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ABSTRACT

This paper uses the technigques developed by Debreu and Hildenbrand for
representing sequences of economies by sequences of measures on a certain
topological space to prove a property similar to upper semi-continuity of the
correspondence Ea which maps each economy into the set of allocations in the
core of that economy. This result is then used to extend Scarf's proof of the
nonemptiness of the core of certain finite economies to infinite economies with
o finite number of different types of agent. It is also possible to use Scarf's
result to prove the existence of a competitive equilibrium for a finite economy.
Finally, the upper semi-continuity of 63 is used to prove Hildenbrand's result
that, loosely speaking, an allocation in the core of an approximately perfectly
competitive economy is close to being a competitive allocation. It is shown
how the Debreu-Scarf limit theorem on the core of an economy is a special case

of this result.
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THE APPROXIMATION OF PERFECT COMPETITION BY A LARGE,
BUT FINITE, NUMBER OF TRADERS

Richard R. Cornwall

1. Introduction

Eighty years ago, Edgeworth [18] showed that if the number of traders in a
bargaining situation were increased in a certain way, then any outcome of the
bargaining which was not "competitive" would eventually be rejected by some
group of the traders. This result, that the core of an economy shrinks to the
set of competitive allocations as the number of traders increases to infinity,
was revived by Shubik [ %0] and was substantially strengthened by Debreu and
Scarf [15]. Aumann [2] and Vind [32] both saw that it was worthwhile to try to
find a representation for the limit of such a sequence of economies with an in-
creasing number of traders. They saw that this limit economy was best represented
by a "nonatomic" measure space of traders.

T+ was then shown by Kannai [22] that the limiting process itself could be
represented on such & measure space. Kannai's approach included the Debreu-
Scarf result as a special case, but did not permit an adequate economic inter-
pretation. Hildenbrand [21] has recently overcome this objection by demonstrating
that any economy can be represented by choosing a particular measure on the Borel
sets in a topological space consisting of the set of all possible "characteristics"
of economic agents. The properties of a sequence of economies can then be
studied by looking at a sequence of measures on this space.

This technique made the study of limits of economies much more tractable.

However, Hildenbrand's limit result applied only to pure exchange economies,
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required monotonicity of preferences and considered only allocations which
assigned the same bundle to all traders of the same type. Although every allo-
cation in the core possesses this characteristic when there is strict convexity
of preferences and when there are equal numbers of each type of agent (see
Theorem 2, page 241 in [15]), relaxation of either of these conditions permits
allocations to be in the core which assign different bundles to agents of the
same type.

This paper presents a model which overcomes these weaknesses. In sections
2, % and 4 of this paper, the activities of an economy are given a measure-
theoretic description. This discussion follows Hildembrand [21] closely.
Section 5 describes a type of convergence for sequences of economies and
Section 6 illustrates these concepts by applying them to the model of Debreu
and Scarf [15] and to a similar model of Dréze, Gepts and Gabszewicz [16].
Section T presents the basic results of the paper on the continuity properties
of the core correspondence and uses these results to demonstrate that Scarf's
proof [29] of the nonemptiness of the core can be extended to infinite econo-
imies with a finite number of types of traders. In Section 8 it is demonstrated
that an allocation in the core of an. "approximately competitive” economy is
approximately a Walras allocation. Section 9 discusses some of the shortcomings
of this paper. Finally, there is an Appendix which gives an example of a finite
economy where there is an allocafion in the core which assigns different con-
sumption plans to consumers of the same type. This example has a connection

to the work of Dréze, Gepts and Gabszewicz [16].
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2. Description of economic agents.

The commodity space 8 + is an No-dimensional Euclidean space. The economic
characteristics of any economic agent a . consist of
(i) his endowment of resources, w(a) ;
(i1) his preferences, which are represented by a subset P(a) of S x S
(that is,a prefers the vector x at least as much as the vector =z if and only
if  (x,z) e P(a)}
(iii) his productive technology, which is represented by a subset Y(a) of S.
A "pure producer" a can be included within this framework by giving him
initial resources w(a) = O and giving him preferences P(a) = { (0,0) } .
Thus he is treated as a ficticious consumer. Similarly a "pure consumer" a would
have no productive ability: Y(a) = {0} . The value deriving from letting eco-
nomic agents be both consumers and producers is explained in some detail in [9],
pages 14-17.
We‘shall assume that the characteristics (w(a), P(a), Y(a)) of any agent

satisfy the Tollowing assumptions:

(P.1) Feasibility of resource endowment: (w(a), w(a)) ¢ P(a)

(P.2) Reflexive preferences: (x,y) € P(a) implies that (x,x) ¢ P(a) and

(v,y) € P(a)

(P.3) Continuity of preferences: P(a) 1is closed in S x S .

lThe zero element of S will be denoted O and the Euclidean norm on S is
denoted I - For any subset K of S and for any positive scalar 17 ,
Bn(K) is the set (x € S: there exists y € K with |x-y| < n}; ‘that is, B_(K)
is an '"n-ball" around K. N

L(K) will denote the smallest affine manifold containing K ; ri(K) will
denote the interior of K with respect to the relative topology on LK) ; int(K)
will indicate the interior of K with respect to the usual topology on S and
K is the closure (in 8) of K.

We shall define the addition o two subsets T and T' of S by

T+T" = {xe8 x=y+z forsome y inT and 2z in T'}.

Then for any z in 8, T + 2z means T + {z}. A correspondence Z from a set
A to S is a mapping which assigns to each a in A a subset Z{a)of S . If 7%
is a correspondence from A to S and if f is a function from A to S, then Z + T
is the correspondence mapping any point a in A into Z(a) + f(a) .



(Y.1) -Possibility of not producing: O e Y(a).

(¥.2) Y(a) is a closed subset of S .

We remark that (P.1) means that P(a) is not empty. (P.2) implies that

the consumption possibilities set X(a) for agent a can be represented

X(a) = Projq P(a)

where projs is the mapping projecting S x S onto its first coordinate space.
Thus the description of X(a) is implicit in the specification of P(a).
Let 53 be the set of nonempty, closed subsets P of S x S such that

(x,y) € P implies (x,x) e P and (y,y) e P . Let ﬂé} be the set of closed

subsets Y of S which contain O . Define the set
C = {w,P,Y¥)esx P x ﬂ? : (w,w) e P}

C 1is the set of all possible characteristics of economic agents. If I = [0,1]

is the closed unit interval of the real line, let

A = Cx I.Cj S x Q) X 74 x I.

A 1is interpreted as the set of all possible economic agents. If a = (c,i) € C x I,
then the coordinate ¢ of a gives a's economic characteristics and the com-
ponent 1 1is an index serving to distinguish different agents of the same type.
We shall assume thatbthé sets §> vand<14 have the corresponding Hausdorff
metric topologie82 and that C and A have the corresponding relative topologies
considered as subsets of S x gD xfz? and, respectively, S X © x ?4 x I with
the corresponding product (metric) topologies. (given that S and I have the

usual metric topologies).5 é% will denote the Borel subsets of A (i.e. the

gFor a discussion of the Hauvsdorff topology on the set of closed nonempty subsets
of a metrlc space, see [4] or [21].

5It is clear that C (resp. A) is a closed subset of 8 x XZQ4 (resp.
SX@XC%XI



smallest o-field of subsets of A containing all the closed subsets of A )

Elements of G% may be referred to as coalitions. This particular o-field

on A 1is chosen because of its compatibility with the topology on the set of
probability measures on C;- which 1s specified in Section 5 below.

Letting projL be a projection mapping with range space 1L , we define

four functions on the space A :

resources allocation ®w: ar—> wla) = projs projc (a)
preference correspondence P : ar—> Pa) = proj@ projc (a)
consumption correspondence X : a+—> X(a) = Projy P(a)

production correspondence Y : ar—> Y(a) = projy’projc (a)

For any fixed value c¢ in C , the images w((c,i)), P((c,i)), X((ec,i))
and Y((c,1)) are constant as i ranges over I . Thus the proofs by Hildenbrand

[21], pages 9-11 of the following statements remain valid:

Proposition 1 {(a,x,2) e Ax 8 x8: (x,z) € P(a)} is closed in A xS x S

L

(i.e., P has a closed graph) and P is L S C

Proposition 2 The consumption correspondence X and the production correspon-

dence Y are L S C and have closed graphs. In particular,

for each a in A , X(a) and Y(a) are closed.

A correspondence 72 Zfrom one topological space A to another, S , is lower
semi-continuous (L S C) if for every open set G in S , the set
(aehA: Z(a)Nc+ ¢} is open in A . Z is upper semi-continuous (U S C)
if for any open set G , the set f{a ¢ A: Z(a) ( G} 1is open in A . These
concepts are developed in [U4], for example.



Proposition 3 If p is a vector in .8 , then the functions s and s

p,X p,Y
defined by
_ . . 5
Sp,X(a) = supp-* X(a),
a e A
S a = su « Y(a
o,y @) pp-Y(a)

are continuous from A to R U { + «} .

We note that the function w from A to S is continuocus, also.

3. Specification of economies.

The space A represents all possible economic agents. An economy can be
represented by a éubsét E? of A consisting of those agents comprising the
economy. Such a representation is arbitrary to some degree. For example, if
e 1s a one-to-one mapping from A to A such that prod, (e(a)) = projc(a) 5
then an economy could just as well be represented by e E.) as by 8 .

This simply amounts to the fact that the index i of an agent a = (c,i) 1is
arbitrary. However, it will be clear that the results obtained below do not
depend on which representation is chosen.

.For any finite economy Ei , let X be the characteristic function

&

of & ; that is, ,
1 a e g
Xg(a) = {

0 a¢ g

;For any vector p in S , .p{(s) will denote the function whose value at
x in S 1is p'x , the inner product of pand x . If X C S, then

Il

sup p K sup {p - x: x e K}

Il

inf p K - sup (-p) * K



Define a probabillity measurel on the Borel sets C% by

ol . 1
= — PN X -
Hg (F) IEI aGF E(a) 2 F [S) Q/ K
‘g . .0 d .
where | I is the number of elements of %i . Intuitively, HE.(F) is the

proportion of the agents of economy E' which belong to coalition F .
Ir & isa singleton {a} , then the corresponding measure u%_ is known as
a Dirac measure concentrated at a. We see that for an arbitrary finite E, ug is a

convex combination of Dirac measures where each of the component Dirac measures

receives equal weight. Such a measure will be called a uniform discrete measure.

The reverse procedure is also possible: for any finite collection

8

1 seeay i of Dirac measures concentrated at, respectively a.,... )
{ai] {an] 1 n
the measure U defined by
. 1 n .
= - z P
u(E) n i=1 M{a.}( )
1
. d d .
is equal to the measure p d where Eiu = {al,...,an} . In particular,
2 M
Eiu = Supp H . Thus we have established a one-to-one relation between
finite economies and uniform discrete measures.
lIn general, a measure H 1s a real-valued function from CRJ to R such

that if {En} is a countable collection of Borel sets satisfying En ﬂZEm =
if n + m, then p(U En) = X u(En). A probability measure is a measure

with values in [0,1] and with HA) =1 .

2‘For a general measure W , the support of p or supp £ is the smallest
closed subset F of A such that HE) = 1 . In this paper we shall only
consider measures for which supp M exists. This is guaranteed by assumption
(E.1) below.



We remark that for any probability measure u on CRf we can define +the

marginal of p on C , “m , by

WE) = uExI), EC C and Ee (.

Forany E (C C, WE) is the proportion of the agents in the economy repre-
sented by p which have the characteristics in E . um is free of the arbi-

trary element mentioned earlier. Further, um is (at least conceptually)

empirically observable.

The initial resources of any coalition F are given by

by w(a)

ac ENF Enr+ ¢

(1) | £ | féwdu% = {

Similarly, the consumption possibilities of F are

0 ENF = ¢

ZEﬂ X(a) EnrF 4 ¢
; ae F ’
(2) IEI/Xdug5={
F {0} Enr = ¢
and the production possibilities for F are
“en T g + ¢
: a ae€ F nr
(3) | E | fFYdug —{
{0} EnF = ¢

%?or any correspondence Z: A<=> S (i.-e. Z{a) is a subset of 8 for each
a in A) we follow Aumann [1] in defining for each F in @A

[ Z adp = {zeS: there exists T ¢ EQZ with =z =\/ff au},
F oM n
Wwhere
;fz " = {p-integrable functions f:A —> S such that
2

f(a) € Z(a) p-almost everywherel} .
When W 1s a discrete measure, this reduces to

£ = {Q-measureable functions f: A — S such that
Z,u f(a) € Z(a) for a e supp K} -



assuming there are no interractions among the technologies available to separate
producers.
The scale factor [ E,I on the left-hand sides of equations (1), (2) and (3)

could be avoided by defining a new measure ug
~d d
e @) = [E] we @)

The resources, consumption possibilities and production possibilities of F would
[ ! ~q [ ~q . .
then be k/ W 4 ug 5 J X a he and J Y 4 “8 . This procedure is
F ¥ F
unsatisfactory, however, because we want to study limits of sequences of economies
S F . ~d
Cq where ‘ -“nl —> o . In this case, the measures “E_ would have no
n
limit measure.

An alternative procedure is to work with "averages" for any economy u%

r r
J[ o d “g , J X a “C% and J Y 4 u% . The "total" quantities can
F F F

always be recovered by multiplying these average quantities by the scalar

| € l=|suppu§|-

Another solution is to assoclate with Ei a measure Mh, which is the
> L
uniform discrete measure having support equal to the set I E,l : E, H that is,
h 1
e (F) = z (a)

3 1€ | acr el

Thus Mg ( B F) = p%i(F) . The total resources in economy E, of coalition

-
] h

F are then given by L/ wd QE , ‘the consumption possibilities by k/ Xadaep
F F

€

and the production technology by \/H Yau
¥

€

Mﬁ Ei I : Ei = {acCxR: as= I Ei ‘ *a' for some a' e fi } is a subset
of A if and only if for each a in § 5 projI a < T;LT . We shall assume
that such a representation is chosen for . - €
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Conversely, to any uniform discrete measure { there corresponds an economy
gh _ Supp P

" supp
between finite economies and uniform discrete measures. For any such measure u 5

o Thus we have established a second one-to-one correspondence

d
we shall call the economy ELL the economy directly represented by u and the

economy Eii will be called the economy homothetically represented by u . The

economic interpretations of these two representations will be described in Section
6 below. Suffice it to say now that the possibility of assigning two interpretations
to results achieved for a measure | substantially enhances the power of the
methods developed here.

