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ABSTRACT

On a measure space (A, CQ,,u), a correspondence @ on A 1is a function
which assigns to each a in A a nonempty subset ¢(a) of R" . Aumann has
defined an integral of correspondences and has shown that if ¢ has certain
properties then O(E) = fE pdu, Ec (;l defines a countably additive
correspondence on sz. This paper offers a proof of the converse result;
namely, if a correspondence @ on C%— satisfies certain properties, then
a correspondence ¢ on .A exists such that fE pdp = 0E), Ece¢ A
This paper also provides conditions on ¢ such that every point in the set
"LE ® a4 is in fact the integral of a continuous function I such that

fa) € o(a) a.e.
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Suppose QA is a O-algebra with unit A and supporting a probability

measure . Let S be a finite dimensional, real vector space. If Z is a

correspondence from (1 to S , then Z(E) is a subset of S for each set E A

Let WZ denote the set of Z-valued measures on a; that is, € em implies

Z
¢(E®) e 2(E) for every E in (I . This paper established conditions under whdich

Z2@E) = evaJE(‘mZ)g, B e .7

If a is a o-field of subsets of a set A , then the preceding result
1s used to provide conditions under which there exists a correspondence @:A==>S

such that

Z(E) =f pdp , Ee (O
B

where f @du = {zeS: z = f fap, fe XL }lF
E E ¥

where ‘fcp is the set of integrable functions f:A —S with f(a) ¢ ¢(a) a.e. on A .
This Radon-Nikodym type of result can be strengthened if A is a

topological space and if a is the o-field of Borel subsets of A . Letting

ofc = {fe‘;ecp: f 1is continuous}, conditions are stated for

¢

lTlrle letters B,F,G,HE will always refer to elements of & These elements
will be called "sets". The operations in (A are "join", U , "meet", N, and
"complementation®,?. We define ENF = ENTF' and E C F if ENF =E.
E 1is then called a "subset" of F. The zero element of (4 is denoted @ .
E is null if p{E) = 0.

2 = S o =

evaly (Cn?z) = {zeS: z = (&), gemz} .

5Th:‘Ls result, which is contained in Theorem 1 below, was first discovered by
G. Debreu and was described to this author in a version akin to Theorem 2.

This definition of the integral of a correspondence is due to Aumann [1].
It has been related to another definition by Debreu [T7].
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C
where \/F ©du = {zeS: z = \jr fdu, Te 3?; } « These results are useful
E E

in the analysis of economies with large numbers of traders,5

A correspondence Z on CZ is pe-continuous if W(E) = 0O implies
Z(E) = {0} . Z 1is countably additive if, for any disjoint sequence {En} of
sets,
= X
Z(UE) Z(E )
where Kk
2 = = i
Z(En) {z lim & z, 5%, € Z(En) 5
k¥ n=1

k
where X z, converges absolutely to z }o Z is nopempty if Z(E) is nonempty

n=1
for every E . Z is closed -andconvex - valued if Z(E) is closed and convex

for every E . Because ¢ is disjoint from itself, the assumptions that 2 @)
1s convex and contains O and that 7 is (countably) additive imply that Z (@)

1ls a convex cone.

The correspondence Z is bounded below if there exists a continuous,

antisymmetric vector order > on S and there exists an S -valued measure £

such that for every E , :
zeZ (E) implies =z >B(E) .

This condition is equivalent to requiring that there be a closed, convex cone P
with a vertex O and containing no lines (one-dimensional linear manifolds) such

that for every E , Z(E) - B(E) C P . Z is contained in P if ZE) C P for

every E . The condition that < Z be bounded below defines a collection of

correspondences whose images may be unbounded in the usual sense, but for which

“For example, see [4], [5], [6], [8], [13].
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many of the same results hold as for correspondences whose images are bounded.

In particular, the following result holds:6

THEOREM 1: Tet Z be a nonemphby, closed- arnd convex-valued, countably
additive, bounded below, p-continuous correspondence from CQato S .

