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A GAME IN ECONOMICS

i e

James Case

L,et us suppose that all of the coal deposits in a
small country, isolated from the rest of the world by
a range of high mountains, are owned by two competing
firms. And let us suppose that 2a tunnel is under construc-
tion which, when completed at time t = T in the not-too-
distant future, will link the country with the outside
world. At that time, the internal price of coal will be-
come equal to the world price of $Qw per ton. But until
then, because the demand for coal in the country 1is highly
inelastic, it will be possible for the firms to charge more.

We shall also assume that, at time £t =T, it will
pbecome possible to sell an operating coal mine for a price
$ p, » EO foreign investors who wish to become exporters
of coal from our small but coal-rich nation. But we shall
not admit the possibility of selling mines prior to the
completion of the tunnel, as it seems unlikely that either
firm would allow a third competitor to enter the domestic
market while they can so easily prevent it.

we shall assume further, that both firms mine coal
in essentially the same way, and that by burning one ton
of coal as fuel to operate its mining machinery, and by

spending $ ¥ in 1abor and other costs, 1 can produce



b-1 (net) tons of new coal, while the same expenditure
nets c¢ tons for > . But we suppose that their prospects
differ in that 1 has only a few mines in operation at
the time t=tg when the firms begin to compete, but owns
large undeveloped coal fields, whereas 2 starts the game
with numerous mines in operation, but no undeveloped re-
sources. Thus we should expect 1 , at jeast during the
early stages of the competition, to be opening new mines,
and to be equipping them with the newest and most efficient
equipment available. And for this reason, we gshall assume
b-1 > C .

Finally, we assume that, in order to place a single
new coal mine in operation, firm 1 must invest A tons of
coal and $K in labor and other costs. Thus, on each day
of the period tg < t < T , which we take to be of several
years duration, firm 1 must decide how much of its present
stock of coal to (1) allocate to the production of coal
for present market consumption, how much to (2) invest, along
with the required amounts of labor and other inputs, in the
development of new mines, and how much (%) to stockpile
against future market demands.

That is, if M(t) is the number of mines 1 has in

operation on day t , and S(t) is the supply of coal it



has on hand, and if the directors of 1 elect to allocate
ul(t) tons of that coal to the development of new coal
mines, and consume u.(t) tons in the production of new coal on

day, 8
that| then firm 1 will have

(la) M(t+1l) = M(t) + ul(t)/A = M(t) +aaul(t)
mines in operation and
(1b) s(t+l) = s(t) + D ug(t) - (ul(t) + u2(t))

tons of coal on hand at the start of day t+1 . and if we
append to the finite difference equations (1la) and (1b)
the inequality constraints

u,(t) >0 u.(t) >0
iR - 4 > = ’
(2)

ul(t)+u2(t) < s(t) , and ul(t) < o M(t)

we Obtain a complete description of 1's technological
alternatives on day £ . For clearly, 1 can not allot
a negative amount of coal to either of its productive
activities, consume more coal in a day as fuel than it had
2t the start of that day, ©oF extract more than bo (gross)
tons of coal in a day from a single mine, if a 1is the
maximum number of tons of coal which may be burned for

fuel in a day in a single mine.
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etition is to extend over a

s(t+l) - s(t)
place the

However, since the comp

ge number of days, W€ may approximate

lar
by &(t) and Mm(t),

and M(t+l) - M(t)

and soO ¥re

differenceequations (1a) and (1b) by the system

M(t) = a uy(t)

(1)
- (ug(£) + up(e))

\

s(t) b ug(t)

al equations. But we emphasize that

rocess (12) and (1b

ion of continuous

of ordinary differenti
it is really the discrete time P ) which
we wish better to understand;: the introduct
time is merely an analytical device which, in this case,

tes the solution of the problem.

facilita

As to firm 2, its technology is even simpler, for
it does not have the option of developing new mines. In-
deed, 1if 1(t) is 2'S coal inventory at time t, Wwe
may write simply

I (t) = ¢ v(t) ,
(3)
o < v(t) < I(t) and vit) <8,
n day t

where v(t) 1is the quantity of coal consumed O
is the maximum

as fuel to power ~tg machines, and B
ch can‘be'burned in a day as

number of tons of coal whi
fuel in 2's mines, which are fixed in number.