So far we have demonstrated that every uniform discrete measure has two
economic interpretations. However, we want to study what happens when the size
of an economy becomes arbitrarily large. To do this we must also consider measures
which have infinite supports. Such measures have no direct interpretation as
economies. They can only have significance in so far as they are approximated by
finite economies. It is the aim of this paper to show that such "infinite
economies" are useful in discovering results about finite economies.

We now list the assumptions which will be made at various times below on the
characteristics of agents a :
(P.4) Convexity. P(a) is convex.

if x + Z
(P.4') Strong Convexity. If (x,z) € P(a),!and if t e (0,1), then (tx + (1-t)z,z)

e Pla) but (z, tx + (1-t) z) & Pla) .

(P.5) Local nonsatiation. For every (x,x) in P(a) and for every neighborhood

of (x,x) there exists (y,x) in that neighborhood such that (y,x) e P(a)

and (x,y) ¢ P(a)
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(P.6) Completeness. (x,x) e Pla) and (y,y) € P(a) imply (x,¥) ¢ P(a) or

- (y,x) € P(a) .

. (P.7) Transitivity. (x,y) € P(a) and (y,z) € P(a) implies (x,z) € P(a).

These assumptions can easily be restated in terms of more conventional

notation. If a € A and if x and y are any vectors in X(a), then

x >y means (x,y) € P(a) ,

= > d >
X . v means x 2, v o an v > X,
b'd >a y means X za y and not ¥y za X

(p.4) implies that for agent a , the consumption possibilities set X(a)
is convex and for every 2z in X(a), the set {x e X(a): x za z} 1s convex.
N (P.kt), (P.6) and (P.7) imply that for every z in X(a), { x e X(a): x > z}
is convex.
The following additional assumption on the production technology of agent

a .will be used below:
(¥.3) Y(a) is convex .

In the sequel, when we say that some of the preceding assumptions hold for
an economy W , we shall mean that they hold for every a in supp M ,5 It

is convenient to state several additional assumptions as requirements to be

met by economies rather than agents:

(E.1) There exists a compact set K in A such that W) = 1.

. (E.2) Similarity of consumption technologies. The correspondence X factors

supp # Tinitely, linearly and measureably.

5Tt can be shown that if the assumptions (P.4), (P.6) and (¥.3) hold for
u-almost every a, then they hold for every a 1n supp M -

supp K and there exist n linear subspaces Lﬁ of 8 % such that a &

n
6This means that there are n disjoint Borel sets A, satisfying -E& Ai
implies that L(X(a)) equsls L, - + -
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-(E.3) Lower bound for consumption. There exists a vector b“ in S such that

7

a in supp K implies X(a) C & + bu .

(E.L) There exist +two Borel set El and E2 such that El U E2 =  supp M
and a € EJ.’ implies ¥Y(a) is compact and there exists a convex cone
K(C S such that  Y(a) = K for a in E2

(E.5) There is a closed, convex, pointed8 cone K' such that K'*'NnN Q = (0}
and Y(a) ( K' for every a in supp M .

(E.6) LEX(a)) = LE(a)) for u-almost every a.

(E.7) For p-almost every a , [ i X(a)j n [ Ia)+ wa)] $ d.

(B.7') For p-almost every . a , [lfiX(a)] ﬂ [r1 Y(a) + wa)] 4 @.

(B.8) Similarity of preferences and positive initial endowments. There exists

a nonempty subset o@’p of [l,..a,l\To} such that forevery a in supp H,
(i) for every p>0 and k ¢ oﬁfu and f in &’DX e fla) + k(p)9
2

> f(a),
a

(1i) there exists p > 0 and k € ﬁu such that w(a) - k(p) € X(a ).

Assumption (E.1l) is satisfied for any finite (uniform discrete) economy M -

Its economic significance in general is not clear. It means that ¢ is tight;

79. is-the closed positive orthant in 8§ .
BK' is pointed if XK' N (-K*) = {0} .

9k (p) is the vector in. S all of whose coordinates egqual O except for the

kth which equals p



that is, for every © >0 and E € (2, there exists a compact subset K of
E such that pENK) < p . The set of probability measures on (A, a )
satisfying (E.1) is denoted by [

Assumption (E.2) means, loosely, that if one distinguishes among agents
according to the directions in which they can alter their consumption vectors
within their consumption possibility sets, then there are only a finite number of
different types of agents. Although no two of the sets X(a), a € Ai , need be
the same, nevertheless there is a subspace Li of S such that Li =LX(a))
This means that if x e riX(a)) and z € Li , then,for some p >0 ,x + p z € X(a)
also.

Assumption (B.?) means that for every a in supp K and for every x in
X{a) , x > bH vhere > is the usuval, coordinate-wise vector order on 8 .
This assumpbion has a natural economic interpretation (see [11], page 53) .

Assumption (E.4) is a technical assumption which, together with (Y.1) -

(Y.3) implies that for any coalition E ,

i .C
j Y dp = / Y du
where B B
(MC y ¢
/ Y du = {zeS: z = \/F fap , some f € ;f‘ }
YR E Y;“‘
for 5fc
. . Ga.
= T gﬁ f ds continuousyj .
Y,u (e Y,u J

Assumption (E.5) is a strengthened version of the irreversibility and of
the no-free-goods conditions; that is, for a in supp & (E.5) implies that

Y(a) N € = {0} (no positive outputs without some negative inputs) and

9aThis result is proven in Theorem 3 of [T] end is used in Theorem 2 below.
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Y(a) N (—Y(a)) = {0} (since K 1is pointed). This assumption, together with
(E.3), is used in Theorem 3 below to conclude that the core of a certain type of
ecopnomy is bounded.

Assumption. (E.6) appears to be very strong because it suggests that there can
be no intermediate goods which are used in production but which cannot be consumed.
However, perhaps it is not unreasonable to permit the "consumption" of such goods
together with other goods in the same proportions as they enter Y(a). A steel
ingot can be "consumed," i.e., stored, if it is combined with appropriate amounts
of other commodities such as space and perhaps, transportation services. Of course,
such "consumption" need not increase that agent's utility and may even decrease italo

For an agent a in supp W (outside & p-null set) for which Y(a) = {0} ,

(E.7) and (E.7') are equivalent to

%) w@) ¢ riX@)) .

In general, (4) is neither sufficient nor necessary for (B.7) or (E.7'). Assumptions
(E.7') and (E.8) are essentially sufficient conditions for a p-quasi-competitive
allocation to be a u-Walras allocation (see Section 4 below and see Section 4 in

[13] and Theorem 3 in [9]).

4., The results of trade and production.

The outcome of the trade and production activities in an economy K is a
specification of what each agent in the economy receives to consume and a speci-
fication of what production plan each agent carries out. The distribution of

consumption bundles will be represented by a d-allocation which is a function

f in JZX.M . The requirement that f(a) ¢ X(a)  p-almost everywhere is equi-
A . .
valent to requiring that the consumption plan allocated by f to up-almost any
10

This discussion suggests that the consumption and production activities of
an . agent might be betler treated as Jjoint rather than distinct. This idea has
recently been suggested, for different reasons, by Lancaster [25] and Becker [3].
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consumer in supp K be feasible for that consumer. The requirement that £ Dbe
H-integrable simply means that it be possible to sum the consumption plans of any
coalition of consumers.

Given a measure p with finite support and given a p-allocation I , any
agent a 1in supp 4 , which is the economy directly represented by W , receives

2
the consumption plan v
f(a) = |supp ul Jf T.dp

{a)

and any coalition F receilves

supp W] - /N £ ap .
Jr

Under the homothetic interpretation, any agent in supp M receives

|supp 1l

o

{a}

u(fal) - £(a)

1i

and any coalition F receives
£ du .
¥

The distribution of production among the agents of an economy p 1s specified

by a M-production assignment h which is a function in ;8Y W For a uniform
2

discrete measure p and for any coalition F , k/F h du is the average (over the
F

number of agents in supp W) production plan for coalition .F in the economy
directly represented by p and is the total production plan for F in the economy

homothetically represented by K.

The only p-allocations T of interest are those for which

ffdu e | ey an 2
A

YA

lThe requirement of integrability may be interpreted as an accountant's restriction.

2We recall that [supp u[ is the cardinality of the set supp M .

2» + Y 1is the correspondence mapping the point a into the set w(a) + Y(a) .
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| . g
that is, the commodity vector k/F f dp of consumption for a whole economy  must
A
belong to the set L/ﬂ(w + Y) du of commodity vectors which the economy can produce
A :
from its resources \j W dp » It is useful to generalize this notion of feasi-
A

bility slightly. by defining for any coalition - F:

C}H #) = {fe XX,H:’ Lfdu eJQ(w+Y) apl} .

T;LKF) is the set of allocations which coalition .F can attain from its own

resources L‘/j w du  and technology k/ﬂ Y dp  independently of what coalition ,A'\FS
¥

F
does.

We shall specify criteria for choosing among the feasible outcomes for an
economy M by considering three types of efficiency: competitive efficiency,
Pareto efficiency and core efficiency. The idea of competitive efficiency is based
on the use of prices in various ways by the agents of the economy. Given a price
vector p dn S , an agent a 1in A can secure a profit arbitrarily close to
the number in R U {+ «} defined by

w(p,a) = supp - Y(a) .

A function = > called the profit function, will assign to any element (p,a) of

S x A the value #n(p,a) . Simiiarly, a wealth function6 from S x A to RU {+ «}

may be defined by
W(pya) = P - (1)(8.) + ﬁ(P;a‘)aIY

This sentence is written with the economy homothetically represented by u
in mind. The corresponding statement for the alternative interpretation is obvious.

jA \E = {ach: atd E} .

We use the term wealth rather than income because we envisage the commodity
space to include all commodities avilable at any time in the agent's lifetime.

1,

'The functions wn(p,*) and w(p,-) are continuous by Proposition 3 above.
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We remark again that the profit (resp., wealth) of any agent a is =n(p,a) =
supp | - w({a}) *© w(p,a) (resp. |supp w| * w({a)) - w(p,a)) under the direct
interpretation of w1 -and is u({a}) * n(p,a) (resp., u({a}) : w(p,a)) under

the homothetic interpretation of o .

The budget correspondence B from S xA to S8 1is defined by

B(p,a) = [(xeX(a) px < wipa)l

The demand correspondence., BO from S xA to S5 1s defined by

Bo(p,a} = (x e B(p,a): there exists no z € B(p,a) with = > X } .

Bo(p,a) is the set of feasible consumption plans which "maximize a's utility™

subject to his budget constraint.

A u-allocation f 1is a competitive or Walras allocation for p dif there

exists nonzero p in S and a p-production assignment h such that

k/-f dp = k/p(a) + h) de and for p-almost every a in A
A A

(1)  f)e 8 (pa),

(i1) p ha) = =n(p,a) .

The mathematical techniques which are currently available to find conditions
under which some given allocation is a Walras allocation consist of first exhibiting
conditions under which the allocation safisfies a slightly weaker type of competi-
tive efficiency and then of finding conditions under which an allocation satisfying
this weaker type of competitive efficiency is in fact a Walras allocation. This
two stage procedure was formalized by Debreu [13] who defined the following type

of competitive efficiency: An allocation f for o 1is quasi-competitive for u

if there exists a nonzero p in 8§ and a p-production assignment h with

J[ f du = L/’(a) + h) dh and for p-almost every agent a:
A A
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(1) f£(a) € Blpsa) ,
(ii) BEither f(a) € ﬁo(p,a)
or else w(p,a) = inf p - X(a),

(iii) p - hia) = =n(p,a) .

The technique for demonstrating that a quasi-competitive allocation f 1is, in
fact, a Walras allocation is to show that p can be chosen so that either
w(p,a) = inf p'X(a) occurs only for a u-null set of a's or else that f(a)
is maximal for 25 in B(p,a) for p-almost every a in A even if

w(p,a) = inf p-X(a) for a nonnull collection of agents a .

We remark that the reason for calling such allocations competitive is that
such an allocation can be achieved if the appropriate price system is announced
and if each agent in the economy accepts those prices as fixed in determining
his consumption and production plans. It 1s possible to define a type of effi-
cdlency which is freer of institutional connotations than competitive efficiency.
The idea underlying this concept is that an allocation f may be "inefficient"
because a coalition of economic agents may be able to achieve for itself with
its own resources and technology an allocation g which i1ts members prefer to

f . More precisely, we say that ap-nonnull coalition E in 62. blocks for u

a. pw-allocation .f if there exists another p-allocation g such that

(1) gla) > f(a) for d-almost every .a in E
(i1) fg dp e f(cn+Y)du
E E

It is convenient also to define a weaker type of blocking: a pH-nonnull coali-

tion E in CQ weakly blocks for u a p-allocation f if there exists a

u-allocation g satisfying condition (ii) above and satisfying:

[£]
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(i') there exist +two subcoalitions El and E2 of E such that

E N\ (El 8] EE) is w-null,

g(a) >é f(a) for a in El and u(B

gla) = f(a) for a in E, .

>0,

It is clear that if E Dblocks an allocation f for u then E also weakly
8
blocks T .

An allocation f in ?}L(A) is a Pareto allocation for p if the

coalition A cannot weakly block f for u . An allocation f in iﬁLQX) is

in the core for P or, equivalently, is an Edgeworth allocation for W if no

coalition can block £ for p . Finally, an allocatlion £ in f}L(A) is in
the EEESP% core for W 1if no coalition can weakly block f for u .