Then, for every set E ,

Z(E) = evalE (CKWZ)

PROOF: The proof uses an induction argument or the dimension of 8 . It is

necessary to prove two preparatory lemmas:

JLEMMA 1: Let Z be a nonempty, countably additive correspondence and
let pes . Define a function op(°) from (A to ‘R U {+ «} Dby
GP(E) = sup an(E)Z £ Q.

Then ‘Gp(°) 1s countably additive.

PROOF: Let {En} be a sequence of disjoint sets and let E = U B, - If
zeZ (E) then there exist z, € Z(ED) such that z = X z_ (where b z,
" Ld = 1 L

converges absolutely to z as k — o ). Hence

k ©0
p'z = lim Z pez < X o (B )
k=1 ST e P

SO < E . If (B) =+ ¢ e are Tinished. Suppos E) <
cp(E) < Gp( n) o ) w , we are finishe Uppose op( ) <

and suppose UP(EH)

I
+

o for some n . Then there exists a sequence

{Xk‘} C Z(En) with pex >+ o . Siloce 7 is nomempty, there exists yeZ(E\Eﬁ)

. k
80 Zy = X+ yeZ(E) and Pz = w o Tris contradicts the assumption that
GP(E) < + ® 80 UP(ED) <+ o forall n .

6This result can also be obtained from recent work of Rieffel, [10] and [11],
if Z is compact-valued.

1s pesS and K ( S then

sup Pp°K 7'; Bexs x ¢ Kj

I
o
<
.
1



For any € >0 , choose z in ‘Z(En) satisfying

€
B - p- =
¢ ( n) p Zn <

b ,gn
@ ©
If 2 o (B ) = +® then £ pz =+
n=1 8 n=1 n
Let x be any point in Z(E) = = Z(En) - Then x 1is the absolute sum of {xn]
where x € Z(E ) .
n n
k o
Define Ve = z, o+ Y x_ . Then Yy € z(E) for every k . However,
' n=1 n=k+1 '
% 00
Py, = Pz, + L pex. o4 o
k n=1 " n=k+1 0 P ok
because
o oo
2 DX I < 2 Ip X l = 0
n=k+1 n=k+1
since
]
% x l 0

This contradicts the assumption that GP(E) <+ ®, so ﬁl Op(En) <+ o

Choose ko large enough so that

oy, - % paz| < e
5 n=1 n ’

s}
~which is possible since I op-gz is finite., But then

n=1 B
| 5 |
by - L o (B ) <2 ¢
kO n=1 P B
Further,
co
b < o (E) < X ¢ (B
T, S pE) S Z &)
SO o
o ®) - £ o (®) <z2e
P n=1 ¥ %



Letting € -0 , we have

This completes the proof of LEMMA 1. A correspondence SP can be defined

for each p in S Dby:

SP(E) = {zeZ(E): p'z = OP(E)}, Ee (R

LEMMA 2: Let Z Dbe a nonempty, countably additive correspondence and
let peS
(i) 1f SP(E) is not empty for some set E ,
then SP(F) is not empty for any subset F of E .

: (ii) If Sp is nonempty, then it is countably additive.

- PROOF: If {En} is a disjoint sequence of sets and if zeSP (U En), then there

exist z = in Z(Ep) - such that =z =. Z4zn‘u Suppose that for some

ny
Zno ¢ Sp(EnO) . Then there exists yeZ (Eno) with pey > P‘Zno . But if

z' =y + i Z, > then z'ez (U En) and ©pe°z' > p'z . This contradicts the
n#n
0

fact that p'z = cp( U En) . Thus zZ, € Sp (En) for every n . This proves

(i) and half of (ii): sp( UE ) C = sp & ) -

The proof that 2 Sp (En) C Sp (v En) is made by supposing {zn} is a

k
sequence of vectors satisfying z_ eS8 _ (B ), n=1,2,... and % =z converges
n P n n=1 -

absolutely to some =z . Then =zeZ(U En) and

)
D L

by LEMMA 1.
8

p~1 denotes the function which is inverse to the function p(*): X ppx
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To prove Theorem 1, it suffices to consider only the case where Z is
contained in a closed convex cone with vertex zero and containing no lines, because
1f Z 1is bounded below, then there exists a measure B such that Z-B3 1s contained

in such a cone. But if

(z-B)(E) = evalE((W?Z-B), then Z(E) = evalECV)?Z .

