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PREFACE

An act is always an act of choice: a Possibility is
seiected, and others are rejected. Therefore an act can be
associated with a set of breferences - of the selected to the
rejected - and the act of choice and the set of preferences
are equivalent 1in that they determine each other. This much,
which is basic to the very notion of Preference, has been
suggested by Paretol, and enlarged on by many economic theorists,
especially Sa.muelson2 and Houthakker3, in the particular matter
of consumers' behaviour. A thought which seems to be under-
lying most of the familiar arguments is that choices "reveal"
preferences. What seems to be neglected is the fact, or the
truism, that to make choices is not necessarily to have preferences.
Cholces can be made at random. This gives an ever-present
limitation to the application of the concept of preference to
choices.

However, the most universal scheme for the analysils of
chéices is in terms of preference; and, because of this, the
somevhat Intractable concept penetrates everywhere in economics.
The supposition of given preferences is a normal starting-point
for economic argument. But little 1s said about how it is
to be decided. in any real matter that preferences have a
significant existence, and, granted this, how, in what manner and

extent, they are to be known. Without such Processes, all



econamic theory depending on preferences can be nothing more
than mathematics.

But the work here is just precisely that: a bullding up
of certain formal concepts, and of analytic propositions which
involve them. It is part of the ground-work which is necessary
before anything practical can be truly understood and done.
Everything depends on the use cof concepts about relations,
choice and preference, for want of which, apparently, the
subject has suffered for over fifty years. The concern here
is to present these abst?act basic concepts systematically,
with generality, but finally with reference to the consumer.
Propositions are given uneﬁcumbered by demonstrations, the lines
adhich, h,5
of,are for the most part shown elsewhere 5 80 as the better
to present the essential structure and substance of the subject.

Most of the material can be almost found in the literature;
and little of it exactly. To give some of the closest antecedents:
the main problem can, with certain supplements and adjustments
of thought, be read into the writings of Pareto, Samuelson, and,
most especially, the well-known paper of Houthakker, but nowhere
quite plainly. The main theorem concludes with a bit less than
that with which Slutzky6 starts. We suppose coherence, which
is a way of looking at Houthakker's axiom, and add responsivity,
which ensures that one change, invthe price-expenditure ratios,

always produces another, in commodity quantities; and we conclude
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that the quantities give the absolute maximum of & dif-
ferentiable function subject to the price-expenditure constraint.
Slutzky needs a twice-differentiable function.

Although, as precise statements for which there is a rigorous
broof, just about all the main theorems stated here seem, strictly
speaking, to be new, there is only one which is anything of
a real surprise: the theorem on ~total:: incoherence. (A11
the same, the theorem that responsivity implies the equivalence
of the order and scale conditions is surpriging enough.) This
theorem came to light during a correspondence with Gale, con-
cerning a controversy about the equivalence of the Samuelson
Weak Axiom of Revealed Preference with the Houthakker Strong
Axiom, for which the DPossibility was entertained by Arrow7 and
Uzawa8. Gale9 settled the igsue by producing a counter-example,

& system which he showed to satisfy the Weak, but not the Strong
Axiom. To resolve s certain perplexity in our discussions, he

was then led to conjecture that, for his example, every point

is preferred ta every other. My theorem, which was thus suggested
by his example, established the conjecture as true.

Concerning the concept of a scale, it is often taken that
- Preferences have the defining properties of a scale, but then it
is assumed, in addition, without realizing that it is already
lmplied, that indifference is transitivelo. Or again, Birkhoffll

realizes this implication, but does not then g0 on to show that the
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classes in the equivalence are completely ordered. Generally,
the proposition that a scale, as defined here, is an order,
whose complete negation is an equivalence, and which reduces
to a complete order of the classes in that equivalence, is a
nice, and needed proposition, that seems everywhere to have
been missed. One of our principal theorems is concerned with
the distinction between a general order, and a scalie, and
beculiar conditions under which this distinction vanishes,
Acyclicity, which is a basic condition for preferences,
has had treatment by Von Neumann and Morgenstelnlg. Houthakker's
axiom is in the nature of an acyclicity condition. Tt isg not,
as seems sometimes to be Supposed, akin to s transitivity condi-
tion; but, rather, it is an irreflexivity condition, applied
to the, in any case transitive, relation determined between the
extremitieg of breference chaing.
Integrability has been a sore guestion in consumer theory,
ever since Hadamard said something about it in his review of

Pareto's Menuale ai Economia;‘Politicax Here, by statement of

a definition of integrability, together with the bropositions that,
for a responsive system, it ig necessary for coherence, and
that its negation, together with the weak axiom, is sufficient
for complete incoherence, a clarification of its significance is
obtained.

In regard to the concepts of local and global coherence,

which are introduced, they are generally digstincet conditions,




with the global conditions implying the local one, but not
conversely; and it is not trivial that they should be equivalent
for responsive systems.

Responsivity implies invertability and continuity, and is
implied by invertability and differentiability. Investigation
of differentiable systems gives a continuation of the theory
for responsive systems. If they are invertable, which condition
is necessary even for integrability to have definition, then
they are responsive, and have all the established consequent
properties. The local behaviour of the system is specified by
the partial derivatives; and the central problem is to obtain the
condition on the partial derivatives which is necessary and
sufficient for coherence, both locally and globally, the two
forms of the condition being now equivalent. This condition
appears as & condition on the familiar Slutzky coefficients,

the properties of which constitute the main part of the theory.