An atom of an economy M 1s a coalition E satisfying

(1) LE) > 0

(ii) if F (C E, then uF) = O or. LF) =puE).
It can be shown that if E is an atom for an economy W satisfying (E.1),
then there exists a e B such that wn({a}) = p@) and pE \a}) = 0 .9
Thus if © has an atom then there exists an individual agent a with K({a}) > 0 and
é;p({a}) + ¢ and hence & has blocking power. Thus only in nonatamic
economies W (i.e. measures U with no atoms) do individual agents have no
influence on the choice of outcomes of trade and production. It 1s for this
reason that "perfect competition" only makes sense for nonatomic economies.
Henceforth the term "perfectly competitive” will be used interchangeably with

10
the terms. "nonatomic” and "diffuse."

EjWe have defined blocking for all elements of (l . It is clear, however, that
only subcoalitions of supp ¥ are actually significant. -

9
10

See Exercise 9a) , page 63 in Bourbaki [6].

W is diffuse if u({a}) = O for every a € A. By the previous footnote, a
measure | satisfying (B.1) is nonatomic if and only if u is diffuse.
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We shall adopt the following notation:

C%/(u) = set of Walras allocations of u ,

gl(u) .= set of guasi-competitive allocations for u ,
q)(u) = set of Pareto allocations for W ,

€ (1) = ‘the core for u s

Ef(p) = +the strong core for H .

We note that each of these symbols can be used to define a correspondence
from & to the set of measureable, S-valued functions on (A, Gi ); that is,
the symbol Ez, for example, will represent the correspondence which maps the
element | of E into (1) - The basic purpose of this paper is to study
~the continuity properties of this correspordence. The next section explores

the problem of finding a suitable topology for E

5. The convergence of a sequence of economies.

The aim of this Section is to describe a "natural™ topology on the set
of economies. This is equivalent to having a criterion for determining when two

distinct economies are close to each other. It is intuitively appealing to con-

sider two economiesg and K to be close if the proportions in which their

Ky o

members (supp K, and supp “2) are distributed in the subcoalitions of A are
similar, that is, if pl(E) is close to uE(E) for each E in (A . We wonld

then say that a sequence {pn)m converged to wp if

n=1
(1) uh(E) —>  u(E), for each E in (L .
Suppose A 1is a uniform discrete measure with support equal to {a1’°'°’an}
and suppose for each i=1,...,n, B is an element of A satisfying 'aim + a;

but a, —>a, as m —> o . If . hm is the uniform discrete measure on
im i
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{aim, i=1l,...,n} , then condition (1) is not satisfied by K,km, m=1,2,...
and for E = {ai}, some i=1,...,m . This suggests that condition (1) is too
restrictive.

The preceding remarks suggest that we want to make use of the topology

already on A in defining a topology on [E or on <%?P , the set of probability

measures on (A, C; ). This is accomplished by the weak topology which has a

rich mathematical structure already developed and which yields a type of conver-

gence weaker than that of (1). Convergence in the weak topology will be denoted
by
=>
Mn B

and is characterized by

(2) un(Q) —> @) for every p-boundaryless coalition .Q .l

The significance of (2) will be demonstrated by showing that it is satisfied
by the economies A, Xm’ m=1,2... described immediately below (1). It is clear
that for any © > 0 there exists MB such that m > M8 implies that for every

a; € supp H, there exists & s within & of a; - If 3 < L min cl(eJJjL,<f:1_),1'a

2 i3 J
then each & neighborhood of an element of supp AN contains exactly one element
of supp Km for m > M6 . Suppose G is a MA-boundaryless subset of A and
ANQ) >0 . Then

[supp M N Q@ (C int@) .

1 . . .
Hence there exists © > 0 satisfying & < > min d(ai,aj) and satisfying
= 113

Bg(a) C Q for every a € [supp A N Q .

lThe set Q 1s p-boundaryless if p@ N (&4 \Q)) = O where Q is the
closure of Q and A NQ = {a e A: a é Q). The set Q NA \NQ dis the boundary
of @ .

la

d(ai,aj) is the distance hetween ai and a, with respect to the netric on A.
J
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But then hm(Q) = A@Q) for m> M, . To prove that AQ) = O implies
that eventually km(Q) = 0 is equally easy.

The remainder of this Section is devoted to a discussion of the mathematical
characteristics of weak convergence. The next section will present economic
examples which 1llustrate its usefulness.

The set Cno}) of probability measures on QU is a subset of the get of
continuous linear functionals on the space C(A)2 which consists of the continuous
bounded real-valued functions on A together with the topology of uniform con-

*
vergence. Thus qu}) can be given the (relative) weak topology which will hence-
] 3

forth be called the weak Topology.” A sequence {Hn} converges tc u  in this
topology if and only if
(3) \jﬁ f d“b _— b/if dp for every £ e CQ@A) .

A } A

It can be verified that (2) and (3) are equivalent to each other and to each of

the following conditions:

) u/\ t dun —_— u/\f ap  for every p-boundaryless Borel set Q and for
Q 9 every £ in C(A) .

(5) For any measureable function f continuous except on a W-null set:

w ({aeh: £(a) 506}) —>  p({aeh: f(a) <al)

n

for every real number « at which the function defined by

“For example, see Theorem IV, 6.2, page 262 in [17].

5‘7” is a complete metrizable space if A is complete and separable and(xv
is compact if A is compact. (Proofs of these statements can be found in
Varadarajan [31]) In general, A is not compact or separable. However we shall
often consider the relative topology on the set of probability measures whose
supports are contained in the compact support of some given measure.

l'LProofs of the equivalence of the conditiouns can be found in [5], except for
(&) which is easily derived from (2) and (5). :

wy
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is continuous.

(6) 1lim sup pn(F)

1WA

wE) for every closed F (C A and pn(A) — u(A)

(7) 1lim inf uh(G) > w(G) for every open G( A and un(A) —= u(A)

It will be useful later to remark that if [un} is a sequence of economies

for which supp pn(: supp 4 for'every n , then Hn => U 1s equivalent to:

(2%) HH(Q) = u(@Q) for every Borel subset Qof supp p which is
p-boundaryless in . supp 4 .
(3*) Jf.f ap = Jf f au for every £ ¢  C(supp M) 2
n
A A
The uniform discrete measures are dense in B . In Tact, for every H in

E there exists a sequence {u }“ of uniform discrete measures converging weakly
n=1
to d and such that for every =n ,

6
supp b, supp b C supp U .

This means that every economy in E is accessible by realizeable (i.e. finite)
economies through this type of convergence. Thus for this type of convergence, =
is not too large. A partial converse is also clear: 1f there exists a compact

set K in A and a sequence of measures ey with supp Hn (: K for every n

and if o => gome K in )))P’ then p el . Thus E is "large enough”.
[o3]
If {un} is a sequence of uniform discrete measures for which there
n=

exists a nonatomic measure W with compact support such that

5See Varadarajan [31].

6See Theorem IV.1l, page %5 in [21].
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supp unC SUPp U . for every =n ,

=
b M

Then the sequence {un} will be calledvasymptotically perfectly competitive.7

If {pn%;;?s asymptotically perfectly competitive with limit u , then (6)
implies that un({a}) —> u({a}) = 0 forevery a in supp H . In fact, it
is not difficult to show that this convergence is uniform on .supp 4 . Thus
ﬁ—_(_:{LE}_) , & € supp Hn which is the number of agents in economy ‘“n , becomes
arbitrarily large. Further, since the initial resources function ® is continuous
on the compact set supp p , it is also bounded and hence the resources
un([a}) * w(a) of any agent in the economy represented homothetically by by
approach zero uniformly. For any agent a in the economy. represented directly by

wooo his characteristics (w(a), X(a), P(a), Y(a)) remain unchanged as n increases.

However, the total resources in economy “n .are

a —_— i
| supp “nle ®du 0 if jA o dp #Q,

i su — ® ——] .
since | PP unl and \/; o d “n > &/; o dp
Thué, unless JF o dy = 0O , the size of any individual's initial resources

A
relative to the resources of the whole economy approaches gzero for any asymptotically

perfectly competitive sequence of economies.

Let {un} be an asymptotically perfectly competitive sequence satisfying

h 1
sSUpp K C supp M for m:>n . Let 18 = supp M be the economy
m = n l n
. | hoor ol | supp pn | b
homothetically represented by un . If a e E then —_— . 3 € Em .
n

‘ Supp M I

7Those for whom the term: "perfectly competitive" has too many behavioral or
normative connotations might prefer the name "asymptotically diffuse”.



- 25 -

This makes explicit the speed with which the individual agents shrink to zero in

the economies homothetically represented by the measures Mn

6. An example: repeated division or replication of a finite economy.

In this Section we shall demonstrate how the procedure devised by, Debreu and
Scarf [15] for replicating an economy and the analogous procedure devised by Dréze,
Gepts and Gabszewicz [16] for dividing an economy can be interpreted as simple
examples of an asymptotically perfectly competitive sequence of economies.

Let El = {al,-..,am} C: A be a finite economy and suppose ai = (Ci,Ji)

for i =1,...,m with ji <1 for every 1 and with ji+l > ji holding for any

i for which Cip1l = ci . This can be represented schematically:
°a
I L
&3
a
1 %2
C

One replication of this economy gives an economy with two agents of the same

type for each agent in Eil . This can be represented by the economy:

€, = (o, 3 =1l,.em,  J=1,2)
where

_ . (J-l) .1 .
(1) a;s = (e, gy + o (Gl - 43))
where
. £ _

@) .y - Ji+1 . €41 1

Jir1 ’

1 otherwise
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This can be represented in the following diagram N

12 T 32

a
31

s 8.22

S, =]

1L 21

n
(W)

In general, the economy gotten by replicating E r-1 +times can be

1
represented:
Er = {aij; i=1,...,m, j=leeeeoor)
where
) B . (3=1) ., :
(3) 2y = legdy + S (' - 40 -
Let 'ovr , r=1,... Dbe the uniform measure with support equal to Er

Er is the economy. directly represented by Dr .  The economy E? homo-

h
thetically represented by V.. is the economy gotten by dividing economy 51

r-1 times. FRach agent a. = = a, in Eh is replaced in Eh by r agents
1 m i 1 T

;,, s J=l,«..,r where E;:,, = = a.. where a,, is defined in (3). These

1J ij rm ij ij

agents are characterized by:

~ l ~
X(aiJ) = - X(ai)

~ _ l ~
P(alj) = - P(ai)

~ l ~
Y(aij) = T Y(ai)
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h s . . . -
E represents the economic situation which arises when each agent a;
r

h
in fi delegates authority to r separate "brokers"™ to trade and produce for
1 ,

him.:L He gives each of these brokers aij the resources % w(;i) , Dpreferences

~ -1 ~
% P(ai) and production technology - Y(ai). IT agent aij chooses a consumption
~ r
plan Xij and a production vector yi_, then agent ai consumes Xi = jEi Xij

T ~
and produces yi = jgl yij . Because «r Xij € X(a,) if x,. e X(a,.) (resp.,

i
ry.. € Y(ai) if yij € Y(aij)) and because X({ i) (resp., Y(ai)) is convex,

1d

l ~
then =, = = jEl X, € X(ai) (resp., v, =

K- @2

This method of aggregating the consumption plans of the agents aij’ J=1,...,r

to get a consumption plan for ai may not "preserve preferences". TFor example,
there may be two sets of consumption vectors {Xij’ J=1,...,r} and {yij,j=l,...,r}

r r
such that yij z b4 , J=l,...,r but jgl X, , >~ Xy This possi=-

éij 13 IR FN = IR E
bility is illustrated in the following figure:

good 2 T

M N

1This interpretation of fih is due to Dréze, Gepts and Gabszewicz [16].
r
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There is one case when this possibility cannot occur; namely, when
Xij = Xik for + k and for all i=l,.}c,m. This is true when assumptions

(P.1) - (P.-4') hold and when {Xij’ corresponds to an

i:l,ou-)m., jzl}-ou)r}

L
allocation in the core of E o
T

We have presented two possible interpretations of the sequence of economies

{Dr , r=1,2,...} specified above. We shall now demonstrate that this seguence

is asymptotically perfectly competitive. For 1i=1,2,...,m , let Ei be the closed

subinterval of the interval [(ci,O), (Ci;l)]_ = (Ci} x I defired by
Jiq + d5)
. i+l "1 . _
(&) B - {[(ci’ai>’ gy =) 1 i eip=e
i ' .
l+Jg ) ] otherwise.

[lej59;0,  (egs =5

These intervals are always nondegenerate. They are represented in the following

Tigure

Ehlau
E5la5

1 EEJ

al an

.

%For a proof of this, see Theorem 2, page 241 in [15]. The collection
h
150 i=l,e.0,m, Jj=l,...,r} "corresponds™ to an allocation in the core of Ei
) £(

r
when there exists an allocation f in Cf(ur) such that Xij= D(aij aij)
For a discussion of cases where X4 3 4 Xk for J and k

(x. .

for all i and
unequal, see the Appendix of this paper.
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m
Let v be the diffuse measure with support equal to U Ei and with a
' i=1
1 . .
uniform distribution of the mass - on Ei (with respect to one-dimensional

Lebesgue measure ). To show that {Driiigs asymptotically perfectly competitive
it suffices to show that L => v . Thus, 1f f 1is any bounded, continuous
real-valued function on A , then we must show that k/; T dt} —_—> L/;f dv
For this it suffices to show that \/; f dt} ——>L/; £fdv, i=1,...,m . DBut this
follows from the uniform continuity 1 of f omn i Ei and the definition of the
measures v, r=1,2,...