The relation evalE q72Z(: Z(E) is obvious. To prove the opposite inclusion,
assume that the dimension N of the vector space 8 is at least equal to 2.

Assume ‘also that if Z' is a nonempty, closed, convex, countably additive corres-

N-1

pondence from A o satisfying Z'(0) = {0} and, for every E, Z'(E)

- 1s contained in a fixed closed convex cone P! with vertex O containing no lines

then Z'(E) = eva ( ) - This is the induction hypothesis.
nttinhuiaing ZT

Because Z(A) 1is a closed convex set containing no lines, any point in - Z(A)
is a (finite) convex combination of poimts in ext Z(AJ9, where ext Z(A) is the
union of the set of extreme points of Z(A) with the extreme rays of Z(A)alO
Further, ﬁq? 7 is convex. Thus it suffices to show that if z e ext Z(A), then

there exists € ¢ (Tﬂ

7 with §(A) = 2z .

If z eext Z(A), then z e Z(A) NH, where H 1is some supporting hyperplane
to Z(A)oll‘ Hence there exists a nonzero vector p in RN such that
E = p_l (GPQA)) and gz € Sp (A). By LEMMA 2, S:p is a nonempty, countably

additive correspondence. Further, for each E s SP(E) is a closed convex subset

9See, for example, THEOREM 6.13, page 54 in [12].

lO.A point x in a set K 1is an extreme point of K if there is no line segment

contained in K and containing x in its interior. A ray {z = XO + tx., t > 0]

is an extreme ray 1f every line segment, which is contained in K and which inter-

sects the ray at a point in the interior of the segment, is entirely contained in
the ray.

llSee [12], THEOREM 7.11, page 66.




of P . Let HO ‘be the N-1 dimensional subspace parallel to H . The remainder
of the proof of the induction step consists of showing that, for each E, SP(E)
can be projected into HO 80 as to yield a correspondence satisfying the conditions

of the induction hypothesis. This requires the following result.

-LEMMA 3: 3§ \ (HO UPU (-P)) is not empty.

PROCF: If this were not true, then HO UPU (-P) = g and hence

PU (-P) D (HO‘UPU(-P)),\HO = 8§ \H

o

Let x ¢ Hg » Tthe open half space above HO - Then xe€P or xe -P . Suppose
- .

X € P and let y be any other element of HO . Suppose y € ~P. Now the line

segment [x,y] comnecting x and y is in Hg and O.¢ [x,y]. But then

[x,7] = {[xy] NP} U ([x,y] n (-P)}
is a union of two nonempty, disjoint closed sets which contradicts the connected-
ness of [x,y]. Thus y ¢ P so Hg C P and Hg C =-P . This contradicts
the assumption that P contains no lines. Similarly, if x € -P, then H; C-p
and Hg C P wvhich is also impossible. Thus the LEMMA is correct.

Let L Dbe the line through O generated by any point in & \ (HO UrPuU (-P)).
Then .- L N (Ho UPU (-P)) = {0). Let P' be the projection of P into HO along
L. P' 1is a convex cone with vertex 0O because brojection is a linear mapping.
-Further,

LEMMA 4: P! is closed.

PROCF: Let y .be any point in H. which is not in P'. This means that y + 1L

0

is disjoint from P . We want to find a neighborhood V in HO of y which is

disjoint from P' . Let



W€ = {we§: I w-(y +2z)| <e for some z ¢ L }

be an e-neighborhood of y +'L . Then it suffices to show that for some
€>0, W NP = ¢.