Princeton, NW. J. .- S5.N. Afriat
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I. EQUIVALENCE, ORDER AND SCALE

1. Structure of Relations

For a relation R betwéen the elements of a get C to be
defined, it just has to be decidable whether or not it
holds, from any one element x to another V. Iﬁ the one
case there is the assertion, written ¥Ry, of a propositional
function of ordered rairs of elements; and in the other cage
there is the denial <xRy. In other words, relation is
defined just when a Propositional function, or equivalently

a set of ordered pairs of elements, is defined. This set,

by which the relation is defined, may be called the graph

of the relation. Tt is the set of all the ordered couples
of the elements, with the first element in the relation R

to the second. Accordingly there are three equivalent statements
XRy, R(x,y) and (x,y) eR

that x has the relation R to y, that the bropositional function
R is true for (x,y) and that (x,¥7) belongs to the set R.
Two important special relations are the universal and

the null relationsyand A » which always and never hold,

respectively, between any pair of elements. Also, as two
basic relations between the elements in any set, there are

the relations T ang D of identification and distinction,
—E e don

thus,
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xly =x =y, xDy = x # y.
The negation of the relation R is the relation R defined
by
X§y = ":XRYJ

which holds just when R does not hold. The reverse R' of

R is defined by
xR'y = yRx;

and it holds from x to Y Just when R holds from y to x.
The reverse of the negation of relation is the same as the
negation of the reverse; and S0, without ambiguity, both

may be denoted by R'. The complete negation of R is defined

as the relation R which holds just when neither R nor its

reverse R’ hold; so it is defined by
xRy = ~XRy A ~yRx.

A pair of relation are complementary if each is the

negation of the other. . Thus, the universal and null rela-
tions, and the relations of identification and distinction,
are each complementary pairs of relations.,

Two relations have the relation of implication, of one

to the other, if the one holds only if the other holds:
Q@ > R =xQy 3 =xRy.

If the relations are considered as graphs, rather than pPropo-

sitional functions, implication becomes set-inclusion LR,
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Equivalence of relations is defined by mutual implica-
tion; for the graphs, it is identity.

A relation is reflexive if every element has that
relation to itself; so, xRx for all X, 1f R is reflexive,

which condition has the statement
X =Yy > xRy,
and equivalently,
Is R.
A relation which no element has to itself is called

irreflexive. Thus, elements which stand in an irreflexive
il A A

relation R must be distinect; that is,
Ry > x £y,

and equivalently,
R » D.

A symmetrical relation is defined to be such that if
it holds one way, between a pair of elements, then it

also holds the other way; thus,
xRy > yRx,

or equivalently,
R 3R'.

Thus a symmetrical relation is unchanged by reversal.

An antisymmetric relation is such that if it holds one

way, then it cannot hold the other; thus,



xRy > ~yRx,
which is

R > R',
6r that R implies‘ the negation of its reverse. A
relation is called complete if it holds one way if it

does not hold the other, between any pair of distinct

elements:

~XRy » yRx,
or,

=1

R » R.

A complete, antisymmetric relation R, holding just one
way between any pairs of elements, thus satisfies the

condition
.
R =R

2. Composition of Relations

Given two relations @, R, they may be composed
. together in any of three different ways, by operations to

be called conjunction, disjunction and adjunction, to form a

third relation, called their sum, product and resultant B

respectively, and denoted by QVR, Q AR and QR, thus:

x(QAR)y = xQy AxRy, x(QVR)y = xQy\VxRy,

x(QR)y = \z/ xQz A zZRy
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Conjunction and disjunction are commutative operations,
but adjunction is not. However, all are associative;

and adjunction is distributive over disjunction. Any
sequence of relations Rl’ ey Rm has a weil defined
resultant Rl ces Rm; and the mth power Rm if any re}ation

R can be defined as the reéultant of a sequence of m

relations, all of which are identical with R, thus,

Though the adjunction of different relations is not
generally commutative, the adjunction of different powers

of the sum relation is commutative. For

RmRn - Rm+n

and
m+n=n-4+mn

3. Links, Chaing and Cycles

A pair of elements ordered in sequence may be called
& link; and then a sequence of any number of elements
may be called a EEQEE’ with all successive pairs of
elements defining its links, énd the initial and final
elements giving its extremities. The span of a chain is
to be the link formed between its extremities. Two
links, or chains, are said to be coupled, in a given order,
if the final element of the first, in that order, coincides

with the initial element of the second. Thus (x,y),
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(y,2z) represent a coupled pair of links. A coupled pair
of chains may be directly joined, in the order in which they
are coupled, to form a third chain; and the spans of coupled
chains are coupled links, which join to give the same span
as the join of the chains. A chain determines, and is
determined by, a series of links, in which each link is
coupled with its successor.
A chain with coincident extremities defines a cycle.
It follows that a cycle can be represented as a chain, with
extremities coinciding at any of its elements. The links
of a cycle are given by the links of any such chain re-
Presenting it, these themselves forming a similar cycle.
Given a relation R, let any ordered pair of elements
be said to determine an R~ link if the first has the re-
lation R to the second. An R- chain can then be defined
as & chain each link of which is an R- link. Thus,
given a binary relation R, that is, a relation between
pairs of elements, there can, for any m, be formed an
m-axy relation, between any m elements, by the condition
that these elements form an R-chain. The condition that

a chain (Xl’ ... ,X ) be an R-chain, of some m elements, is
m

Xleg’ ceene Xm-lRXm

Thus, from a propositional function R(x,y) of pairs, there
is formed a propositional function
R(xo, cee Xm) = xRx, AL A X _qRx

of sequences. From the given binary relation, there has been



-7~

formed a multiple relation, which is that possessed by
elements which form a chain in the given relation.

An R-cycle is defined as a cycle whose links are

R-links. Accordingly, ... , xm, Xyy eee s Xm’ ... 1s an
R-cycle of m elements if
x R, il X, _Bx s that is R(xm,'x; R )

L. Acyclicity

A relation R is defined to be @cyclic if no R-cycles
exist. Less restrictively, it could be said to be non-k-~cyclic
if no cycles of k distinct elements exist. The conditions of
non-2-cyclicity and antisymmetry are the same. Acyqlicity
is non-k-cyclicity for every k. For a complete, anéisymmetric
relation, non-3-cyclicity implies acyclicity.