Next we assume that the deménd for coal in the country
in which they operate is totally inelastic, and is equal
to m0==mJ% tons of coal per day, regardless of the prices
the two firms choose to charge. However, if firm 1's price
po(t) for a ton of coal on day t is higher than firm:
pt'g price qo(t) , then the demand &(t) on firm 2 for
coal on day t would exceed w/m - 8(t) = a(t) , the de-

mand on firm 1 . More precisely, we assume that

\

ae) - me (gy(t) - pole) )

(%)

i

s(t) midT -0 (q(t) - pylE)l = me (p () = qp(E)) >

where the function ® is defined for every real number X

by the relation

Thus O < o(x) < Jr and ©(0) = Jr/2 . Also o -x) = Jr-o(x),
o'(x) = e , and o"(x) = -2 X e"X2 - -2 x a'(x) .

We shall assume toO that mg = ™ T < cp , so that firm 2 has
sufficient productive capacity to £i1ll the entire market's
demaﬁd. This would be the case, for instance, if 2 had
historically been the only coal producer in the nation, and

1 had come into peing largely as a speculation, seeking to

exploit the opportunity afforded by the new tunnel.
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The particular forms (4) for the demand functions
d(t) and s(t) will not, of course, be appropriate in
all situations. But they would be, for instance, if the
two firms were located at opposite nends" of the country,
and each forced their customers to bear all of the trans-

portation costs. For then, as indicated schematically in

figure O below, there could be a point E somewhere between

them where the price po(t) plus the cost of transporting
a ton of coal from 1 to E exactly equals qo(t) plus the

cost of transportation from =2 to E . SO

e e e et et e i e

the customers to the 1eft of E will buy from 1 , while
those to the right will buy from 2 . The location of E
will depend, in simple cases.at least, only on the differ-
ence po(t) - qo(t) , and will move continuously and mono-
tonically from 2 to 1 if that difference is allowed

gradually to increase from -eo tOo +e



Now let P = P -K , O = 0,7k, p(t) = p(t) - kK,
and q(t) = qo(t)-k . P, Q, p(t), and g(t) are the profits

associated with the world and domestic market prices P ,

Qy po(t), and qo(t) . And in terms of them, the firms'

profits over the period tg <t < T may be expressed as

T

(5a) 3y = P(H(E)M(£))+QEE)-S(E)) + m l p(t) o(qlt)-p(t)) at
o
and
A
o) 3, - aa(m) - (eg)) +m [ alt) s(p(e) - a(e)) @t
%
since po(t) - p(t) - alt) . The complete evolution (often

called "kinematic") equations for M(t), s(t), and 1(t) by
appending the demand terms to the s and I equations given

earlier. This yields

m(t) = a uy(t) T(t) = ¢ v(t) - m o(p(t) -alt)

(6a)
5(t) = b uy(t) - (uy(€) +u(t)) - m?o (a(£)-p(t)).

The problem of maximizing the functionals (5a) and (5b)
subject to the differential equation constraints (6a) and

the inequality constraints
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u,(t) 20, u,(t) 20, v(t) < B,
(6b)
ul(t) + u2(t),, u2(t) < aMt), and 0 < v(t) < 1I(t)
' *
is a differential game of the sort treated in [1]. So

we shall seek to find a Nash equilibrium point for it
in the class of "switching strategies" there defined.
But first, a few simple observations are in order.
For instance, the gquantities P M(té), Q S(to),
and O I(to) are constants known at the outset of
the game, and can have no effect on the players strategic

decisions. Thus we may ignore them, and write more simply
' T

5, - pu(m) sas(r) + m | (60 (alt)-p(e) at
tO
(5)
T
5, = o1t) +n [ ale) e (p(6)-a(t)) at
t
e

Next, observe that it can never be optimal for 1,
against any strategy for player 2 , to allow his supply
of coal sS(t) to be exhausted before the end of the game.
For 1's production process requires coal to make coal,

so that if S(tl) - 0 forany t; <T, then S(t)



remains zero and M(t) has some constant value for t > t;

as well. But if 1 had started, at time tl - h, to
increase its price slightly, it would have run out of
coal more slowly. Hence it would have had more coal to
use in its production processes, during the period
ty - h <tz b, and so have produced at léaét as much
coal and as many mines as previously,'before going out
of business. And it would have sold the coél at a higher
price. Thus S(to) > 0 implies S(t) >0 for all
ts <t<T, if 1 |is playing rationally, and a similar
argument establishes that, if I(to) >0, then I(t) >0
for to <t <T