The Debreu-Scarf sequence of economies {Dr, r=1,2,... } satisfies the
following property: +the ratio of the number of agents of some type c:_L to the
total number of agents in the economy remains constant as r increases. The

Debreu-Scarf procedure can be generalized slightly by defining a sequence of

economies which does not satisfy this property. Given E?l as above, define

/
ST, or=e,3,... by
T
/ . .
8]{’ = {aijs i=l,...,m, leJ"'Jki’r}
where
_ . (j-1) .1 .
85 = ey di* g Uy - 30
i,r
where j£+l ig defined in (2) . kir is the number of agents of type 1 in
?l
-1

1 '
Let Dr be the uniform discrete measure having a support equal to Sr
It is easily seen that the conditions

(5) min {ki r ;o di=1,...,m} —_— © as r —>
2

6) for each i=1,...,m, —"— —> some limit as r —> o



_5'0_

are necessary and sufficient for (01;] to be asymptotically perfectly competitive.

The limit economy, in this case, is the diffuse measure ' which uniformly

_distributes the mass lim _m__lzlf'_ on the set Ei defined in (&) .
T— 0 5k
j=1 &T

Condition (5, means that each agent of type cy contributes a decreasing share

of the resources of all the agents of that type. Condition(6) means that the

. i /
proportion EXEA of agents of type 1 in economy g approaches some limit.
r
Z k. '
j:l 'J,I'
We remark That when ki . + kj . for some 1 and j , then an allocation
2 2

{Xij 5 i=1,...,m, j=1,.. "kir 1 in the core of g; need not satisfy

Xij = Xik for all j and k .

In particular, if an allocation .{xi ; i=1,...,m} for El is defined by
1 “l,r

== i= - ) .
Xy kir‘jzzl X135 ° then (Xi’ i=1,.. .,m] may not be in the core of E .7 This
, ‘.

1

fact would seem to limit the applicability of the delegation-procedure interpre-

tation of a sequence of economies.

3

An example where this occurs is given in the Appendix.
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7. Upper semi-continuity of the correspondence 62

This section is the heart of this paper. It demonstrates that under certain
conditions the correspondence E? satisfies a property similar to upper semi-
continuity (Theorem 2). This result is used to give a simple extension to an
infinite economy of Scarf's proof [28] of the nonemptiness of the core.

The proof of Theorem 2 is based on several preliminary results which we now
consider.

IEMMA 1: If h is a M-integrable function from A to S and if ¢ 1is a

closed- and convex-valued, measureablel correspondence from A to S satisfying
hia) e ri(P(a)), a €A,

then for any Borel E ,

| hdp e rif ﬁq>du)
J; J;

and, if h is continuous and if ¢ is L S C , then
/ h dp € ri(/ ® au) .
E E

PROOF: It suffices to consider only the case where O €¢® (a) everywhere, because
if the lemma were true for P-h, then it would be true for ¢ . Because
r ;
0 eL/ ® di, the smallest linear manifold L containing L/’ ® di is a subspace
E b

of 8. The condition L/> h dup é rik/a$ dk  would imply that there were a
E E

;A correspondence @: A—=3S 1is measureable if its graph {(a,x) e A x 8S:
x € ¢(a)} is measureable with respect to the product 0-field on A xS . In
this Lemma, as in the rest of the paper, it 1s only the behavior of h and ©
on the set supp v that is important. Because supp p 1s compact, it 1s also
separable and hence the product o-field on (supp ¥) X S coincides with the
Borel O-field. Thus the measureability requirement could be weakened to the
assumption that _i}g,x) ¢ (supp M) x S: x € 9(a)} be a Borel subset of (supp H) x S.

{

2 *¢ au = £fdu: f e Jﬁ and T 1s continuous } .
B 5 s
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‘hyperplane in L which contained \/ﬁ h dp and which supported \/er di  since
E E

k‘/\ ® du  is convex.5 Thus it suffices to show that if P 1is a nonzero vector
E

in L , then p ° b/‘ hdp < sup p . b/~@ dup .
E E

Suppose D \]rh du sup p «L/Nm dd . Now the set
E E

F

il

{aeE: p-hn) < sup p - ¢{a)}
is LL---measurea.bleLP and the correspondence V¥ mapping a into (x e ¢(a): p.x >p-hia)}
is ' nonempty on the set F . There exists s p-null set N such that the correspon~
dence V¥: F\N~> 8 is measureable.5 Hence by the Measureable Choice Theorem,6
there exists a p-measureable function g such that pcgla)>p - hia) almost
everywhere on F . If u(F) > 0, this would contradict - \/ﬁ hdp =

sup p 'b/ﬂ ¢ du. . Hence :

E .
(1) P ha) = supp - oa) almost everywhere on E .

Relation (1), together with

h(a) € ri oa) almost everywhere,
implies that ¢(a) ¢ H(a) almost everywhere on E where

H@) = {xeS:p-x = supp- ola)l .

5This is just a restatement of Minkowski's separating hyperplane theorem. This
theorem is discussed on page 25 of [11] and is proven in [19] and [ 4 ]. This
result will be used in the sequel without citing this reference.

%F is "p-measureable" means F ¢ Clp.; the completion of (1 with respect to W .
The measureability of F derives f#om the measureability of the function o mapping
an element a of A into the point sup p - ®(a) of R U {+ w}. This is de-
monstrated in Lemma 1 in Appendix IT.

5See Lemms 2 in Appendix II.

The  Measureable Choice Theorem is stated in Appendix IT.
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But 0 ¢ ¢(a) (C H(a) means

almost everywhere on E . Thus H = p_l(o) is a linear subspace of S containing
almost every o(a) . This implies that fE oduw ¢ H NL, which is impossible
since H N L is a proper subspace of L and L 1s the smallest subspace containing

LE ® dp . This contradiction shows that p - IE hduy < sup?p - fE ¢ dp .

c
To show that p ° fE hddu < supp* fE dh when h is continuous and ¢ 1is

c
L 8 C, it suffices to show that if p - fE hdu = supp * fE ¢ dy , then re-
lation (1) holds. To show that (1) holds, suppose M(F) > O . Because p is tight,

there exists a closed subset F' of F such that ME') > O .7

The correspon-
dence Y is non-empty-valued on F' and i1s L S C . By the Continuous Selection

PrinCiPle,8 there exists a continuous function f: F' —> 8 such that fa) € ¥(a)
everywhere on F' . f can be extended on A to yield a continuous function satis-

fying f(a) € V' (a) everywhere,9 where VY'(a) = {x e ®(a): p « X > p - hia))

since V¥' is L 8C . But then p - fE fau > p - fE h du which would contradict

C
p.Jghde = supop- [p P du.

TEMMA 2: If G 1is a convex open subset of S , then G = int G .

PROOF: The relation G (C int G is clear. Conversely, suppose X € (int G)\G .
Then there exists a nonzero vector p 1in S such that p - X z sup p * G. Thus

p+x > supp G . But xedint G and p 40 imply that p - x <supp -+ G .

This contradiction establishes that (int G)\ G is empbty.

7See pages 12-15.
8See Theorem 3.2", page 367 in [27].

9This is by Proposition 1.4, page 363 of [27] which generalizes Tietze Extension
Theorem. Professor D. Edward Smallwood asserts that the Tietze Extension Theorem
is otiose.
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LEMMA 3 If G is convex and open and if G is a dense subset of K B
then G = int K .
PROOF: By exercise G , page 57 in [24],

int K C int(G 0 intkK)
= int G

= G
where the last equality follows from the breceding lemma.

We now look at the continuity properties of preferences. The correspondence

Prar——>P(a) = {((x,y) e s x8: x

1RV

. ¥y} is closed and 1SC (Proposition 1,

Section 2). This implies that the compact-valued correspondence

Pyl@) = Pl@) nly)esxs: [xllyl < m

is a continuous correspondence for every integer N . If f is a continuous

allocation, then the correspondence mapping & 1into the set {(x,y) € 8xS: y = £(a)}
is continuous and hence for any compact K (C A and for sufficiently large N 5
the correspondence @ZN: K== S defined below is continuous:

®

f,N(a) = {xeX(a): x > fa), |x| < W)

proj [ Py(@) N {(x,y): y=1()} ]
where proj[-] is the mapping projecting S x 8 onto its first factor space.

il
Il

It is helpful to introduce +the following additional notation. If f is a

M-allocation for some economy H , then

@%(a) = {xeX(a): x > f(a)} for a in A;
i%(a) = closure of .w(a)
= (xe X() x> o Fla)) Py (P.5)and (P.7) for a in gupp p;
Pf,“(E) = L/; PpdH _ for E in CZ,.DD

lOThe set Pf LL(A) is closely related to the Scitovsky indifference curve

through [ £ df and determined by f(see [11] page 97 ) and has been used
extensivel§ by [32], [8] and [9].
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THEOREM 1: Tn an economy W satisfying (P.1) - (P.7) and (E.1) and
(E.7), a continuous allocation f can be blocked only if there is a

continuous allocation g and a nonnull coalition E such that

J[g dp € Jf (w+7Y)dp ,
E E

gla) >, f(a) for every a in supp M ,

gla) € ri(X(a)) for every a in supp H -

PROCF: Because f can be blocked, there exists a coalition E which is nonnull

and a vector x in [P ®)] N [ f (w+7Y)ds] . By (E.7) the correspondence

f,u
mapping any element a of supp p into the set [ri X(a))] N [w(a) + ¥(a)] is
nonempty-valued off some up-null subset of supp p . This correspondence is

clearly alsoL S C and hence by the Continuous 8Selection Principle and Lemma 1,

there exists a vector =z in [ri(fE Xauw)] N[ f ®w+ Y) du)]. By Theorem 3

in [8], there exists y in the open line segment (x,z) such that y e P

®).

o
Because fE(w +Y)du is convex, y € fE(w +Y)dn . It is also easy Lo show
that
2) yeri(fi X du) .

k
By (2), there exist a finite number k of elements {x } of ri(fE X dp)

) Np=1
such that their convex hull, <d%1 > -1 » is a neighborhood of y in the sub-

space L( fE X dp) of S .
For each n , there exists, by Theorem 3 in [8],

b4
x! e (¥ Xn> n Pf)M(E)

But < X; >§—l is also a neighborhood of y in L(fE X dp) and is contained

in P, (E), which is convex by (P.4). Since L(P, E)) C L( [, X du) , this
T, T, E
demonstrates that

(3) v € ri(Pf)M(E)) .
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‘We now make a similar argument to show that for any a satisfying (P.3) and

®.6),
(1) m( ) C i &@) .

et ue @f(a) and v e ri(X(a)) . By (P.3) and (P.6), @f(a) is relatively open

in .X(a) so there exists W ¢ (u,v) N mf(a) - Since v e ri(X(a)), then

k

v e riX(a)) also. Hence there exist XppeeesX  ell in X(a) such that < Xn>h=l

is a neighborhood of w in X(a). Because wf(a) is open in X(a), there

: k
i ' o >
exist %1e(m %J N Qﬂa) But <Xh 1

X(a) . This implies LX()) C I&qk(a)) » The opposite inclusion is obvious so

is also a neighborhood of w in

LX(a)) = L(@f(a)) so (k) is valid.
Because of (3) and (&%), the broof of Theorem 1 will be complete if we can
demonstrate that
(5) ri( fy . an) = fE ri 9o dn
where ri Pp Tepresents the correspondence mapping the point a into ri(wf(a)),

Equality (5) derives from the following sequence of relationsﬁ

(6) ri( [ Ppdr) = ri( fE o au)
(7) = I‘i(Nl:Jl IE éfN du )
© ¢
(8) = i(U [ . du)
T ey E TEN
(9) = rif fg 3, an)
(10) < fg ri @, dp
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Equality (6): Because fE 0, db C ‘LE i% du , we have i fE P dv C

ri fE &% du . Conversely, let h ¢ ;fif;u - Define, for an arbitrary 1 >0

and for any a in -A:

¥(a) = {xeX(@): x >_n() and | x-n(@)] < o )
By (P.5), V(a) is nonempty and ¥ is clearly measureable since h is.ll By
the Measureable Choice Theorem, there is a function Jj in ;fh,u . But
. . . . . .
I fE J du fE hde| < 1 and fE Jauw e LE Qfdu Thus fE Pp Ak is

a dense subset of fE éf du . Because preferences are convex, (P.h), LE Qf du
is convex. Thus ri (fE ¢% dp) is an open, convex, dense subset of

ri (fE @f du). By Lemma 3, these two sets are equal.

Equality (7): This equality is established in the same way as (6) by using the

fact that Ngl fE @fN du  is convex and dense in LE P du

Equality (8): This is immediate from the fact that for sufficiently large N

2

- c .
fE Popp AH = fE q%N dp by Theorem 3 in [7] since by the remarks preceding

Theorem 1, &fN is a compact- and convex-valued continuous correspondence on

SUpp K -

Equality (9): The compactness of supp H implies that

fc"d Otjfc" a
P, ap = 0 b
g T N=1 E N

Equality (10): This demonstration is similar to that given for (6) above. We

c e -
shall show first that fE ri @, du is demse in fE @z dW . Suppose h

c
belongs to ;fm
CPf}H'

See Lemma 2 in [21].

and for any n > 0 define

11
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Yi(a) = ri{x e X(a): x > h(a) and |x - n(a)| < n}

for a in A . Then V*(a) is nonempty by (P.5) and is LSC since h is
continuous and by (P.3).
By the Continuous Selection'Principle12 there exists a continuous function
g in jiW" By (P.7) and by the argument establishing (%) (i.e., that
L(qf(a)) = LiX(a)) = L{{xeX(@): x > hia) and |x - ha) < n}), we note

that g(a) € ri ¢.(a) everywhere on SUPP H o Thus
. f

C

J[ g dp € J[ ri ¢ dp
B B ¥

Furthermore, ] fE g ap - fE h dul < 7 S0 f; ri q%du is dense in
e - c
LE ri @fdp . The convexity of fE ri @qu is clear from (P.4). Thus
L ’
| rig.dpn = k‘/i ri Q.du
E f E T
]
C ri(J Eofdu_) by Lemma 1
B
c
= vi(/f @pdu) " by Lemma 3%
E do

c

C fE ri ¢.dy
c c
Thus fE ri ¢de = ri fE Q%dp .