Any chain would become a cycle, were it extended by
the link from the final element to the initial. Thus,
the absence of cycles requires the break between the ex-
tremities of every chain. Put in the form of such a re-

quirement, the acyclicity condition is

x Rx; Ac.A x o Bx > ~x Rx -, R(xo, cee xm) 9R(xmxo).

Equivalently, acyclicity means that the extremities

of a chain must be distinct, that is

xoRx:lA"'AXm-—lem > X #xm , R(xo, cee xm) -—}xo;é X



5. Chain Extensions

Pairs of elements in a given relation to each other
are also said to be linked in that relation. Now pairs
of elements which are the extremities of a chain in a
relation will be said to be chained, in that relation,
from the initial elewment of the chain to the final; and
then they are defined to be in a chain relation, which

is called the chain extension of that relation. Thus,

if ﬁ'denotes the chain extension of any relation R, then,
for its definition, ﬁtlinks are given as the spans of R-
chains; and B is thus defined by its links. Since R-
links are particular R-chains, it follows that R-links

are ?—links, or that R implies ?:
R > ?

Now the span of a given ﬁLChain is an ?-link. For,
any links of an ﬁFChain, these being ﬁLlinks, are the
spans of R~chains which are coupled in a sequence, and
Join together in that sequence to give an R-chain, whose
span, defining an ?Flink, is the same as for the given
R-chain. Thus the chain extension of any relation has the
broperty that its links are included among the spans of
its chains. Any relation with this property is the same
as 1ts own chain extension. Tt follows that no new

relation is obtained by repeating the operation of taking
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the chain extension, or that multiple chain extension
Operations are equivalent to the simple one.

Acyclicity, or the absence of cycles, requires that
every chain have itgs extremities distinet. But the ex-
tremities of R-chains are precisely those elements form-

ing ﬁllinks. Thus, for acyclicity, there is the condition

By » x £y,

R s D; ¥

that is, the non-reflexivity of ﬁ: Thus it appears that

the acyclicity of relation R is equivalent to the non-

reflexivity of the chain extension ﬁl Consider an R-cycle

on two elements X, ¥. It is assembled from two chains

between x and Y, one from x to y and the other from y to

X, obtaining x,y related both ways in the chain extension relation R,
that ig xﬁ& and yﬁka Without cycles, such symmetries are
impossible. Hence, the conditionsg of the acyclicity of R

and the antisymmetry of ﬁlare equivalent,

If elements are defined to be chained in order m in a

relation if they are the extremities of a chain of that

relation of m+l elements, then, since

. \/
xRy & Bos e sz R(zo, cee ;m)z\zo =XAz =y,

it appears that the relation thus defined, by elements being
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chained in order m, is the same as the mth power R" of the
relation. Now elements may be defined to be chained if they

are chained in any order; so that
oo

R ff:xgsm,
since

mey A anz > me+nz B
which is

RORE gEHR ,
it follows that

xf_{)yl\_ yﬁz > xﬁz 3

for any relation R .

6. Transitivity

A relation R with the property

xORXl Alex2

D XORX2
is called transitive. This property, by induction,

is equivalent to

xoRxl ANeaoilA xm_lem D };ORXm,

and this asserts that the span of an R-chain is an R-1ink;
equivalently, ﬁ 2 R. Since R I_i> anyway, the transitivity

condition has the expression

R = R.
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over between the extremities. The transitivity of the
chain extension of any relation has been shown; for any
relation R, and its chain extension ﬁ; it appeared that
R = ﬁ, where ? is transitive. It will now appear that
any transitive relation T implied by R ig implied by
?; so that ﬁlappears as the minimal transitive relation
implied by R, by which Property it is calleq the transitive
closure of R. Thus, if R > o where T ig transitive,
then an R-chain is g T-chain; ang the span of an
R-chain, that is an ﬁllink, is the span of g T-chain;
which must be g T-link, by the transitivity of T,
Therefore an ﬁllink 1s a T-link; ang this shows that
s 1

For a transitive relgtion, the conditions of irre-
flexivity and antisymmetry are equivalent. For g complete
relation, acyclicity implieg transitivity; and for an
antisymmetric relation, transitivity implies acyclicity.

A relation is s5aid to have the Property of negative

transitivity if its negation is transitive. Negative

transitivity together with antisymmetry implies transitivity.

The transitivity condition can be written
R~ > R,

implying
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B> g (m=1,2, ...),

and therefore equivalent to the condition E'%.R,

where

-Vign

m=1

7. Equivalence
—_—_‘h—-

A reflexive, symmetric and transitive relatien defineg
an equivalence. For the simplest Possible examples of
€quivalence, there is the relation of identification I, in
whieh each element ig equivalent only to itself; then
also the universal relation ¥V, in which all elements
are equivalent to each other.

A partition resolves a set into g union of dis-

Joint subsets, called the components in the partition.
———ents

equivalence, determined by that partition. Reversely,
to every equivalence, there is determined g Partition,
from which it can be thus derived, whose components are

to define equivalence classes., Every element belongs

to Jjust one equivalence class, of which it is

representative, and which ig composed of all elements

with which it hag equivalence.
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Thus, equivalence Q and partition IT have a mutually

determining association, in which
Xy & IIX = IIy s

when IIX denotes the component of IT to which x belongs.
Thus equivalence between elements is reduced to an
identity between classes; and, reversely, a partition

into classes defines an equivalence, asserted between
elements in the same class, and denied between elements in
different classes, any element belongs to one and only one

class.

8. Order

An irreflexive, transitive relation defines an
order. Since, for a transitive relation, the conditions
of antisymmetry and irreflexivity are equivalent, an
order is antisymmetric. An order is called a complete
order if it is complete as a relation; that is, if any
pair of elements are related in it, one way or the other.

Otherwise it is called a partial order.

One order is said to be a refinement of another if
it is implied by the other, that is, if its links in-
clude at least all those of the other; in other words,
if every pair of elements related in one order have the

same relation in the other, but it is allowed that there
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may be elements which are related in the refined order,
but not in the original.