Suppose this is not true, so for n=1,2,... there exist X in: P and Zy
in L .such that

Xn‘-yl -Zrll < l/n ]

If {zn} has a convergent subsequence {z'n), then its limit 2z -is also

in L . PFurther, for any n and m ,

IX&—X&I < l xﬁ-y —zél + |z' -z!

<1/ + 1/m + Izﬁ -z} |

go [xﬁ} is Cauchy. If x is the limit of {xﬁ}, then x dis in .P .
Further
e < -t + T oyen ! + LI o .
B R L B LI A I
Thus y +2z = xeP . But then y e P' which contradicts our hypothesis.

Thus {zn] . has no convergent subsequence, and hence {zﬁ} is unbounded.

Choose a subsequence {zé} Tor which Izgl —+ 0. This subsequence contains s
1"

Z
subsequence {z"} such that — converges to some z in L . But
n Z
n
XH ZH Z"'I"y X"
v IR PRy gy - g -y 4
Iznl = [Zn;l lznl IZ"I IZHI
n i) n n n

X"

80 —de , 4
|2
n

Thus there exists € > 0 such that We is disjoint from P .

also. Hence z € P NL which is impossible since z # 0 .



LEMMA 5: P' contains no. lines.
PROOF: Suppose P' contains a line, which will be represented:

Ll = {z = _x+ Ay, AeR}

where x 1s some vector in P' and y is some nonzero vector in H. . -It will

0
be shown that the line

L, = {z = Ay, AeR]
is also in P': Let Ay 'be a point in aL2 . Then.set
yt = t(x+Ay) + (1-t) Ay, t e (0,1) .
Then
%yt=x+>\y +:—L-'€E>\.y‘= x+%yeLlCP'

1 .
I yt , both of which

are in P' , so y, € P! for te (0,1). But Vg 2N as t -0 and P' is

Thus Vi is a convex combination of the vectors O and

closed so Ay € P' . Since A\ was arbitrary, L, P!
This shows, in.particular, that y € P' and -y € P' . Hence there exist
vectors z and w in L such that y+z e P and -y+weP . If z=.-w,

then 0y +zeP and -(y+2)=-y+weP. This is impossible since

PN (-P) = {0}; that is, P contains no lines. . Thus
1 1 1
O+§(z+w)—-E(y,+z)+2(-y+w)eP.

But % (z + w) € L also, which contradicts the disjointness of P \ {0} and
L.\ {0}. Thus P' contains no lines.
In summary P' , which is the projection of P dinto 'HO , 1is a closed

convex cone with vertex O containing no lines. For each E , let Sé(E)
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be the projection of SP(E) into H, along L and let 3(E) be the projection
of SP(E) into I along HO . Because SP(E) is contained in a translate of

H 8(E) is a singleton. It is convenient to treat ® as a function, rather

0 °
than a correspondence, on Ci.

Let projL(=) be the continuocus linear function which maps each x in. S
into its projection into L along HO . To show that & 1is a countably additive

function, choose any x € SP(LJEn) where {En} is some disjoint sequence of sets.

Because Sp is countably additive, there exist x  in SP(En) such that the

sum X X, converges absolutely to x . Then
k k
2 = 3
S(En) z prOJL(Xn)

n=1 n=1

k
= Projp ( = xn)

n=1

- projL(x) = S(U.En) .
k

(o]

In particular, the sum %, S(En) is independent of the order of summation.