LEMMA L: Given a Borel subset E of A and an allocation g satisfying
g(a) e ri(X(a)) everywhere and given p > O , then there exists 1>0
such that z € Bﬂ( fE g dp) N L( jE X du) -implies there exists an

allocation h such that fE hdp = 2z and lg(a) - h(a)l < p everywhere.

25ee Theorem 3.1 page 368 in [27].
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PROOF: Define

V(a) is nonempty and ri(¥(a)) = V(a). By Lemma 1,

fE vap C Tl ( fE ¥ du ).

Because fE ¥ dp  is a convex, dense subset of fE ¥ dp , we have

ri( LE TV du) = ri(ﬁE ¥ ody ) by Lemma 3,
C Jpvaw
Thus fE ¥ dp = ri(fE ¥ dp) . It is easy to see that the smallest affine

manifold containing fE.w dl  is also the smallest affine manifold containing

fE X du . Thus fE ¥ du  is open in L(fE X ap) .

TEMMA 5: Let ¥ be a measureable correspondence from A to S

such that ngju is uniformly integrable with respect to W . Then

for every & > 0 , there exists p > O such that LEB&TF) < p

implies

Jgvarn C Ba(fF\lfdu) .

This Lemma implies that if fEﬁydu is closed for every Borel set E , then
this defines a uniformly continuous mapping from the Borel subsets of A , with
the p-metric. topology, to the nonempty, closed subsets of S , with the

Hausdorff metric topology.

PROCEF : Note that for every pair E , F of Borel sets:

Jgvan C Jpvae + Jpgvar - Jpg VA -
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Thus if fE\F ¥du C 38\2(0) D fF\E ¥ du , then
Jgvan C By ( Jp ¥ au).
But j‘lf l,‘uniformly integrable implies that for any .6 > 0 there exists p > 0

such that W(H) < p implies

Jg v auw C By ,0) .

(See Proposition II.5.2, page 50 in [28].)

LEMMA 6: Under the hypothesis of Lemma U and if 1 satisfies E.2)
then there exists & > 0 such that F ¢ B6 (E )'15 and z € By (fF g dH)ﬂL({? Xdp)

imply that there exists an allocation h such that

thdu = z and ]g(a)-h(a)l < p everywhere.

n
‘PROOF':  Let {Ai} be the measureable partition of A and (L.} lbe the subspaces

li=
of 8 such that LE(a)) = Li for a in Ai by (E.2). Assume that the
Lemma has been proven for each of the correspondences Xi = X‘A . Then there

1,
exist &; > O such that if FeB, (ENA )N Qi , where ai is the collec—

a
tion of Borel subsets of Ai , and if =z ¢ B8 (fF g dp) N Li , then there exists

i
an allocation h with fF hdy = 2z and I gla) - h(a)] < p everywhere on Ai .
n
Let &' = min {Si}- l>O and choose & , in (0,8') so that y e [BS(O)] N
1=
[2L.] implies there exist y; in L, with Zy = y and ]yil <! . If

FEBB(E); then u((F ﬂAi)A(E ﬂAi))§ HE AE) < B  so

FNA e BSi(E najn ai . If oz eB( fF g dn) N L( fF X dp ), then there
exist Yy in ;Li satisfying

liBa(E) = {F: F is a Borel subset of A and W({f AE) < 8} .
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= - < T

Z yi Z LF g du  and lyil o

I = + . Then z: € B M L. . By th
et Zs yi fFf7ﬂi g dp The Z; € 6(f n Eigd )N i the

assumption made above, there exist allocations hi with the specified properties.
Define an allocation h:

h{a) = h,(a) if a e Ai

Then clearly z = fF h dp and lh(a) - g(a)l < ¢ everywhere.

This demonstrates that it suffices to prove the Lemma for the case where
L(X(a)) is constant on A . In fact, to simplify notation we shall assume that
L(X(a)) = 8 everywhere.

Let V¥ be the correspondence defined in the proof of Lemma 4 and let
n> 0 be thé scalar whose existence 1s asserted by Lemma k. It suffices to find

a neighborhood U(E) of E such that F ¢ U(E) implies

(11) B.Q/AUF gan ) C Jgp ¥aw
Claim: Relation (11) is implied by
(12) By, Uy 890 C By Uy Taw) .

We shall show that there is a neighborhood U(E) such that for F in UE)
relation (12) holds and we shall then show that the Claim is correct.
Lemma 5 and the uniform integrability of gf@‘u imply that there exists a
neighborhood U'(E) such that F € Ut (E) implies
Jgvan C Bn/g(fF\deu)
and hence by Lemma 4

(13) Bn(fE gan) C BuUpTaw) .
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There is a neighborhood U''(E) such that F e U''(B) implies

Choose any F in U(E) = U'(E) N U''(E) and choose any y in BBn/4(£F g du).
Then ¥y ¢ Bn(fE g dr) and so by (13) vy e Bn/2(f:F ¥ du) which establishes (12).
Suppose relation (12) holds but that (11) does not; that is, there exists
y in Bn/h(ﬁF g dy) and y ¢ K = LF v dh . K is convex and closed since v
is convex, closed and integrably bounded [1] Hence there exists a vector P in
S with p'p = 1 (that is, |p| ; 1) and with
P°y > supp-K.

But y + n/2p e BBn/M(ng aw) C OVALE

On the other hand,

pr +n/2p) = pey + 0/2 > n/2 + supop.K
nd sup p° B K) = 2 + sup p’K. Thus + 2 B K) . This
a PP B n/ P P v o+ /e £ B

contradiction establishes that (12) implies (11).

MAIN LEMMA: Under the assumptions that pn,==> W, for every n , su;pun is
contained in the compact set supp g , and that M satisfies
(E.2), if E is a Borel subset of A ; 1f p >0 and if g
is a continuous allocation satisfying

gla) € riX(a)) everywhere

then there exists & > 0 such that for any M-boundaryless Borel
set Q with W(EAQ) < ® there existse N such that if n >N
then z € L(jé X dun) and |z - fQ g dun} < &
imply there exists an allocation h with z = fQ h dpn and.

l hia) - gla) | < p everywvhere.
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PROOF: Let 1V be the correspondence defined in the proof of Lemma L. By

Lemma 6, there exists &' > O such that if Q is a Borel set in BS'/M(E) s

then
(k) Bg: (Jg &8 aw) 0 LigXaw) C g ¥aw

Choose any such Q which is also u-boundaryless. Choose N' so that n > N

implies ‘f [ I
- < ! .

g & any q & v 5 /4

Then supp M C supp v implies L(fQ X dun) C L(fQ X du) and hence

(15) By g gan) N LUgxan) C By Ugeaw) n Ll X aw

Claim: There exists N'' such that n > N'' implies

(16) Jgbaw C BS,/E(fQ Vanw ).
Suppose the Claim is valid. Then (14), (15) and (16) imply

BBaf/h(fQ gau ) NL(fy xan ) C By (fg & k) N Ly X ap)
C Jy¥an

C Bav/e(fq Taw) -
Thus
(17) B%WUQ g db )N L(fQ Xap ) C Ba,/g(fQ ¥ a )

The same reasoning used to deduce the inclusion (11) from (12) in the proof of

Lemme 6 allows us to conclude:
Ba'/u(ngd“n) ﬂL(fQXdMn) C ledeun,

Letting & = 8'/4 and N = max (N', N''} we have the desired result.



Suppose the Claim were false. Then there exists a sequence of functions

fn in ;Q@,M Such that for every h in Jiﬁ)
- ?
gy o - fnas| > o

Since éiﬁ u 1s uniformly integrable and is convex and closed in Ll(u) and
J
hence is weakly closed (that is, with respect to O(Ll(u), L% (u)) ), ‘then

<

weakly to some f ip ;f; . In barticular, f f'ay ——> f £ adu .
ll!;“- Q. n Q

. 14 .
ﬁ u 1s weakly compact and so there is a subsequence f’p converging
R )

If h is any continuous function in ;fa u? then h e ;fﬁ u and hence
2 J

n
fa - h.a = 11 £fr d - h au? > &'/2 .,
‘fQ H fQ u ;m,fQ ! au fQ Hnl > /
But by Theorem 3 in [7] there exists a continuous function h e - such that
' 11[)“
fQ hdp = fQ fdu . This contradiction establishes the Claim so the proof of

the Main Lemma is complete.

THEOREM 2: For economies {u; B n=l, 2,...} satisfying (P.1) -(P.7), (¥.1)
- (¥.3) and (E.1) - ‘(E.E), E.L), (B.6) - (B.7), 1if boo=>p, if

Supp W C supp 4 for every n , if fIl € Zi(pn) and if f 1ig a continuous
allocation feasible for M such that for every p-> 0 there exists N

such that n.z N implies

lf(a) - fn(a)t S e, a € supp Moo

then £ ¢ E(p) .
PROOF: Suppose some H-nonnull coalition E blocks f . Then by Theorem 1

there exists a continuous b-allocation g satisfying

luSee Proposition IV. 2.3, page 118 in [28].




(18) gla) ¢ riX(a)) everywhere on supp { ,
(19) g(a) > f(a) everywhere on supp M ,
(20) fE g du € fE (@+Y ) dp .
By assumptions (Y.1) - (Y.3) and (B.4), fE Y dp = f; Y du  (see Theorem 3
and its proof in [7]). This means that LE&D +Y)an = [ (@ +Y)du since

is a continuous function. Thus (20) implies that there exists a continuous function
h on ‘A such that

(21) Jgpan = [ e au

(22) hia) ¢ [LX(@))] N [w@) + Y(a)] by (E.6).

By a slight generalization of Lemma 1, page 42 in [21], there exists o > O

such that for every a in supp 4 we have

(23) [Bp(g<a))] N X(a) > [Bp(f(a)) n X(a)

On the basis of the objects E , g, and 0 specified above, choose & >0 by the
Main Lemma. Using Lemma 2 on page 44 in [21], choose a u-boundaryless Borel set

Q@ so that the following two conditions are met:

(24 ) L@ AE) < min{d , %@—)},

- - " - d
@5 Mgeaw-Jynasl < [pean-Jpean] +fgnas - [, napl < 8,

where the latter ineyuality makes use of (21) above.
Condition (24), together with Mh => M , Iimplies there exists N' so

n > N' ensures that

(26 ) b @) > 0.
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Choose another integer ‘N .to be at least as large as N! and as large as the
integer specified by the Main Lemma and so that if n>N , then

. o) 3]
2 - d < — , -
(27) /g & an Iqean | 7oend [fonaw Joram] < 8
~Inequalities (25) and (27) imply that for n >N
‘fQ gan, - fohanl| < s
and relation (22, implies that

fQ hdp e L(fQ X ap )

Hence by the Main Lemma there exists, for each n >N, a Mn-allocation gn with

(28) fQ gn'd“n = fQ h dun € fQ (w+Y ) dun
and
(29) le (@) - &@)]< o  everywhere.

Condition (28) means that gn is attainable by coalition Q in economy “n and
(23) and (29) imply that

g(a) > [Bp(f(a))] N X))l , & € supp Ko -

But for sufficiently large n we have by hypothesis the fact that
j N : .
£ (a) e [B,(f(a))] [(X(a)], & € supp u

Thus fn can be blocked by the uh~nonnull coalition Q wusing the allocation

gn in economy “n - This cortradiction implies that f ¢ Exu)a

COROLLARY: For any economy satisfying (P.1) - (P.7), (Y.1) - (Y.3) and (E.1) -

E.2), B.4), ®.6) - E®.7) s the set Ef(p) of continuous p-allocation in Bu)

is closed under uniform convergence on supp M .



Iy

This Corollary is immediate from Theorem 2 and from the fact that if {fn}oo 1
n=
is a sequence of continuous functions converging uniformly on supp 4 to some

function f , then f 1is also continuous on supp M -

We remark that if  isa nonatomic economy satisfying (P.4'), (E.3), E.7')

3,30

and (E.8) with Jiiz {1,...,N then B (u) = fic(u) . This is because if

0
T e Cu) , then the above assumptions imply f e “W(u) and the associated price

vector p satisfies the condition:
(%0 w(p,a) > inf p- X(a)

everywhere. (See [13] or [9], page 28.)

Condition (E.8) also implies that p > > 0 and hence by (E.3), the sets
B(p;a) are uniformly bounded for a in supp B . But then Bo(p,a) is g 8¢
(see Proposition 4 in Debreu [10]). Now . (P.4!') implies Bo(p,a) = {f(a)} for
every a 1in supp M and hence f is continuous on supp M -

To 1llustrate the power of Theorem 2, we shall use it to extend Scarf's
proof of the nonemptiness of the core to an infinite economy M with a finite
number of types of traders. By this we mean that there is a finite subset

n n
{c.] of C wsuch that supp b (C .U, {c.} xI . We say that u has a
17921 i=1 1
rational marginal distribution if each of the numbers u({ci} xI), i=1,...,n

m
is rational; that is, u is rational-valued.

THEOREM 3: If W 1s an economy satisfying (P.1) - (P.7), (P.47), (¥.1) -
(¥.3) and (®.1) - (E.7) and if W has a finite number of types of
agents, a finite number of atoms and a rational marginal distribution,

then &(pr) is not empty.

15We recall that N is the dimension of the commodity space S . This means
that all commodities “are "degirable®.