Every order can be refined to a complete order,
Provided the axiom of choice is assumed, which is that
there exists a rule by which an element is selected out
of any subset. However, the way is not generally unique.
Thus, given a partial order, in which only certain pairs of
elements are related, there can be found a total order,
one relating every pair; which agrees with the original
partial order, in regard to those pairs which it relates;
and this is provided that there exists & rule by which
a well-defined element can be chosen from any subset.

Given any relation, in general not an order, it
may or may not be possible to enlarge it so as to obtain
an order. The condition that this be possible is acyclicity.
For, in this case, the chain extension, already transitive
in its construction, is irreflexive, and gives an order
implied by the relation; and this is, moreover, the coarsest:
such order, since every order which is implied by the re-

lation is a refinement of this order.
9. Scale

An antisymmetric, negatively transitive relation defines

a scale. The complete negation of a scale defines the
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relation of indifference in that scale. Thus, given a

scale S; and its relation of indifference &, there is,
for any pair of elements, resolution into the three mutually

exclusive, complementary possibilities
x5y, xBy, =x8'y ,

From these Possibilities, there is obtained either one
or the other of the pair of opposite preferences, and,
otherwise, indifference.

Since, with antisymmetry given, negative transitivity
implies transitivity, and since antisymmetry implies irre-
flexivity, a scale appears as irreflexive and transitive,
and therefore an order. However, an order is not necessarily
negatively transitive, and therefore not necessarily a
scale. Thus a scale appears as just a special kind of
order. Nevertheless, the concepts of complete order and
complete scale coincide; for, given completeness and anti-
symmetry, transitivity implies negative transitivity.

If S is a scale, then the relation & of indifference
in S must be an equivalence; and the classes of this

equivalence S are to define the indifference classes of

the scale S. Every element belongs to one and only one of
the indifference class, since these classes form the components
in a partition.

If the components of a partition of a set are put in

a complete order, then the elements of the set are put in
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a partial order, with the relation between elements decided
by the relation between the components in the partition
to which they belong. Such a partial order, thus determined
by a completely ordered partition, turns out to be a scale.
Thus a completely ordered Partition determines a scale.
Reversely, given a scale, there is obtained gz partition,
the components of which are the indifference classes of
the scale, and then there is obtained g unique complete
order of the components in the partition, from which the
scale can again be derived. Therefore, a scale, and a conm-
Pletely ordered partition, applied to a set, are logically
identical concepts, a scale relation between elements
being identified with g complete order relation between
the components to which they belong in a partition.

There is now the equivalence between the concepts
of a scale S applied to the elements of a set, and a
complete order A applied to the components of a

Partition T of that set, with

xSy & oxﬁcy s

where GX is the component in the partition ¥ with
representative x. Any scale S is in fact also an order,
and its indifference relation & is an equivalence, the
classes of which determine the partition X whose components

are to have a complete orderAg°
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A scale is thus a kind of partial order, which has
that most concise representation given by a completely
ordered partition.

A gauge of a scale applied to g set is defined as a
numerical function of the elements which is the greater
or the less for one element or another only when the
one or the other ig Preferred in the secale. Thus,

for a gauge &, measuring a scale S,
$ () <§(y) = sy,

and a gauge & is said to completely measure S if it

completely represents 8 by its magnitudes:

P (x) <$ (vy) & xsy..




II. PREFERENCE AND CHOICE SYSTEMS

1. Preference ang Choice

A set R, and an element X of that set, represents a choice,

denoted by [x; R}, with R called the range and x called the object

of choice,

In any choice [x; R], it being understood in this notation
that xeR, the object of choice x is considered selécted, from the
range R; and other elements in the range, that is, elements Y
with yeR and y % X, forming the set R - X, are considered rejected,

In any choice, there is determined a relation of preference,

of the selected element to each of the rejected ones; thus,

{x, R - x} = {(x,9); yer - x}

will denote the set of preferences associated with g choice
[x; R], each preference being given by an ordered coupde (X,y)
with yeR - x.

Any set of ordered couples is the graph of a relation; and
the set {k, R - x} of preferences associated with a choice [x;R]
is the graph of a relation which defines +the preference relation
of the choice. But the set {k, R - x} may itself be comsidered
to denote the relation. A choice [x; R] thus determines and is
determined by a relation {X, R - x} in which the selected element,

or the object of the choice, is represented as Superior, or
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preferred, to each of the rejected elements, these being the
other elements in +the range of the choice.

The preference relation associated with a single choice
is thus a relation with the chéracteristic form that the first
term of any pair is a fixed element, the selected one, while
the second term is variable, but always different from it, and
ranging over the rejected elements,

Now consider any set of choices, say
K= {Ix5 R}, o

composed of choice [xi; Ri] indexed in a set I; and consider

the union

Q= \J/

rerfr By -]

of the gets of preferences associated with each of the choices
separately. Alternatively, consider the sum @ = igIQi obtained
by taking the disjunction of the individual preference relations

of the choices. The Preferences in @ may be called the base

- preferences of the set of choices XK.

From the fundamental set Q of Preferences, directly
associated with the choices of the set K takes separately,

there may now be formed the larger set P of derived preferences,

which span the chains of preferences of Q. By this Process,

from any Q-chain (zo, z.,...,zm) there is derived the Spanning

1

P-link, (zo, zm), between the extremities Zy,» 2Zp- In other

words, the operation by which P is formed from Q is such that,




=20~

with‘any set of preferences of Q which are coupled together in
pairs in a sequence so as to form a chain, there is included
the preference between the end-elements,

The fundamental preferences of the choices K are defined
for the individual choices taken separately; but the derived
preferences P have reference to the entire collection of the
choices, and belongs in the structure of the set K that they
form jointly.

By the form of the construction from Q, the relation P is
necessarily transitive, any P-chain being spanned by a P-link.
For, P-links are defined as the spans of Q-chains; and therefore
the span of a P-chain is also the span of an Q-chain, namely,
that which is obtained by joining all the Q-chains which
determine the links in the P-chain, and it is therefore a
P-link, In fact, P is the chain extension of Q, the same thing
as the transitive closure of Q, the minimal extension of Q which
is transitive.