and lastly, it seems apparent that if P = Pw - K > AQ
1 would never choose its decision variables ul(t) and
ue(t) in such a way that ul(t) + ug(t) < s(t) . For if,
by doing so, 1 had finished the game with s(T) > O tons
of coal in its yards, and M(T) mines in operation, it
would have forgone the profit P ° a AS to be earned by
converting AS tons of coal into coal mines, in' favor
of the profit Q ° AS earned by selling the coal at the
world price of $Qw per ton. Because, had 1 decidéd,
at some instant when ul(t) + ug(t) < s(t) , to increase
ul(t) siightly, it would have ended the game with AS
fewer tons of coal, but a*AS more mines in operation.
And since P > QA implies P/A = Pra > Q, such be-

haviour could never be optimal against any strategy which



2 might adopt. The argument iﬁ case S(T) = O 1is
similar, but involves a simultaneous increase in both
p(t) and ul(t), so that the perturbed strategy does
not lead 1 to run out of coal before the end of
the game.

The above heuristics do not conétitute'a proof that
ul(t) = s(t) - ug(t), as we have not actually exhibited
strategies by which 1 could guarantee himself the gains
we have asserted are possible. But we shall accept them
as ample justification for the introduction of a single
new decision (control) variable u(t) = u2(t) for 1,
and assuming ul(t) = s(t) - u(t) hereafter. When
we do so, the kinematic equations (6a) become

M(t) = a(s(t) - ult))
(6) S(t) bu(t) - s(t) - m o (a(t) - p(t))

cv(t) ~mo (p(t) - alt)) ,

il

o o
—~
t+
~—

il

and the inequality constraints (6b) become

u(t) > 0O v(t) <O
(1) s(t) -u(t) £0 1(t) - v(t) £0
aM(t) ~u(t) <0 g -vit) <0 .

Hereafter, we will discuss only the simplified differential
game defined by the payoffs (5), the equations (6), and

the inequalities (7). And we will seek to solve it in the



class of strategies (ul t,x), p(t,x)) and (v(t,x),q(t,x))
which depend on time and the state variable x = (M,S,I)
alone.

To indicate that the assumption P > QA , by which
we justified setting ul(t) = s(t)- uz(t), is not too
unrealistic, we suggest that the values A = $h X 105 tons
of coal per mine, K = $106 per mine, P =4$2.5 X lO6

w

per mine, Qg = $ll per ton of coal, and k = $8 per ton

Il

of coal are not implausible. And then $A Q A(Qw—k) =

N x 10°x(11-8) = 1.2 X 106 < 1.5 X 1o6 = (2.5-1)x 106 = $P =
¢PW—$K . We also note, in connection with these figures,
that if b 1is at all large (say b > 5), then b Q > 15

is considerably greater than a p - 15/12 = 5/k . So we

will not hesitate to assume bg>aPbP, andto ignore

the case b Q < akP when it arises later on.

The fact that neither firm can produce any coal
without some coal to start with is, of course, not realistic.
It is a consequence of our assumption that coal is mined
only with the aid of machines. The defect could easily
pbe remedied by the incorporation of two small decision
variables el(t) and eg(t) on the right sides of the
& and I -equations (6), to allow the firms to dig.coal by
hand if necessary. But as it is clear that the firms never
will need to dig coal by hand, if only we allow them

positive initial stocks S(to) and I(to), it seems reason-

able to suppose that they will not.
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Most emphatically, neither will ever knowingly
sell coal to the other to help him escape from the predica-
ment of having no coal, should he be so unwise to fall into
it. For during any period A <t <B in which one of them
has no ¢coal, the other may exploit the inelasticity.of
demand to sell as much as mo==mJ% tons of coal at any
pfice it may wish to charge. Total inelasticity is not,
of course, a realistic assumption but has proved to be a
useful approximation in many cases, and we doubt that it
does serious damage here.

our confidence rests on the fact that a Nash equili-
brium point is a highly competitive solution concept.
Indeed, if our coal mining firms were disposed to act in
concert, they could jointly name an arbitrarily high price
of $W per ton (thus becoming, in effect, a monopoly) and
agree to split the profits evenly. But in fact, as we
shall see shortly, the competitive desire of the pléyers to
play "rationally" (that is, in such a way that each player's
strategy is the best possible against that of his opponent)
will prevent them from exploiting the inelasticity of the
market. This, in itself, seems to us an interesting asser-
tion about the nature of "pure competition”, and its effect
on free market prices. The theory of many player differen-

tial games is developed in [1], and in particular, the
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definition of a switching strategy will be found there,

and a brief description of the proceedure by which we shall

solve the present game follows the statement of theorem 1.
To begin the solution process, W€ write down the

two Hamiltonian functions

o
i

1 mp@(q-p)-+ax1(S-u)-fxg(bu-s-m®(q-p)) + xB(cv-m®(p-q))