16See footnote 9 above.
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PROCF': There exist & purely atomic measure “a and a disjoint nonatomic measure

“d such that p = Ha +‘Hd «  More explicitly, Ha is a uniform discrete
measure and “d is a diffuse measure such that
v N sy = .
supp b N supp u ¢
. m m . . m n
Since u and “a are rational valued, so is “d .  Let {Ci}i—l be the

types of agents in “d and let Pi’ i=l,...,n and q be Positive integers such

that pd({c.} xI) = &, Without loss of generality, we may assume that for
-1 q disjoint
€ach 1i=1,...,n there are P; closed”/nondegenerate intervals E_, j=1,a,.,pi s
1dJ

in {ci] x I and such thatfﬂpp;ﬁ:=inEij and such that ke distributes the

' 2
mass % uniformly on the interval Eij -with respect to (one—dimensional)
Lebesque measure on Eij « Let aij be the lower (for the I-coordinate of aij)

end point of Eij - The economy {aij’ i=1,...,n, j=l,anu,pi} will be designated
by Eil «  Let Dr be the measure directly representing the rth-replication‘af EZJ

as explained in Section 6. Finally, let

N
IY) = f
- B+ p(supp “d')“or .

The sequence %r converges weakly to U and satisfies supp Q&. C supp %
C supp 4 for every r .

Because of (P.4'), any allocation in the core of %% is constant %r=almost
everjwhere on each set Eij 17 and hence, by an argument similar to that made
following Lemma 7 below, this allocation can be represented by a continuous func-
tion on A .. Furthermore, Eac(%r) is a bounded subset of g by (Y.1) - (¥.3)

and (E.3) - (Eo5)}8 By the preceding Corollary, Eic(%r) is closed with respect

M3ee Theorem 2, page 251 in [15].

18See Proposition 2, page T7 in [11]. Thege assumptions on consumption and
Pproduction technologies imply that IA X du (: Q + b, JA Y dt  is closed and

convex, [IA Yaul N2 = {0} ana [‘fAY au] n |- fA Y ar] = f{o).
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to uniform convergence on supp ?} - But since every element of Gic(%r) is
constant on each Eij , then uniform convergence on supp %r coincides with pointwise
C
convergence. Thus each set Ez (%r) is bounded and closed and hence compact in
the product topology on SA .
By Scarf's result [29], each EEC(BTJ is not empty. It is clear that
c o~ Co C A
Ez (Dr‘) C Exbr) when r' > r . Thus the compactness of the sets C (v )

[ve) C/\

T
o)
N ‘s not ) o c o c
implies that A e(ur) is not empty. By Theorem 2, rgl e (ur) C CC )

S0 E(u) is not empty.

8. The price implications of approximately perfect competition.

We have identified the notion of approximate perfect competition with the
concept of an asymptotically competitive sequence of economies. This section
demonstrates that just as every Edgeworth allocation in a perfectly competitive
economy is a Walras allocation, so is the core of an approximately competitive
economy equal to the set of approximately Walras allocations.. As an introduction

to this result, we first make the simpler assertion:

THEOREM L: If {un} is an asymptotically competitive sequence of economies
with 1limit W , if each of these economies satisfies (P.1) - ®.7), (¥.1) -
(Y.3), (B.1) - (B.2), (B.4), (E.6) - (E.7), if £ 1s in Ei(un) and if

fn converges uniformly on supp Mn to a continuous p-allocation f ,l

then £ e Q (W) . If p also satisfies (E.7') and (E.8) , then

fe "W

This theorem is an immediate consequence of Theorem 2 and of the usual

result characterizing allocations in the core of a nonatomic economy by prices.

;By this we mean that fn converges to f in the way specified in the
statement of Thecrem 2.

gFor example, see Theorems 2 and 3 in [9]. Similar results can be found in
(2], [20], [21] and [32].
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We now use Theofem.H, together with the proof of Theorem 3, to derive a
theorem giving conditions for the existence of a Walras allocation for a finite
economy. kven though these conditions are overly strong when compared with
other existence proofs (see [13], for example ), this result is interesting because
it illustrates how the study of infiunite economies can.be used to get information
about finite economies. It is also the first time that the nonemptiness of the
core of a finite economy has been used to demonstrate the existence of a Walras

allocation for that economy.

COROLLARY: If p is a finite economy satisfying (P.1) - (P.7), (P.4*), (Y.1) -
(¥.3) and (B.1) - (E.7), then Q(u) 1is not empty and if (B.7') and (E.8) also

hold , then “W () is not empty.

PROOF: ILet Eil be the economy directly represented by the uniform, discrete
measure B , let .{ur} be the Debreu-Scarf sequence of replications of éﬁl and.
let v .be the limit of the asymptotically diffuse sequence [ur} «  The proof

of Theorem 3 demonstrated that each of the sets Ef(t}) is a compact, nonempty
subset of SA (with the product topology). Further, these sets are nested.
Consequently, there exists f in rgl EEC(Dr)u By Theorem.h, e D(v) and,

it (E.7') and (B.8) also hold for it ; then they hold for v and f e W (v).
It remains to show that if £ ¢ & (v) (resp., f e ﬂﬂku)), then f € gl(p)

(resp., £ ¢ W(u)). This is accomplished by Lemma 7.

IEMMA 7: If {or, r=1,2,...} is a Debreu-Scarf sequence with limit v
satisfying (P.1) - (P.3) and (Y.1) - (¥.3), then £ e 9 (v) implies

fe Q(ul) .



PROOF: Because f ¢ 2(v), there exists h' e QEY o such that [A fdv =
- 2

= LAQD + h') dv and there exists a non-zero Pprice vector p such that for wv-almost

every a :
(1) either fla) ¢ ﬁo(p,a) or f(a)e B(p,a) and w(p,a) = inf p 'X(a),
(2) pe-h'(@) = =n(pa).
We shall show that there exists a production assignment h in éfy. such that
2
1
(3) [y £ao = fA(co+h)d”ol

and that, for Dlualmost every a , statements (1) and (2) above are valid if h' .
is replaced by h . This will suffice to show f ¢ 9 (v

1)
Let Ei, i=l,...,m be the closed, connected subsets of A which were defined

on page 29 and which satisfy

m
U = = .
9 By sUPP V
Because f and w are constant on each set Ei and because D(Ei) = % = ti(Ei) R
we have . . B
Iy (£ -ag)dul = fA (f - ) dv .
Thus to show (3), it suffices 4o find h 4in ;fY p. Such that h is constant on
2
1
and = ? . i i = 1 P
each E, fEih av ﬁEih dv , because this will mean that fA h dv jAh av

The existence of h is immediste From

LEMMA 8: If Z is a correspondence on a space E such that for every a
in E, Z(a)=T for some closed convex subset T of 8§ and if u idis a

nonnegative measure on E , then

JgZak = pE) - T
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PROCF: If ge ;f » ‘then there exist simple measureable functiong

Z,u
;f that d : g . f t i
gn_e 7,1 such tha fE gn.M — [E g du Then for some vectors ain in
T and some subsets Fin of E we have
n
&y ~ .Z %n XF.
i=1 in
k

Define 1 n

a = I pE, ) a.

n LE) 121 in in

an €T because T is convex. Further

- _x 1 —
T EEy fE g, W —> w(E) fE gan= a.
Then a ¢ T since T is closed . and
Jggdn = LE) - a.

Thus fE Zap = p@E) ‘T .

To complete the proof of Lemms, [, we note that (1) holds for V-almost every
a 1in each Ei - The constancy on ‘Ei of the functions mapping a into, respec-
tively, f(a), Bo(p,a), B(p,a), w(p,a) and inf p * X(a) implies that if (1)
does not hold for some a in Ei ; then it does not hold for any a in Ei . This
’

is impossible since D(Ei) >0 . Thus (1) holds for every a in SUpp v

i.e., ul—almost everywhere. To show that (2) holds vy -almost everywhere when h'
is replaced by h , we note that (2) implies

. - . ¢ = o . .
P ,[A h dv g jA htdv sup p fA(Y + ) dv

This means that the set
laeh: p-h) < n(p,a)}

is v-null so (2) holds v-almost everywhere when h' is replaced by h . To show
that it in fact holds Dl-almost everywhere, an argument analogous to that made in
the preceding paragraph using the constancy of h and w(p,-) on Ei can be made.

This completes the proof of Lemma 7 and of the Corollary to Theorem 4.



2
_economy. - Finally, Cr is the set of allocations x(

-~ 5% =

We now consider the Edgeworth-Debreu-Scarf 1imit theorem which is the

prototype for a more general limit result later. Given an economy é?l = {al,...,am},
e

we defined in Section 6 an economy 611 = {aijg i=1,...,m, j=1,...,r) consisting
1 . 1 g h = s .
of r "replicas" of 1" The economy s = {aij, i=1l,.ee,m, J=1,...,r}
where aij = ?% aij was also defined. - Finally, an economy % Efl can be defined
= . . ~ 1 .
as {aij5 i=l,c00,m, j=l,.c0.,r} where aij =z aij - An allocation for EEI
. h 1 . . .ol
(respectively, for Eir or = gil) is a collection X(r) = {Xij’ i=1,...,m,
J=1l,ee0,r} (respectively, 'X(r) = | %, 33 i=l,eee,m, j=l,...,r} oOT
§Ej5 i=l,.0.5m, J=1,...,r}) of commodity vectors such that for every 1i,J,
x., € Xla_, respectivel ;_- e X g_, or §,, X z..
iy € Xa, ) (vesp v, %y, e X(E, ) 1y € X))
Define for any integer r > 1 :
dé = {x(l) € X(al) XeooX X(am): if x(r) = {Xij =X, i=1,ce0,m, j=1,...,r},
then X(r) is in the core of Sir} 5
& - {x e X(a, ) x.0ox X(a_): if x = {x,, = 1 X;p 1=1,c00,m, J=1,.0.,1)
r (1) 1 i (r) ij rm i ? 27 ? ’
~ h
then x is in the core of
) e >
05 = [x eX(a.) X oo xX(@ ): if X = {x - L x,, i=1,. m, j=l,...r}
r (1) 1 m (r) iJ T s b >, s
a2 . 1
then =x(r) 1s in the core of < 61]} .
Thus C. is the set of allocations x = (x,,...,x ) for gi such that if
r (1) 1 1
each of the r traders aij’ J=l,+.., 7 of the same type as ai received Xi in

_ economy gr , then the result would be in the core for Er . Ci is the set of

allocations X(l) = (Xl’°'°’xm) for @1_ such that if each trader ai in Eil
delegated trading authority to r '"brokers® glj = % aij ; J=1,...,r, then the
allocation E(r) defined by §;j = % Xi would be in the core of the resulting

1) = (xl,...,xm) for which

Xi is in the core of Ei? .

~

. - 1
def db =
X(r) efined by Xij —
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Edgeworth [18] and Debreu and Scarf [15] have found conditions under which
o

if X(l) € rgl Ci , then 'X(l) is a Walras allocation for é:l . Dreéze,

Gepts and Gabszewicz {16] have found conditions under which if X(l) € fjl C? 5
then ‘X(l)' is a Walras allocation for E& - However,
(a) X(py 1s in the core of é?r <=> there exists f ¢ C?(Dr) with Xij = f(aij)’

(b) X(r) is in the core of Ei? <> there exists f ¢ é?(br) with Xij = L fla. . ),

~~ 3 . 1 . ] ~ 1 =
1t £ — <==> th ’ . i =
() X(py s in he core of I,EH_ ere exists T ¢ C?(Dr) with Xij‘ - f(aij)
But then
X(r) is in the core of E?r <=> X(r) = Eéﬁ X(r) is in the core of E?i
~ 1 1
=> = = is in t f = o
| x(r) - x(r) is in the core of - Eil
1 2 3 .
Hence for every r s Cr = Cr = Cr - In particular, the Edgeworth-Debreu-Scarf

result and the Dréze - Gepts - Gabszewicz result are special cases of

THEOREM 5: Given an economy = f{a,,..,a } satisfying (P.1) - (P.7)
e 7 1 1 m ’

(¥.1) - (¥.3), (®.6) - E.7), if x(l) € rQl Ci , Tthen x(l) is quasi-

competitive for %i Ir El also satisfies (E.7') and (E.8), then x

T (1)

is a Walras allocation.
PROOF: It has been shown in Section 6 that the replication and division procedures
can both be represented by the asymptotically perfectly competitive sequence of
economies v, with 1imit v . - In order to use Theorem k4 above, we want to find
allocations f'lq and f which correspond in some way to X(l) = [X1’°°"Xm] . We

do this by defining a modified consumption correspondence X' on A:
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{xl} if a e Ei s any i=1,...,m
X'(a) = -{
‘ m
X(a) adlU E, .
1
i=1

The lower semicontinuity of X' follows easily from the following simply

proven Lemma:

LEMMA 9: If X 1is a LSC correspondence from A to S , If E 1i1s a closed
subset of A and if there exists a common element x in X(a) for every a

in E , then the correspondence X! defined by

Xt(a) = {

is also lower semicontinuous.

By the Continuous Selection Theorem,4 there exists a continuous function f
on A such that f(a) e X'(a) for every a. Because fla) = X, for a in Ei

and. x( € rﬁl Ci , then f ¢ EZCQF) for every =z . Hence we can conclude that

1)
fe ©(v) if we can show that the hypothesis of Theorem 4 is satisfied. We have
explicitly assumed all the conditions of Theorem 4 except for (E.1), (E.2) and (E.4).
It is clear that (E.1) and (E.2) are satisfied by any economy having only a finite
number of different types of trader . Condition (E.l) need not be satisfied by v .

However, it is easily seen by Lemmas 8 and 9 that for any Borel set F ,
c
[F Y dv = ﬁF Y dv
whenever v 1s an economy with a finite number of types of traders each of which

satisfies (Y.2) and (Y.3). Since (E.L) was assumed for Theorems 2 and L only to

ensure this equality, we may apply Theorem 4 to conclude that f ¢ 2 (v). It now

5The sets Ei were defined on . page 29 in Section 6.

uThis is Theorem 3%.2", page 367 in [27].
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remains to show that, in fact, f ¢ gl(ul) and that, consequently, x( ig

1)
Quasicompetitive for E;_o This conclusion is immediate from Lemma T

To study approximately Walras allocatiors, we first need s Lemma which

generalizes the argument of the last two baragraphs of the proof of Lemma s

LEMMA 10: Under conditions (P.1) - (P.7), (Y.1) - (¥.3) (B.1) and (B.h), if
f is a continuous, quasi-competitive allocation with respect to prices p for

an.economy M , then there exists s continuous production. assignment h for !

and that [A fdu = [AQD¥h) di -and such that for every a 1ir SUpp Wi
(%) f(a) ¢ B(p,a)

- (5) -either w(p,a) = inf p * X(a) or f(a) e BO(P;a)
(6) p° hla) = u(p,a).