2. Efficacy

A preference systgg is a relation which is instrumental for
the determination of choice; and not all relations can be effective
for such a Purpose. To state those which are, it is only necessary
to examine the manner of this instrumentality,

Let a preference system P be said to be effective on a
range of choice R if, firstly, there exists one, and only one

element xeR such that
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{x, R - x}CP.
That is, the preferences associated with the choice [x, R] are

a part of P; and secondly
{R - x, x}[}P = 0;

that is, none of the opposite preferences of the choice,
forming the éet {X, R- x }‘ = {R - X, xi} occur in P.

Thus a preference system P which is effective on a range
R decides a choice [x; R] with that range, in which the object
X is distinguished as superior to every other element in R, by
preferences all contained in P, while none of the other elements
in R are at the same time distinguished as superior to x by
contrary preferences also in P,

It will be evident that a necessary condition that a
preference system be effective on every subset of elements of
given set is that it give a complete order of the elements of
that set.

Iet a preference system be called completely effective on

a set if it is effective on every subset of that set. Then the
proposition is that a preference system is completely effective
only if it gives a complete order. More generally, a preference
system may be effective for Just an arbitrary subset of the set
of all subsets.

It is plain that for a relation to be completely effective
as a preference system, it must be complete, and antisymmetric;
that is, give one or the other of the two possible preferences

between any pair of elements, but not both., Otherwise, it would
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not be effective for deviding the choice between any pair of
elements. Also it must be transitive. For, in the case of
a complete, antisymmetric relation, transitivity is equivalent
to acyclicity, and this condition is obviously necessary if the
relation is to be completely effective. Should there be a cycle
of preferences involving three elements, no choice 1s possible
between the three, since each is inferior to one of the two others,
and so none is superior to all. Moreover, the absence of three-
cycles, in the case of a complete relation, implies transitivity.
Transitivity, in the case of an antisymmetric relation, implies
acyclicity. Thus a completely effective relation must be a
complete order. Now a complete order will be completely effective
if and only if every subset has an element which is maximal in
the order, which is to say that the set is well-rdered by the
relation. A preference system may give a complete order, without
it being completely effective: still every element may be
inferior to some other element, but the infinite sequences of
elements generated by taking, with every element, another one
superior to it will never contain repetitions; and never close
into cycles, and there will be no termination in & maximal
element.

A complete order is at the same time a complete scale.
So the condition for a relation to be completely effective can
be relaxed in two ways: by requiring it Just to be a scale, and
then by requiring it Jjust to be an order. Assuming the axiom

of choice, that there is a rule selecting a well-defined element
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from any subset, any relation satisfying the weaker conditions
can be represented as part of a relatién satisfying the strong
condition. With this in view, by a preference system will be
meant a relation which is generally an order, and possibly a
scale, but need not give a well-ordering of the set, nor even
a complete ordering.

3, TFeasibility, Compatibility and Coherence

The question arises as to the conditions which must be
satsified by a set of preferences, for it to be permissible
for them to be considered as belonging together, and in such
a way as arising out of the same system. Choices are observed;
and a choice is equivalent to a set of preferences, the obser-
vation of which goes with observation of the choice. Different
choices are generally dissociated, in that they are made generally
at different times, between which there are various changes of
circumstance. However, it is possible that the same system
of preferences may, more oOr less rigidly, persist through these
changes, in time and contingent circumStances. The rigidity
of the opérative preference system is the ground for a coherence
of these manifested preferences, appearing as operative in the
different choices.

Thus, it may be required to know whether or not there
exists an effective system to which could belong all the base
preference Q, formed from a set K of choices,‘with each choice

taken separately. There is formed from these preferences the
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set P of derived preferences, constructed for the choices
all taken together.

If any preferences belong to one system, they will be
said to cohere in that system. Also the system will be said
to fulfill the general condition of coherence if there exists
at least one such system, in which they can be made to cohere.

Firstly, in an effective preference system, there cannot
be admitted an absurd preference, for any element in regard to
itself, which requires at the same time the selection and
rejection of that element. By this condition applied to each,

a set of preferences is to be called feasible, there being no
members which are absurd. Then further, there cannot be allowed
any opposite pairs of preferenceé, which are incompatible with
each other, in that they obtain conflict of choice between a
pair of elements. Preferences which contain no contrary pairs
will be called compatible.

Now an effective preference system is given by a transitive
relation., Therefore, if any given preferences, being coherent,
belong to such a system, so also must the derived preferences,
which span the chains formed by the given preferences. And these
derived preferences, belonging to the same system, must be
compatible. Because a derived system of preferences is, inherently,
in the form of the derivation, transitive, compatibility is
equivalent to feasibility, and then equivalent to the condition
for the system to give an order. But the derived system is

then an order, containing the given preferences, and obtaining
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their coherence. Hence, a necessary and sufficient condition
that preferences be coherent is that the derived preferences
give an order. This condition is that the derived preferences
be feasible, or, equivalently, compatible; and this order,
containing the preferences, and obtaining their coherences,

is contained in every order in which they are contained.

Any preference between distinct objects has been admitted

as feasible, but a preference between one object and itself

is absurd, and a set of preferences is called absurd or feasible
according as it does or does not contain absurd preferences.
So a preference relation is thus feasible if it is irreflexive,
and otherwise absurd.

The opposite preference between any two objects have been
taken to be incompatible; and preferences are to from a compatible
set so long as no pairs of them are incompatible. A compatible
preference relation is thus one that is antisymmetric.

Now atransitive sét of preferenceg this being one which
contains, with every chain of preferences, the preference which
spans the chain, is feasible if and conly if it is consistent.
Equivalently, a transitive relation is irreflexive if and only
if it is antisymmetric.