For each E , Sé(E) is a translate of SP(E) which is nonempty, closed

and convex. Hence ,Sé is nonempty, closed, convex and P'-valued. Further,

b
of the induction hypothesis. If =z is any point in SP(AJ =Z(A) NH, then

Stoo= S§'6 S0 Sé 1s countably additive. Thus Si satisfies the conditions

z=y+ 8(A) where vy ¢ S%(A) . By the induction hypothesis, there exists a
measure ' on (1 such that ¢ (E) € Sﬁ(E) for all E and §'(A) =y .
Then €' + 8 e ‘mz and (&' +3)A) = z

This completes the proof of the fact that if the induction hypothesis holds
then Z(A) = eva;A(CV7?Z) . If E is a proper subset of A , then the preceding
remarks show that for each z € Z(E) there exists a measure t* on CZE , the

g-algebra of subsets of E , such that ('(F) e Z(F) forevery F C E and
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¢*(E) = z . Similarly, there exists a measure {" on QA\E satisfying
¢"F) e 2(F) forevery ¥ C ANE. If (' and (" are extended to all of
Q, in an obvious way, then &' + " ¢ Cn'zz and . (§' + ¢")(E) = =z . Thus,
under the induction hypothesis, Z(E) = evaly (ty”zv)n

To complete the proof of THEOREM 1, it is only necessary to consider the
case where N = 1; that is, where Z(E) is a subset of the real line. Z(E) is
nonempty, closed, convex and contains no lines so it is either a singleton, an

interval or a half line. Define

o\

e {H ce@: Z2(H) is a singleton}.

Then EH-l is closed under countable unions and hence there exlsts a set Hl € 74'1

such that
H(Hl) = sup{ p(@): HeCH'l}.

If E is any subset of Hl , then Z(E) is a singleton. If E is any nonnull

set disjoint from H then Z(E) contains more than one point. It is clear

l)
that Z(E) = eva]E( :mZIH ) holds for any E ( H where CWZIH is the set
1 1

“of g-valued measures € on QH such that ¢(RB) ¢ Z(E) for E ¢ G

1 Hl
Define
CHE - ®Ee@: Z(H) 1is a bounded, nondegenerate intervall,
and let s = sup{p(H): H ¢ ':)al—g}, For every n=1,2,... there exists G ¢ %‘2

satisfying s - M(GD) <1/n. Let
n~1l-
H = UG and F = ¢ .\ (.U &) .

2 n n n k=1 k

. It suffices to show for each n that if E( Fn then Z(E) = eva]_E (CY'?Z an,),
But since Z(Fh)- is a bounded interval, there exist p and Pp' in R such

d in ton =
that SP(FD) an Sp,(Fn) are singletons and Z(Fn) <Sp(Fn), Spr (Fn> R
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the convex hull of {SP(F ), S ,(Fn)J. By 1EMMA 2, Sp and Sp‘ are countably

n b
additive on CZF and so can be considered elements of 777Z|F _« Further,
. n . g n
CKVZIFH is convex. It is then clear that Z(E) = evaly ( ﬁh?Zan) if
E e CzF s, .= 1,25000
o 12
Let H5 = AN (Hl U HE) . If H5 is null, the proof is firnished.

Otherwise, for every nonnull subset F of H Z(F) is a half-line. If

pe-P and if z is any point in Z(F), then =z > SP(F) (where .> is the

order induced on R by P ). Define

Then LEMVA 2 implies that ¢ e W, . and t@F)=z. Thus Z(F) = evaJF(‘mZm ).
5

H
B
This completes the proof of THEOREM 1.

It will now be shown.that THEOREM 1 yields a Radon-Nikodym theorém for

countably additive correspondences. The following ILEMMA is needed:

"LEMMA 6: If {ph} is any countable dense subset of 8 and if K

is a nonempty closed convex set containing no lines, then K = NEH

- . . . n
where H_ = {zes: p,"%Z £ sup P K} .

PROCF: It is clear that K is contained in the intersection specified above.
Conversely suppose there exists x ¢ K . Then there exists a vector p such
that sup p°K <pex . If y is any element of K , then there exists z ¢ [x,y]
such that sup p°K <p-z <px . We can suppose without loss of generality that

z = 0 Dby translating by =z .