Remark: The essential feature of thie Lemms is the assertion that for a continuous
allocation f , comditions (4) - (6) hold everywhere on supp 4 and not just

M-almost everywhere.
PROOF: To prove that (%) holds everywhere on .supp 4 , we note that the set
{a € supp u: p - f(a) < w(p,a))

is closed in A (since f ang w(p, +) are continuous ) and has p-measure one.
Consequently, this set equals supp 4 .

To show that condition (5) holds everywhere on supp p > We shall show that
if w(p,ao)> inf p ='X(a0) for some a, in supp W , then f(ao),e ﬁo(p,ao) .
Now W(p,ao),> inf p - X(ao) means that there does not exist a sequence of
elements a. in supp & converging to & and satisfying w(p,an) = inf p - X(an),
for every n . This is because the mapping taking the point a' into w(p,a') -

inf p * X(a') dis conmbinuous on A (Proposition 3 on page 6 above ). Hence the set
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F = {at e A: w(p,a') - inf p * X&) = 0}

). =

is closed. Thus the existence of such a sequence {an} would imply W(p,ao

= inf p”X(aO) which contradicts our hypothesis.

On the other hand, every neighborheod U of a contains a point a' in

0
supp W such that either w(p,a') = inf p * X(a') or f(a') e Bo(p,a'), because

if there were a neighborhood U containing no such a', then f € gl(u) would
imply u(U) = O . This would contradict the fact that ay € supp ¢ . In con-

clusion, there exists a sequence of elemeunts an of supp K converging to ab and.

satisfying f(an) € BO(P;an) °

We want to show that for any =x in B(p,ao), the relation x < a f(ao) holds.
- 70

Now w(p,ao) > dinf p °vX(aO) implies that B(p,*) is LSC at a, (see the second

part of the proof of (3) in [10]). Hence there exists X in (B(p,an) such that

Xn —> X , where {an}w is the sequence described in the preceding paragraph.
' n=1
But
(an’ X f(an)) _ (ao,x, f(ao))
and X EE&L f(an) for every n so x i:ao f(ao) since preferences are

continuous (Proposition 1, page 5 above). Thus w(p,ao) > dinf p ° X(ao) implies
. ,
that f(ag) € B (p,ao)o
To demonstrate the existence of h , we note that (Y.1)-(Y¥.3) and (E.}) imply
fA Y du = f; Y dp (Theorem 3 in [7]). Hence there exists a continucus function

h in éf% u such that
2
JA faw = [, (o) au

The argument made in the last paragraph of the proof of Lemma T demonstrates
that condition. (6) holds for d-almost every & in supp ¢4 . The continuity of h
and n(p,*) implies that in fact (6) holds for every a 1in supp 4 by means of

an argument analogous to that used to demonstrate (4).
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For any €> 0, a A-allocation g 1s _&-quasi-competitive for A if there

exists a nonzero price vector b and. a A-production assignment h such that for

A-glmost every a:

(7) either w(p,a) = inf p ¥ X(a) or g(a) is within e of the set B%(p,a),
(8) I, g ar - [yn)an] < e,
(9) p - ha) = x(p,a) .

A function g is an e-Walras allocation.for ‘A if g 1s e-quasi-competitive for

A and if (7) is supplemented by

- (10) g(a) is within e of Bo(p,a) for A-almost every a .

These concepts are related to the idea of asymptotic perfect competition by
the next Theorem which was first Proven by Hildenbrand [21] under more restrictive
assumptions:

THEOREM 6: (Hildenbrand) Given. an asymptotically perfectly competitive sequence
of economies {ul,ug,.,a} each of which, together with their limit u 5

satisfies (P.1) - (P.7), (Y.1) - (Y.3), (B.1) - E.2), E.L), ®.6) - E&.7)

and given a sequence of k_-allocations fn where fn belongs to Ef(pn)
and {fn}z=l converges to some continuous function uniformly on supp “n R
then for any € > 0 .there exists N such that n.-> N implies fn is
€=quasi-competitive for Booo If W also satisfies (E.7') and (E.8)

then fn is an e-Walras allocation for Hn'°
FROOF: Tet f be the continuous function which is the uniform limit on Supp B
of the allocations fn - We recall that this means that for any € >0  there

exists N so n.> N implies:

]f (a) = f(a)l < € for every a e supp oo
n =



By Theorem 4, f is in gl(u). By Lemma 10, relations (4) - (6) hold everywhere on
supp K and hence hold everywhere on each supp Hn since supp b C  supp b -

In particular, we see that condition (9) holds un=almost everywhere for every n .
To show that condition (7) holds un-almost everywhere, we observe that (5)
holds everywhere on supp Mn and that for sufficiently large n , fn(a) is within

e of f(a) everywhere on supp b To show that condition (8) is satisfied, we

note that for sufficiently large n

€ .
l£,6) - £ < 5, e in suppw
and hence
(11) [fof an - [ fau| < £
' A n n A n = 3
For sufficiently large n we also have
€
fa - rd < =
(12) Jygaw - J fau] < >
since f 1is continuous and Hn ==> W . Finally, for large enough n we also have
(13) Ho@m)aw - [ @m)an| < £
A A n = 3
since ® + h is continuous and b, =>4 . Combining (11)-(13) together with
the relation fA fdp = fA(w+h) du we conclude that for all n large enough

(8) is valid, if AN = Hy

The value of Theorem 6 is that it can be applied to less restrictive types of
convergence of economies than that contained in the Edgeworth-Debreu-Scart model.
We shall demonstrate this by considering a generalized E-D-S sequence {v'} of
asymptotically competitive economies as defined in Section 6 above. An example
is given in the Appendix which demonstrates that even when (P.4') is valid, an

allocation in ff(u;) need not allocate the same bundle to traders of the same

type. However, the following result is valid.
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THEOREM 7T: Given a generalized E-D-S sequence of economies {Dﬁ} each

of which, together with the limit v' satisfies (P.1) - (P.7), (®.4v), (¥.1)-
(.3) and (E.1) - (B.2), ®.4), (E.6)-(E.8) and B.7Y) if fn is an
allocation. in f?(qé) for each n and if {fh}z=l converges to some con-
tinuous function f wuniformly on -supp u& , then for every e > 0 there
exists N such that n >N implies Lfn(ao) - fn(al)‘ < € for any. two

agents 2y and aq of the same type in supp Dé‘.

- PROCF: This result is a direct consequence of Theorem 4 and Lemma, 10 or of the
proof of Theorem 6 by noting that if ao and a, are two agents of the same type,
then Bo(p,ao) = Bo(p,al) where p is the price vector associated with the
allocation f which is Walras for v' by Theorem 4. By Lemma 10, f(a) ¢ Bo(p,a)

for every a in supp v and by (P.4'), ﬁo(p,a) consists of one point for

every a in supp Dé for every n . Hence
(flag)) = B (pay) = B (pay) = (£(a,)]
0 70 71 1
[o0]
if 2, and al are both in ngl supp p; . The conclusion of the Theorem ig

then immediate from the definition of uniform convergence on . supp D£ .
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9. Conclusions

The main result of this paper is to find conditions under which the core
correspondence 1s almost upper semi-continuous; namely, such that if Mn => U,
Supp K C supp M -and if T, — f "umiformly on supp un" and £ e Ei(un),
then T ¢ Eg(u).l A corollary of this result is that under certain conditions,
the set Ezc(u) of continuous allocations in () is closed with respect to the
topology of uniform convergence on Supp H .. In particular, the core of any such
finite economy is closed. This result is employed to find conditions under which,
1f the core of a finite economy is nonempty, then there exists a Walras alloca_
tion for that economy. This result is also used to extend Scarf's proof of the non-
emptiness of the core to an infinite economy with a finite number of different

types of agent.

The quasi-upper semi-continuity of EE is used to prove a result due to
Hildenbrand [21]: if M 1s a finite economy "close enough" to a perfectly
competitive economy K and if fn is an.allocation in E?(Mn) close enough to
an allocation in fi?(u) , then fn is approximately a Walras allocation for
Mn - This generalizes the Edgeworth-Debreu-Scarf 1limit theorem and can be used
to study less regular sequences of emnomies, such as the "generalized E-D-S
sequence’ defined in. Section 6.

In Section 6. it was suggested that it would be useful to have a concept of
perfectly competitive behavior for finite economies which was not based on the
institution of prices. This concept would be used o study trading in a mixed

€ conomy where some agents behave as perfect competitors and some do not. Dréze,

lOf course the term upper semi-continuity gives an inaccurate description of this
property of € because it has not been shown that the conditions on the sequence

{f } correspond to convergence with respect to some topology on st In
the Pe8f of this section we shall adopt the awkward, but convenient, name of
quasi-upper-semi-continuity.
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Gepts and Gabszewicz have suggested that an agent he called perfectly competitive
if he is willing to delegate his trading to an arbitrarily large number of brokers.
- It is notclear whether this definition has any operational meaning. It also
encounters certain logical difficulties which are discussed in Appendix 1. Never-
theless, the concept has some intuitive appeal, perhaps because our intuition is
based on the few results which have so far been established in this field.

One way to study the usefulness of the DI%ze-Gepts-Gabszewicz definition of
perfect. competition is suggested in Appendix 1 and derives from the original work
in [16]. Another approach might be to search for conditions under which if some
of the traders are perfectly competitive, then the result would be close to a
Walras allocation. For example, one might place restrictions on how different
the characteristics of those agents not delegating their trading could be from
the characteristics of those agents delegating their trading. It is believed that
Theorem 2 would be useful in studying this problem, since the limit economy U
need not be nonatomic. However, it would be necessary to relax the condition
that
(1) Supp 1 C supp u - Tor =n=l1,2,...

To this end, we remark that the theorem as stated remains true if condition (1)

is replaced by the assumption that there exists a compact subset K of A such
every a in K satisfies (P.6) and

that/%upp #C K. and supp b C K for n=1,2,... and such that for any other

economy A ; if supp A ( K , then 'L(fE Xan) C L([E X du) for any coalition E.

To verify that Theorem 2 remains true under this alteration it is only necessary

to remark that:

(i) the allocation g in the statement of Theorem 1 can, by Theorem 3
in [T], be chosen so. g(a) > f(a) for every a in K and

g(a) e ri(X(a)) for every a in K;



(ii) the Main Lemma of Section 7 remains valid under the new assumptions.

This revised version of Theorem 2 may be of interest for other purposes.

Theorem 2 relies on the use of continuous allocations. For a finite
economy, any allocation can be. represented by a continuous function on A (see Lemma
9). However, there may exist an interesting sequence [uh]z:l of economies with
limit d and a sequence of allocations fn in E?(un) with a 1limit f which is
not continuous. It would be helpful to know how restrictive we are being when we
only consider sequences {fn]zzl with a continuous limit. We also want to know

whether the assumptions which imply EZC(M) is closed also imply that C(u) is
closed.

An assumption which appears to be unduly strong for Theorem .2 is (P.k4),
convexity of preferences. We remark that Theorem 5 is known to be true without it
(see [22]). The essential step in dropping (P.4) appears to be to find conditions
on a correspondence ¢ so that f; P du is convex even if ¢ dis not convex-
valued. Of course, the condition that M be nonatomic is sufficient to show
that fE ¢ dp is convexu2 However, this is easily seen not to be a sufficient

condition for fCQ du  to be convex. - This convexity is used in Theorem 1 of

Section 7 and in Theorem 3 in [7].

2‘I‘his result is due to H. Richter and may be found in [1].
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‘Appendix 1. Examples of economies with unequal numbers of traders of the same type.l

Debreu and Scarf [15] have shown that for an economy E; = {aij; i=1l,..., ™M
J=1,...,r} gotten by replicating Efl = {al, C . ,,am} r times and satis-
fying (P.2), (P.4'), (P.6), (P.7), an allocation Xipy = {Xij; i=l,.00,m, J=l,0..,7}

is in the core of ? only if x, . = x, for all i, j and k. Debreu and Scarf
T 1J ik
also showed that if (P.4') is weakened to (P.4) and if X(p) is in the core of

Eir , then 'xij :a Xik and if X'(r) is defined by

1J
r
x'ik = % I s k=1, ...,

then x’(r) is also in the core of EL‘ (These allocations form the “strict core. )

This symmetry of the allocations in the core of ?ir disappears if there
are "concavities" in Preferences. This is easily seen if one constructs an Edgeworth
box for the trading situation which arises when there are two commodities (S = R )
and two identical traders with indifference curves which are concave to the origin.
This symmetry also fails when there are unequal numbers of traders of the same
type. We shall now illustrate this with a simple example.

We consider an economy where there are three traders: a and a_. .

110 %10 2
Traders a4 and a12 are of the same type. The commodity space 1is R2 with the
first commodity called the "y-commodity" and the second the Yz -commodity®™. The
consumption possibilities set for each trader is the nonnegative orthant and the
production possibilities set for each trader is {0} . Further, the preferences

of every trader are given by the utility function2

Uly,z) = (y+1)(z+l) , (y,2) ¢ B , (y2) > 0.

l'I'he examples of this Appendix are due, in part, to Alan Kirman.

2We let U(y,z) = (y+1)(z+l) rather than U(y,z) = yz so that preferences are
strictly convex on all of the set {(y,z) € R*: (y,z) >0} .