Accordingly, give any preferences, forming at set Q, they
are coherent if the derived preferences, which span the chains
formed by the given preferences, and forming a set P = ﬁ, are

compatible. Since P is, by comnstruction, necessary transitive,
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an equivalent of the coherence condition for Q is the feasi-
bility of P. With @ coherent, P is an order containing Q,
and obtaining the coherence. A further, more direct form of

the coherence condition fora. set of preferences is given by

acyclicity.
b, Goods

Consider a set C, whose elements are to be called states,
and a scale S, applied to C, which is to be a YEQ&ELE§§£E§5 that
is, the scale is to decide the better and the worse between
states, or which one is to be taken preferable to which other,
in any choice. 8o any two states are decided,.one bétter or
worse than the other, by their relation in S, or if neither of
these possibilities, then as equivalent in value, by relation
in 8 =.§&§L!° |

A state is supposed specified by a variety of quantities,

measuring different components,. into which the state is effectively

resolved. The assemblage of these quantities, say Xi""xn s Which

can be given as the elements of a vector x, defines the composition

of the state; and different possible states are to be distinguished

from each other Jjust by the distinctness of their compositions.
In this way, distinct states are identified with distinct points
in a space of vectors of order n.
Let x, y be two states, with components X5 yj. They will
be defined to have the relation
xCY,

of inclusion of x in y, if each component of x is at most the



-7 -

corresponding component of y, and not all such are equal;

that is,

x, £ (i =1,...,0), x # 7.

A component in a state has the attribute of a gggg if
more of it is always better.

Thus, if a state can be resolved into an assemblage of
goods, and if x, y are any two state-compositions, the elements

of which are now all measures of goods, then

XDy > X8y,

for any operative value scale 3; that is, a state with composition
of goods which contains that of another must be better than that
other. A value scale applied to composition vectors which
satisfies this condition, of being a refinement of the relation

of inclusion, is defined to be increasing, or is said to satisfy

the law of increase which is Jjust that more of a good is better.

The question about whether or not certain measured quantities
are in fact measures of goods, elither always, or perhaps Just
conditional on some particular circumstance or connexion, is
usually a complex question. But, .in the case of possession
of material commodities, more of a possession is usually recognized
as better; because there is always liberty, belonging to the
character of material possession, for its voluntary disposal; so

that actual possession is proof of the preference for it.
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5. Compensation

Consider a value scale S applied to states, each supposed
represented by a composition of goods. Then any change of state
is a composite variation of goods, expressible as a combination
of losses and gains. A combination gx’of losses and gains,

applied to a state x , is said to be compensating, in a scale

3, if any further gainhx leads to a better state than x, and

any further loss A\ leads to a worse state, that is

(x +>§x +y) %, X8(x + 0% +\)

for any non-null Y, A whoge elements are non-negative, non-positive

respectively; but either of the possibilities
(x + §x) sx, xS (s +§x)

can be allowed in this condition.

In an important class of scales, the compensation condition
is equivalent to indifference. That is, states x, y are derived
from each other by compensating variations if and only if they
are indifferent, x § y. Thus, if the sets x 5, 8 x of elements
inferior and superior to a given element are open, in which case
S will be.called an open scale, then S has this property.

Consider a state with goods in composition x, and a gain

&xi in the ith good, compensated by a loss - Xxj in the Jjth.

§x

If the limit of the ratio Ki%f of the compensating amounts
i

exists, as ng-é 0, it will be called the compensation ratio

of the Jjth good on the ith,
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Sx,

Consider a scale in which the finite ratio $§%— s, as Jjust
i

X5) or Xj increases, decreases or increases, respectively. This
condition means that the greater the measure in which a given
good is held, then, other goods being equal, the less any
marginal change of it has the power of compensating for given
marginal changes of other goods,

In other words, the scarcer a good, the more precious it
is; and reversely, the more abundant a good, the less its
increase 1is desired against increase in‘other goods. This

condition will be called the law of diminishing compensation.

It is a form of the general law of diminishing returns, in
which the "essential value! gained by a given increase in a
good, measured in terms of what increases in other goods would
be sacrificed to gain it, diminishes as the amount of that good
held increases. Generally, the only way in which the value of
a change can be measured is in terms of the sacrifices which
would be made to obtain it.

A scale S of composition will be called convex if

vy, z8x = [y, z] 8x

ithat is, if two compositions y, z are preferred to a third x,

then so is any composition on the setment [y, z] joining them.
Equivalently, the domain S x of composition superior to x is convex,
Convexity is the analytical statement for the law of diminishing
compensation; and for a convex scale, the limiting compensation

ratios exist almost everywhere, and the finite ratio condition
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for diminishing compensation is equivalent to the implied
limiting condition, on the limiting ratios.

The increasing, open and convex scales of compositions
represent a most important class of scales, arising in the
theory of preferences for combinations of measured goods. They
satisfy the laws of increase, and 6f diminishing compensation;
and have the property that compensating changes are those which

result in indifference.



ITT. EXPENDITURE SYSTEMS AND COHERENCE

1. Purchase as Allocation and as Choice

Consider a purchase, by which certain amounts of
commodities are obtained, at certain prices. The amounts
can be supposed given by a vector X, and the prices by a
vector p, and then the purchase is represented by the
vector pair (p,x). The expenditure involved in the
purchase is e = p'x.

Associated with the purchase, thereis the set
{y; p'y&ge} of compositions y requiring at most the
same expenditure e, at the prices p. This set is

identical with

R.= {muyg1l,
where

u:p/e
for which

u'x =1

The vector u gives the prices expressed as fractions of
the expenditure e, or with this expenditure taken as unit

of money; and these define the relstive prices of the pur-

chase.

A purchase which is represented by a vector pair
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(u,x) such as satisfies the condition u'x = 1, of having
the total expenditure as unity, will be instead denoted

by [us;x] , and will be termed an expenditure aglloeation.

It determines the distribution in which the total
expenditure is allocated to the different commodities.