121f ?42 is empty, let H2 be the empty subset of A . -The p-continuity
of Z implies that %l is not empty.
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Let P Dbe the smallest closed comvex cone with vertex O containing K ;
that is, P 1s the projecting cone of K with respect to 0 . If A(K) is

the asymptotic cone of K , then it can be shown (see [12] THEOREM 5.12) that

(1) P = U NUAK)
A>0

It can also be shown (see [12] THEOREM 5.7) that if u is any vector in X ,
then

(2) AK) = {zeS: u+ M z eX, forevery A>0 ]

This implies that "AK) + u (C X .

We shall show that P contains no lines by assuming that P contains a
line L and by then finding a contradiction. Because P 1is a closed convex
cone with vertex O , it suffices to consider the case where O ¢ Le15 By (1),
‘we first consider the case L ( A(K) . Then by (2), L+ u C AK) +u C K
which contradicts the assumption that K contains no lines. Thus there exists

Yo €L satisfying v, ¢ A(K) . This means that

1Y = (yes: y = Ny, some  A>0 )

is disjoint from A(X). Define

Il

L” = {yeS: ¥y %yb, some A .< 0}

suppose L™ C A(K). Now L'(C U AK so there exists vel' nk .
A >0

Then -velL” ( A(K) so there exist hnu> 0 .and x € K such that kb —.0 and

hnxn —-v. For any € >0, choose M so %MxM - (-v)| < € . Define

15See the first part of the procof of LEMMA 5.
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v M
1+ * EIK& Y

which is an element of XK gince K 1is convex. But

Izl < Iv + KMXMI < € .

Since e was arbitrary and X 1is closed, 0 ¢ K . This is false and so we
conclude that L~ NAK) = {0} .

We assumed that L° C P so L (C U ANK . In particular, -v = Mo¥o
, A>0 '

for some xo >0 and vo € K where v is the element of L+ 1 X chosen in

the preceding paragraph. But then

0 = v-v
= vV 4+ AOVO
A
1 0
= == vV + —= v_€e€K.
l+>\.O vl+ho 0

But 0 ¢ K so L~ @ P . Thus P contains no lines.

Let PO = .{zeS: z'y € 0 for every y € P} Dbe the polar of P ,
let 8' = P° - P° be the subspace generated by P° and let (S')L be the
orthogonal complement of 8'. If x ¢ (S‘)l then x e-POO = P so(S')l cpe.
Because P contains no lines, (S’)l has dimensicn O and S' = S . Thus
Po has a non-empty interior.

Because sup pK <0, K ( {zeS: p-z < 0} which is a closed convex
cone with vertex 0O . Hence P (:{zeS: Pz § 0} so pe P° , Where p
~was chosen in the first paragraph of this proof. Because PO is convex and
has a nonempty interior, any neighborhood of p contains a set which is a

subset of PO and which is an open set in S . But then this neighborhood

contains an element of the sequence {pﬁ} which is dense in S . Thus there



exists a subsequence {pé} of {pp} such that pﬁ e P° and pé — P . Because
pﬁ e P° , sup pﬁ-K <0 for every n . DBecause pﬁ =D , there exists 1,
w :
such that pﬁ.'x > 0 . Thus x'é N H;;. This ends the proof of LEMMA 6.
0 n=1

Let Cz.be a ¢-field of subsets of a set A and let W Dbe a probability
measure on Ci. Cﬁu will denote the p-completion of Clg that is, E ¢ Clp
if and only if there exist T and G in Ci such that P({G) =0 and E=F UH
for some subset H of G . A correspondence @ from A to S is measureable
if the graph of ¢ ,

GCP = {(a,x) e Ax8: xe o)),
is an element of Ciuﬁb 63 , Tthe product o-field on AxS generated by CEL
and 43 ; The Borel subsets of S . ng is defined to be the collection of

H-integrable functions f from A to S such that for almost every a e A ,

f(a) € ¢(a) . We then define the integral of & measureable correspondence @
on. A by

L/ﬁQ du = \/pf du @ some f in éf;} .

