

method in comparative statics (intertemporal and interspatial comparative analysis).
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