Thus, with a purchase (p,x) having expenditure e = p'x,
there is determined an expenditure allocation [u;x] )
where u = p/e. Now, further, with this allocation, there
is associated the choice [x;Cu] » of the composition x,
out of the set of all compositions costing as most as
much; and this choice is equivalent to the set x,Cu - X
of the preferences (x,y) (ye C, - x), of x over every

other composition y in Gu'

2. Expenditure Systems 39.1&

In an expenditure allocation [us;x] , the vector can

be considered as specifying the condition u'x = 1 applied

to the composition vector X, called the balance condition,

since it is the condition that the cost of the composition x
exactly exhausts the expenditure. The vector u is to be
called a balance vector; and any composition y is said to

be within on or over a balance u according as u'y é 1.

An expenditure allocation is thus given by a balance,
together with a composition on that balance; and the

allocation is regarded as a choice by regarding this
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composition as chosen out of all those compositions within
the balance.

Balances and composition are given by vectors u and
x with positive element, which can be considered belong-

ing to certain balance and composition regions B and C:

ueB, xeC.

An expenditure system is defined as a rule E by
which, with every balance u, there is associated a com-
position x = Eu, which is on that balance, so that u'x = 1,
and thus obtaining an expenditure allocation [u:x] . Tt

is, accordingly, a mapping
EB->C(u>x; ux=1)

of the balance region into the composition region, the
image of each balance u being a composition x on that
balance, or such that u'x = 1. The expenditure system
E can also be considered and a set of allocations
{[u;x] 3 x =Eu, u eB}' . Also it can be considered
as a choice system, giving determination of an object
of choice x from a range of choice Cu and, as such,

it is represented as a set of choices
~[[X;Cu]; x = Eu, ueB }

The union

o U

ueB, x=Eu{X’Cu - X}

of the gsets {x, Cu - x:} of preferences which are each
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equivalent to a choice [x;CuJ of the gystem defines

the base preferences of the system.

3. Responsivity

An expenditure system is said to be responsive in
& given balance region, with coefficient given by certain
positive constant, if the distance moved by composition,
in response to a movement of balance, is at least s Tixed
multiple of the distance moved by the balance.
Thus, if E is an expenditure system obtaining com-
position x,y on any given balances U, v€B such that
0< A 5 <lx -yl
‘u - ]
then E is responsive in B, with coefficient KB .
Accordingly, the distance ‘x - y‘ between compositions
X,y determined by E in balances u,v €B ig at least the
Positive multiple KB of the distance ’u - v’ between
u,v.
Let C = EB be the image of the region by the mapping
E. Then the responsivity of E in B implies that E is an
invertible mapping between B and C, and that the inverse

is continuous.

L. Integrability

Let E be an invertible expenditure system; S0, besgide

giving x an a function of u, 1t also obtains u as g function
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of x. Then there can be formed the differential form u'dx,
associated with the system.with coefficients u a function of
the coordinstes x. The differential form is said to be
integrable if it is Proportional by a factor A, called an

integratory factor, to the total differential d$ of a

differentiable function ¢, called an integral, thus,
Autdx = ag

The integrability of the expenditure system is defined
by the integrability of its associated differential form.
Any integrals of such a differential form are
functionally dependent on each other. Therefore, if there
are any at all, there is almost one functionally independent
integral ¢, defining a unique level surface
E = {y; 8y) = 6(x)},

3
that is, a surface on which @ takes a constant value,

£ U
X

through any point x. These level surfaces are in-
dependent of which integral $ is used to construct them,
by the functional dependence between all integrals; whence
they are directly characteristic of the differential form.
In fact, they may - themselves be characterized as integral
»surfaces of the differential €quation u'dx = o, with

EX as a unique such integral surface through any point X,

and not requiring reference to the integral @.




-36-

5. Order and Scale Coherence

The coherence of an expenditure system E is defined
by the coherence of its base preference Q = éﬁ!B {X,Cu - x}
which is given by the condition that the derived preferences
P = 5 form an order. With P automatically transitive, the
order condition reduces to the requirement that P be
irreflexive, or equivalently, that it be antisymmetric.

Since

Q > P

the antisymmetry of P requires the antisymmetry of Q;

but it is not equivalent to it. Moreover, while @ is
necessarily not transitive*, it is, however, necessarily
irreflexive; while P, necessarily transitive, is generally
not irreflexive, and may possibly be reflexive.

Next to the general coherence condition, whichiis
that P be an order, there may be considered thé condition,
stronger than mere coherence, that P be a scale. Any
relation which is a scale is necessarily an order, but

not conversely, and this is true for P. Though, of

¥
At least with E responsive: in a set C with interior
points.
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course, any order can be defined to a scale, so coherence
in an order implies coherence in a scale, the requirement
that P be that scale is more than just coherence.

In the order condition on P, there is transitivity,
which holds anyway, and irreflexivity, which is equivalent
to antisymmetry, by the transitivity, and which may or
may not hold. The scale condition is negative transitivity
together with antisymmetry. Thus, given the order condition,
there is negative transitivity wanting, if the scale
condition is to be established. But the given antisymmetry
is not then generally enough to deduce it from transitivity.

A consequence of the preference relation P being
a scale is that the indifference relation B = PAP' is
an equivalence; and this is not at all ineﬁitable if
P is just an order. With P an order, and therefdre
irreflexive, F is reflexive; also it is symmetric Ey
construction, and therefore it is an equivalence if and
only if it is transitive. But the transitivity[\of B
cannot be deduced from the transitivity of P théggh,
however, it can be deduced from the negative transitivity.

Thus, there is not g partitioning of C into indiffer-
ence classes, to be derived just on the hypothesis that
P is an order. The needed hypothesis is that P be a

X

scale. ‘&*1

A Xo
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However, if the system is given as ;responéive, the
generally effective distinction between the order .and scale
conditions loses its effect; and they become the same

condition. Thus, though generally
scale P = order P

but not conversely, nevertheless,

respongive B . 2 . order P & scale P

By this proposition, with E ‘respongive:, it i1s only
hecessary to suppose P irreflexive for it +o be s scale,
and to be antisymmetric and negatively transitive; that is,
to obtain B transitive, and therefofe an equivélence, and
then to obtain the complete order of the classes in this

eéquivalence which they represent the scale.