E E

If Z 1is p~continuous, define éf% to be the collection of u~integrable
functions £ from A <to S such that there exists € ¢ q%% satisfying

fla) = a8 (a) for almost every a ¢ A .

THEOREM 2. If Z is a nonempty, closed, convex, bounded below, countably
additive, p-continuous correspondence on Q , then there exists a
measureable, closed-and convex-valued correspondence @ on - A such that

for every coalition E ,
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PROCOF: Let {pﬁ} be a countable dense subset of S . For each n , define

g (E) = sup,pn’Z(E)g

o, is R U { + o}-valued, countably additive (by IEMMA 1) and u-continuous.
Thus there exists a measureable function Sn from . A to RU {+ o } such that

for every E , o (B) = \/Psn dp L ¢ is defized by:

E
@n(a) = {xe8: D, X% < sn(a)}, a €Al ,
and @ is defined by:
o0
p(a) = N @ (a), ach
n
n=1
Since G_ = NG_ , it suffices to show G ¢ Q ® B for each n .
¢ n %n % H |

To simplify notation, the subscript n will be dropped from sn . @n will be

replaced by V¥ , so that
Y{a) = {x e 8: px < s(a)} aeh.

For any two elements ¢ and d of RU {+ o}, 1let

[s <cl= {ach: s(a) < c}
[s >cl= {ach: s(a) > c}
[s=cl= [s<cln [s>c]
[Is<c]= [s <cl \[s 5—3]
[c<s§d] = [séd]\[sf_c]
fe<s<dl=[s<al \[s<ec].

lhThis because of the usual Radon=Nikodym Theorem. See Proposition . IV. 1.k,
page 111 in Neveu [9].
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For-each m = 1,2,... define a simple measureable function from A to
R U {+ «} by | m
m2 I
f = -m X + DY — X
‘ m k-1 k
. [s < -m] k=-m2¥1l 2 [_E<S§_m]
+ + o X

mx[m<s<+oo] [ =0 ] 7

where XB is the characteristic function of the set B.
Then f (a) —»s(a) for every a € A and for every a € A there exists k
m

such that m >k implies fm(a)'f s(a) -

Define
Gm = {(a,x) ¢ AxS: p-x §f.m(a)}
k
m -1
- U axp ((-o, c.])
i=1

where the c:_L are scalars in R U {+ »} and the Ai are disjoint measureable

m

M =

= o It i 1 that
sets such that f X _ is clear tha G, € GM ® B

121 %1 "a.
L

since it is a union of measureable rectangles. Further,

so qu € a# & @ > as was to be shown.
To complete the proof of the THEOREM, it will be shown that icp = Q“DZ
and hence Z(E) = eva]E( CMZ) = [ody forevery B in @ , by
E
THEOREM 1. The relation ‘fZ C ;ecp is clear. Conversely, suppose f;f ‘fZ .
Then for some nonnull E in Q , J £ak ¢ Z2(E) . Because Z(E) is a closed
E
convex nonempty set containing no lines, LEMMA 6 implies there exists n such
that p - [ fap > 9. (E) . But then f(a)¢cpn(a) ) o(a) for every a

E
in some nonnull subset of E. Thus f ¢ ;fZ implies f ¢ ;Pq) .
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We now assume that A is a compact topological space and that (EZ is
the o-field of Borel subsets of A . A correspondence @ : A— 8 is

upper-semi-continuous (usc) if, for every open subset G of S , . the set

¢ @) = {aech: o) C 6}

is open; @ is lower-semi-continuous (lsc) if G open in 8 implies

9 (g) = lach: 9a)N G + ¢

is open. ¢ 1is continuous if it is wusc and lsc.

-THEOREM " 3: Suppose that $;A-=%>S is a convex- and compact-valued,
continuous, nonempty correspondence. Then for every Borel subset E
of the compact set - A:

- Cc
[ow = [ra.