_6;5_

The two types of trader differ only in their initial resources:

) = (7)1)

w(all) = w(a12

(2,1h)

S
It

We shall now show that the allocation =x .defined by

X = (5;5)
L XE = (9;9)
X, = (4, h)
is in the core.
First note that
(1) ‘U(X12) . > U(Xll) = 16 > 16 = U(w(all)) = U(w(alg))
and
(2) U(xg) = 100 > L45 = U(a)(a2))

Thus x is individually rational; that is, none of the coalitions {al }, {a
or {ag] can block x .
Inequalities (1) together with the strict convexity of preferences also

imply that {all, a.,.)} cannot block x . Suppose that an allocation x' existed

12
such that
U(x’ll) > Ulxy,)  emd UL ) > Ulxy,)
or
U(X*ll) > U(Xll) ~and U(x'lg) > U(X12>
and
X?ll + X'12 = w(all) + a)(a12 ) = 2 w(all)

which contradicts (1) .
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We now show that the coalition {all, ag} cannot block x .5 Let p be

2
the vector -(1,1) in R™ . P 1s interpreted as a price vector. Then the value

of the resources of {all’ ae} is given by the dot product:

(3) Do Qb(all) + m(ag)) = 2i

and the value of the bundle allocated by x to {all, a2} is

D - (Xll + X2> = 24
Because the slope of the indifference curve through xll (resp., through Xg) is
minus one, if x' is any other allocation satisfying either
' > 1y > T
U(xll) U(xll) and U(xg) > J(Xe)
or
. 1 ]
U(xll) > U(xll) and U(XE) > U(Xg)
then
T t > . = .
(Xll + XE) . D (Xll + x2) ol
But then relation (3) implies that we cannot have Xil + xé = w(all) + w(a2)a
Thus {all, a2} cannot block x .
Because p * (xl2 + K2> > p e (xll + xg) = p - ((D(aj_g) +u)(a2)) 5

the above argument also demonstrates that {a cannot block x . Finally,

107 )
because
D - (xll + X, +.%9:=p-(w(all) + w(alg) + w(ag)) s

an analogous argument demonstrates that {all, 8y 57 ae} cannot block x .
The preceding example exhibited an allocation x in the core for which

) ' .
Xll + XlQ . However, if x is defined by

= %(x + x ) x! = x_ .,

() 11 12

1 ?
1 0

3

The type of argument made in this paragraph derives from a comparable example
rresented by H. W. Kuhn in lechures on the theory of international trade.



then it is clear that x' also belongs to the core. We now give an example of

a three person. economy {all, a o7 ag} for which there exists an allocation x

1

in the core where and where x' defined by (4) is not in the core.

1 + 10

"We shall find x by specifying a utility function for 811 and a12 such that

there exist commodity vectors Xll and 312

stitution different from the marginal rate of substitution at %(

with a common marginal rate of sube-
X, + Xlg)- This
means that for any given set of prices, the corresponding income-expansion curve
should not be a straight line in the commodity space.

The example is gotten by again letting the consumption possibilities sets

2
be the nonnegative orthant of R and by assuming there are no production possi-

bilities. Traders all and a5 have the common utility function21L
U (a) = (v + 5 + 40 log (z + 1)
and trader 8, has the utility function
U,(v:2) = (y+1) (z+ 1)
‘For a , and 8, the marginal rate of substitution at (y,z), i.e. the

negative of the slope of the indifference curve through (yv,z ), is

+ +1
MRSll(y’Z) _ (y+5)(z+1)
20
For ag we have VES. (y.2) = (z+1)
2\ TO(y41)

Suppose resources are distributed so that

) = o) = (0,197 )

a)(all 1o

2
(27, 7 )

w(a

1l

o)

and that an allocation x is defined by

l‘LThis function might be given an intuitive interpretation by calling the
z~-good bread and the y-good cake. Examination of the income expansion curve
reveals that the z-good is inferior.
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il

: 3
Xll (9; —7')
15, 0

X

12

To verify that x is individually rational, we note that

‘Uil(xll) > 196 + ho (.3) = 208
and ) )
Uy (xpp) = M0
whereas
Ull(w(all)) = Ull(w(alg)) < 25 + b0 (3.1) = 149
Thus
Uy (pp) > %iﬁu)‘>lﬁﬁw@n))= U, @)
Similarly, 10 10 .10 s
Ug(xg) = 4 (ho) > 28 (7?) = Ug(w(ag)) .

Thus x is individually rational and since preferences are strictly convex
2 2

x cannot be blocked by {all’ al2} .

Since

MRSll(Xll) = MRSlQ(XlE) .= MRSE(XE) = 1,

we again choose a price vector p= (1,1) and note that the commodity bundle

received by all and a2 together has a greater value than their combined
resources: D (Xll + XQQ - 51 %
> 46 %g = P (o, + owy)
Thus {all, ag} cannot block =x . Similarly, ‘p . (x12 + x2) > p °(wll + wg) 5
and p(xll + X5 + X2) = p - (wll + @5+ we) 50 neither {a12’ a2] nor
{all, 8 ag} can block x . .

Thus x 1is in the core of ({a To show that x' defined by

117 300 2l

() above is not in the cere, we only need to remark that
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3
x7_) = (12 +5)%F + 1)
11 - 20

*MRSll(

17 17
% I > 1

?
so that MRSll(X

11) 4 MRS, (x}) -

2
This example is of interest for the delegation-of-trading model due to

Dréze, Gepts and Gabszewicz [16] and explained in Sections 6 and 8 of this paper.

Suppose we are given the economy E&. = {al,ag} where ag colncides with the
trader of the same name in the preceding example.  Trader al is characterized by
the preferences
= (I 2 Z

U, (v52) (5 + 57 + k0 log (z+1)
and resources

w(al) = (0, 39)
Thus, in the notation of Section 6, the traders a4 and alE of the preceding
example satisfy . . _ 1 a

11 12 2 1

Let x and x' be the allocations for {a B ag} specified in the

11° alE

above example and define an allocation z for\glby

z = (Xll + 105 X2>

Then 2z 1s an allocation for Ez which could result if al delegated trading

authority to a1y and 80 But =z 1is not in the core of Efl since

MRS (x, +x ) = MRS, (xI.) + MRS

117 Fe 1111 (x,)

272

In this situation we see that it is not rational for al to delegate his

trading to aqq and a12 unless a2 does likewise, because al may be able

to do better for himeelf (and Ffor ag) by bargaining directly with 8y -
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The model depicting the delegation of trading authority was devised to permit
the definition of perfectly competitive behavior in a finite economy not possessing
the institution of prices. Anagent is perfectly competitive if he is willing to
delegate his trading to an arbitrarily large number of "brokers". The preceding
example illustrates that perfectly competitive behavior may not be rational for
one trader unless all other traders behave the same way. Of course, this con-
clusion is part of the conventional wisdom of economics. A more important remark,
however, is that al and a2 may have an inducement to continue trading after

{all LY ag} have finished. Thus we cannot hope to simplify the bargaining

problem confronting a., and a by assuming that a

1 o acts as a perfect competitor.

1

There are situations in which this difficulty does not arise. For example,
if al had preferences for which all income expansion paths were straight lines
in Rg, then it would not be Possible to construct a counterexample of the type
above. However, the remarks on page 28 suggest that the condition that all ex-
Pansion paths be straight lines may nevertheless, not be a sufficient condition
to guarantee that the above difficulty does not arise. Tt would be interesting
to know whether such a counterexample existed.

A different approach has been adopted by Dréze, Gepts and Gabszewicz [16].
They have generalized the result of Debreu and Scarf mentioned at the start of
this paper to show that if EG_ is an economy consisting of 4 traders of each
of m +{ypes of trader, if the consumption possibilities set for each of thege
traders is the nonnegative orthant of R™ » 1f the preferences of the traders
satisfy (P.2), (P.4'), (P.6), (P.7) and if ¢ .1) is valid for every trader, then

all traders of the same type receive the same commodity vector as long as the

number M of traders who do not delegate their trading authority satisfies:



(5) o <M< 1
and as long as
(6) 1< 2.7
This result can be made more explicit by supposing
E?l = {al, coo, am{}

and that these indices are chosen so that al’°°"aMO are willing to delegate

their trading where My = m 4 - M. Suppose X(r> = {Xij’ i=l,,..,MO,
j=1,...,r} U {xi: i= MO +1,...,m 4 } is in the core of
gr = {alljau.,alr).ajaM )umu)aM 531\/[ }-..,am/&]
Ol oT O+l
Then Xij = Xik for every 1< MO and all j and k .
Furthermore, if X(l) is defined by
= i=1,.00,M
X, r Xij i=1, JWO
then x is in the core of E) and %, = x, 1f a, and a. are of the same
(1) 1 i 3 i J

type. Thus those who do not delegate their trading do no better than those who
do. We remark that inequalities (5) and (6) seem to guarantee that the charac-
teristics of one. type of agent are not monopolized in such a way by those traders
who choose not to delegate their trading that these traders can discriminaste
between those traders who delegate and those who do not. It would be interesting
to know whether these inegualities could be weakened without adding compensating
restrictions on the characteristics of the agents represented in ET . This

1

appears to be a promising area for further research.

5

This is Lemma 4, page 16 in [16].



Appendix 2. Measureability Problems

In this Appendix, we shall state the Measureable Choice Theorem and shall
prove two lemmas on the measureability of certain functions encountered in the
Proof of Lemma 1 in Section { of this paper.

We remark that a topological space W is a Polish;space if it is separable
and if it can be metrized in such & way that it is complete. We also recall that
a correspondence @ from a measureable space (T , ij ) to a measureable space
W, c“f ) is itself measureable if its graph is measureable in T x W with respect
to the product o-field. Whenever & space W is a topological space, then the
associated O-field CVV. is the collection of Borel subsets of W. If p is a
measure on (T, f] ), ‘then ?j“ is the completion of ij with respect to u .

A function f from T %o W is H-measureable if it is measnureable with respect

to Tju and ch(,

Measureable Choice Theorem. ILet (T,u) be a o-finite measiure space, let W

be a Polish space, let @ be a nonempty-valved, measureasble correspon-
dence from T to W. Then there exists a measureable function f: T —> W

such that f(t) e @(t) for p-almost every t in T .,

This Theorem is proven by Aumann in [34] under somewhat weaker assumptions on the
space W .

We now suppose that A is the metric space defined in Section 2 of this
paper, CQ, is the set of Borel subsets, u 1is a Pprobability measure on (A,C2,)
and S is a finite-dimensional, real vector space. R U {+x}, +the real line
with the point + o added, has a topology consisting of the open sets of R
and sets of the form {x ¢ R U {(# ©}: M<x <+ w} (i.e. neighborhoods of «+ ),

The o-field on R U {+ o } is the corresponding collection of Borel sets.

i
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If X 1is any compact subset of A , then of course X is Polish.
Furthermore, a correspondence ¢ from K to S8 is measureable only if its graph
is, in fact, a Borel set in K x S (see footnote 1 in Section 7, page 31). These

remarks are useful in the proof of

LEMMA 1: If K is compact in A , if ¢: K —> S is measureable and if

p € 8, then the function 0: K —>R U {+ »} defined by

o(a) = supp ° oa)

is p-measureable.

PROCF: Consider the function On: A —> R defined by

o (a) = -nX (a) + by == X (a) + n X (a)
n [0 < =n] k=-n241 2" k- k [0 <0 < + w]
- Ca <eos—4 -
2 -2
where
[0 <3] = (aekK: o(a) < j)
() <9 53,0 = laek: j, <of@) < Jo}
and where X (-) 1s the characteristic function of the set [o < j].
[0 <) B
Now for any a din K and for any n. -
l 1 . g
o (a) - o) < & if [o(a) < n
n = 2 =
lcn(a)J = n if |o(a)|>n .

lOf course, it is immediate from the definition of the topology on R U {+w},
that to show o is measureable, it suffices to show that for any real Jj and
k, the sets [j<o<k] and [j<o0 <+ «] are measureable. However, it
seems more difficult to show [j < 0 < k] 1is measureable directly than to use
the above argument approximating o by 0, so that we only have to show that
[j <o <+ =] is measureable.
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50 Gn —> 0 pointwise on K . Thus to show o is p-measureable, it suffices
to show each o, is p-measureable.  For this, it is enough that for any two

. . . _ , . . < i '

j, end Jdo in R U {+ «}, the sets [o < J2} and [Jl <0< J2] are

M-measureable. Finally, for this it suffices to show that for any real j ,

1
[J <o <+ ®] is p-measureable.
Now
[ <o <4m] = proj, {f( g (P) NIK x (j, + o])
where G¢ is the graph of ¢ :
G, = [((a8,x) eXx8: xeqa))

P

S0 G@ is Borel, and where f is the continuous mapping of the Polish space
K x S8 into the Polish space K x R defined by
((a,x)) = (a, p - x) .

Hence

f(ch) = (a,z) e KxR: z=p - X, some x € 9(a)} .

These conditions on K x S, K xR, G.m, and f dimply that £ {}@) is analytic
in K xR (see Theorem T 13 (c) > Page 35 in [26]). Then f£( G-@) N [K x(3,+=)]
is also andl ytic and hence [j < o <+ ] ig analytic in K . But then this

set is H-measureable (see III, 2k, page Wt in [26]).

LEMMA 2: If @ is a measureable correspondence from A +to § , if p
is a vector in S and if h is s measureable function from A to §
satisfying h(a) € ¢(a) for p-almost every a , then there exists a
H-null set N such that the correspondence ¥ defined on A\ by
V(i) = (xeo@)p- x> P - h(a)} has a measureable graph with

respect to the product o-field on A x S .

I
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PROCE : Since h is measureable, there exists a sequence {hn} of simple

measureable functions converging almost everywhere to h . But then there

exists a H-null set N such that if A' = A\N, +then {(a,x) e A' x S:

P*x > p-hia)} = S 8 n {(a,x) e A' xS: p* x> p-h (a)+3;3.
=1 k=1 n>k = noooon

Bach of the sets on the right hand side of this equality is measureable since
each hn is simple and measureable. Thus the correspondence defined

on A NN has the measuregble graph

{(a,x) e A' x8: xeo9(@)} N {(a,x) e A' x8: p*x>p-h(a)l
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