6. Gauges of Preference

It has appeared that, for a responsive expenditure
system E, if the preference relation P is irreflexive, which
is the condition for coherence, then it is s scale, with
indifference relation P which is an equivalence. There
arises the question as to méthods by which this scale
can be actually known. The direct construction, contained
in the definition, is plainly impossible, for it involves
the formation of every chain, of limitless length, des-

cending from every point. However, there is the advantage
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that P now is not just the order, that general cascading
system of chains, formed in this manner, which is obtained by
coherence without proximativity. It has that more present -
able structure, given by a scale, and expressible as a com-
plete order of the components in a partition; that is, a
complete preference order of indifference classes. The
problem can now be put more plainly, as that of the identifica-
tion of the indifference classes, and of their complete
order. One form of complete solution is to give construction
for a gauge, which measures the scale, that is a function
which is the greater or less for the better or worse in
preference, and which takes equal values where there is no
Preference at all. It thus identifies the classes, by
equality of values, and then order, by order of values.

If a system is responsive ang coherent, it can be
shown then to be neceséarily integrable. Thus,

Tresponsive B A irreflexive P = integrable uw'dx
Now, to the conclusion of integrability, known from the
hypotheses of 'responsivity and irreflexivity, can be

added the conclusion ¢ is 8 gauge of P if it is an

integral of wu'dx.

That is, any integral of the differential form of the
system is a gauge of the preference relation of the
system. The complete conclusion is that the differential

form is integrable, and any integral gives a gauge for the
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scale, the conclusion that the order relation is in Ffact

a scale appearing as a part of the conclusion. Hence,
2 (x)> ¢ (v) @ xpy,

where the condition for @ to be an integral is that it

be differentiable, having vector @x of partial de-

rivatives 3¢/ax with respect to the elements X, of.
i

x, and

where A = x'¢x since u'x = 1. This is the condition for
& to be stationary under the constraint u'x = 1 applied

to x. From the condition
yEXAU'y<1ls xpy,

it appears that this stationary value must be an absolute
maximum. Under the hypotheses of broximativity and co-
herence, the expenditure system is presented with the
property that there exists s differentiable function @, and
the composition x determined on any balance u is such as to
give an absolute maximum of ¢ under the constraint u'x = 1.
Thus, for a proximative system, the conditions that it

have irreflexive preference relation, and that it be
derivable from a differentiable function, by obtaining the
X which gives maximum of that function under every condition

u'x = 1, are altogether equivalent.
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7. Local and Global Coherence

An expenditure system E defined on any balance
region B is also defined for any subregion of B; and its
coherence can be considered Just in reference to any
such subregion. Now the coherence of the expenditure
system at any point may be defined by the condition that
there exists an open neighborhood of that roint in which
the system is coherent.

The local coherence of g system in a region may be

defined by the coherence of the system at each of its

roints; and global coherence, by coherence in the region

as a whole.

Global coherence in an Open region certainly implies
local coherence; for the region itself is an open neighbor-
hood of each of its boints. But the converse, that local
coherence implies global coherence, is not immediately evident,
and very likely is not true, except under some further
hypotheses. Proximativity provides one such hypothesis,
and obtains the equivalence of local and global coherence
in an open region. Thus, subject to broximativity,
the distinction between local ang global coherenceg

disappears, and the two conditions become equivalent.

8. Total Tnecoherence

The condition of total inccherence for an expenditure
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system E may be defined as that in which every composition
is preferred to every other; in other words, in which the
preference relation P is universal: P =V . Or, for
another statement, there exists a preference cycle through
any given pair of compositions. In this case, from any
composition to any other, there are at least two chains,
one ascending and the other descending, which therefore
Jjoin to form s cycle, and which separately give the two
Opposite preferences between the compositions.

TTotal . incoherence, which is P =V , requires the
reflexivity of P, that ig T > P; but not conversely.

Let two compositions be said to be encycled together
if they are elements of g Preference cycle. Thus, if

‘0
P is the relation defined by

o}
XBr= xPy. A yPx

then two compositions have this relation if and only if
they are encycled. Now, the thus defined relation of
encyclement g is symmetric, in the immediate form of its
definition; and, by the transitivity of P, it is transitive.
Another view of the transitivity is that two cycles with
& common element describe g third cycle, which is that
obtained by Jjoining then, crossing itself at that
element.

The symuetry and transitivity of the relation of

encyclement is thus inherent in itgs definition. There-
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fere it only has to be reflexive to be an equivalence, and
this condition ig equivalent to the reflexivity of P.

Accordingly, if P is reflexive, then, and only then,
there is defined & partition of the compositions, within
any component of which all elements are connected by
being encycled together, ang between components of which
there are no such connexions. In the cage of complete
incoherence, the partition ig trivial, there being only
one component, or one encyclement class, since all rairs
of compositions are encycled together.

Consider an expenditure system E on an open balance
region B, and let its preference relation P be everywhere
reflexive. Then the encyclement relation B is an equivalence.
The condition that every composition be an interior point
of its encyclement class is only possible if there is
Just one encyclement class, that 1s, if there is total
incoherence. But this condition can be deduced from the
antisymmetry of the base preferences Q, together with both
responsivity and non-integrability in the region. Since
integrability is implied by coherence, which is the non-
reflexivity of P, taken together with responsivity, non-
integrability implies the reflexivity which obtains en-
cyclicity as an equivalence.

In this way there ig arrived at the following

Proposition: If an expenditure system E is responsive
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in an open region, where there is non-integrability » but
where the base Preferences Q are antisymmetric; then it
is totally incoherent, that is, evVery composition is bPreferred

to every other.