E E
PROOF: The proof uses induction on the dimension of 8 .

Since ¢ 1is compact valued and is a continuous correspondence, it is a
continuous function from A +to }( , the nonempty, compact subsets of S with
the Hausdorff metric topology.15 Hence the image of A wunder ¢ is compact

in }( and hence bounded in .S .  This implies that ¢ 1is integrably bounded

which implies that b/\$.du is compact in S for every Borel E ([1], THEOREM 4 ).
aH

1irhis topology on M is defined in [3] pp. 132-133. The continuity of o
- with respect to the Hausdorff metric on K is implied by THEOREM 1, page 133
in [3].
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If z 1is in.the compact, convex set f ¢ dp , then z 1is a convex
E

combination of a finite number of points Z, in Extb/\ ® dp , the set of
E
points in L/n ¢ du  through which some supporting hyperplane passes. Suppose
E

that for each 1 +there exists a continuous function fi in ;fg with

Z, = \/ﬁf. ds « Since z = T A.z., , where LA, =1, A, >0 , then
g 1 i1 i i
e
f = Z Kif. € ;f and f is continuous. But then =z = \/ﬁf dH €b/‘@ ap .
i ® ) B _JE
Thus it suffices to show that if =z ¢ ExtL/ ¢ du , then =z ek/ﬁQ du
E

There exists a nonzero p in S such that p.z > p.y, ¥ e\/ﬁ¢ ab .
= E

Define
s(a) = sup p 9a)
Y(a) = (xeo@) px = s())
= ¢(a) N Aa)
where
Ala) = (yes: py > sa)).

By a well-known result ([3], p. 122), s(+) is a continuous function
and V¥ is wusc . It is easy to show that V is also 1lec: Suppose
a, GVA:(G> = (aeh: GNA@)#P) fora given open subset G of S . Then
there exists y_ e G with p-y 2 S(ao)° Since G is openand p £ 0 ,
there exists v, € G with By > S(ao)° Since s(*) is continuous, there is
a neighborhood U(ao) such that a e U(ao) implies s(a) < p«yl. Thus
v, € Ala) NG for a in U(ao), so Ua ) C A (G); that is, A (G) is open
in A . Thus A 1is 1sc and hence so is ¥ = ¢ 1 A ([3], THEOREM 3, p. 120).

Now =z € [\/p ®du] N [p_l(sup pl/q ¢ du )], But it is easily seen that
E E

' 6
this intersection equals L/FW du -:L Thus it suffices to show
E .

c
k/PW dp = \/Fw dp .
E .

E

16

This demonstration requires the use of the Measureable Choice Theorem.
See [2], page L.
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This relation will be shown to hold by the induction hypothesis.

Let L be the line generated by a vector in the algebraic complement of

H= p-l(O). Tet projH be the mapping projecting S into H along I and

let projL be the mapping projecting S into 'L along H . Define
t{a) = projL V(a) a €A,
6(a) = Projy V(a) a € A.

‘Since ¥ is a compact-, convex-valued continuous correspondence, so is €

by the continuity and linearity of projH. By the induction hypothesis,

f@du = j@du
But B E
/wd_u = f[9+t]du
E E
=f9du+jtdu
E E

C S
E B
C
fﬂrd}l
B

because t 1is a continuous function on A .

It

To complete the proof of the theorem, it is necessary to consider the case

where S = R . Define two functions on A :

mex {x € ¢(a)}

c
—
o
S~
i

o
)
f

min {x € 9(a)} .
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Then ufa) = sup p®(a) where p=1 and b(a) = -sup p-®(a) where p = -1.
Thus u(:) and b(-) are continuous. They are both integrable since A is

compact. Further, if

z € f O du

then 2z = hjbdu + (1-N) ju du  for some A in [0,1]. Then

C

ﬁ?\.b + (1=A) u] du € f © dp

This completes the proof of THEOREM 3.

[N
il
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