U

m(p—x2-+x5) o (g-p) +(bx2~axl)11+ cx3v4-(ahl-KQS mfﬁ_mxa

&
i

- mas(p-q) + auy(5-u) * py(buss-me (a-p) + wj(cv-mé(d-p))

it

m(q+u, - M5> ®(PfQ)-+(bug-aul)U-+Cu5V-+(aul-ug)S-JW mp, -

Next we find the values of (u,p) and (v,q) which maximize
Hy and H, respectively. Clearly the appropriate values

u* and vv¥ are

u” = 0 if bxg - ang < 0

(9) u* = 8 i€ bhg - any 2 0O and S < aM
u¥ = oM if br, - ary 7O and S > aM

and N
v: =0 if py, <O

3

(10) vt o= B if My > 0 and I > B

vi o= I if Wz > 0 and T < B .
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X b3
To calculate p and g, we introduce the variables r =X, - X3 and s = My - L
and observe that for fixed r and s, the expressions
% % % %

(11) Q= (0" 1) &(q -p ) and Q, = (¢ -s)@(p -d)

ate

must be in equilibrium. That is, if pq‘ is replaced by any other real number P,
the value of Q1 must be reduced. And if q* is replaced by any other g, QZ
must be reduced. In short, we must find an equilibrium point for the game in which
the payoffs are the functions (11) and the strafegy sets are the p and g axes
respectively. It will be shown that the game has a uﬁique equilibrium point

(p*, q*) = (pﬂ< (r,s), q* (r,s)) for every pair of non-negative real numbers r and

b3 sk
s . Moreover p and d will always be positive. Necessary conditions that

ES sk .
(p ,a) bean equilibrium point for the game (11) are

8 Q ]. s s W% % sk
S 2- e et - - e(d ) =0
(12)
0 Q 2 & . b b S b
-5 - (@ ~s)a'(p -q ) -&(p -9)=0

We shall first seek a function p(g;r) which satisfies the first of equations (12)
and a function g (p:s) which satisfies the second. And then we shall show that
the unigue point of intersection of the graphs of the two functions is indeed an
equilibrium point of the game.

We begin with a discussion of the level curves of the functipn
(13) Qx(t,x,a) = (x-a) &' (t-x) - ®(t-x) ,
where a is a non-negative constant. In particular, we wish to determine the set
8 of points (t, x) at which Qx is zero. & is closed. Also & lies strictly

above the line x = 0 . For if some point (t, x) of & lay below it, the positive
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number & (t-x) should be equal to (x-a) @'(t-x), which is negative or zero.
Moreover, § is not contained in any right haif plane. For if t is any fixed real
number, the fuhction Q(t, x,a) = (x-a) @ (t-x) is negative for x <a, positive
forall x >a, and tends tozeroas X becomes large. Hence there is a point
x(t) at which Q attains an absolute maximum. And there the slope of the
graph of Q, which is just Qx(t, x, a), must vanish. .Thus § cannot be conﬁined
in ény right half plane, because it must meet every vertical line in the (x,t) plane.
And finally, we observe that § must meet every line of the form x =t + o at
exactly one point. For on such a line, we have Qx(t, t+a,a) =[t+ (e-a)]@'(a) -
& (-a), which is a linear function of t, and hence must take on every real value
c exactly once as t varies over the line. In particular, the set 8 meets the
line x =t at the point (a+-li'\/_1r_ , a +-12—\/?) .

Next, let us suppose thata function x(t) = x(t;a,c) is defined implicitly
in a neighborhood of the point x =t=c+a+ 12-\/—1? on the line x =t by the

equation

(14) (x(t) -a)®'(t-x(t)) - @(t-x(1)) =¢
Differentiating with respect to t, we obtain

(15) “2(x(t) —a) (t-x(t)) &' (t-x(t) + k(t) &' (t-x(t)) - (1-x(t)@'(t-x(t)) =0,

which is equivalent to

. dx _ 1+2(x-a) (t-X)
(15") dt  2+2(x-a) (t-x)

And substituting t=t-a and X =x-3a, this becomes
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1
dx 2 + x(t-x)

(16) R TTH x(t-x) ’

which is identical with the equation obtained by setting a = 0 in (15') . That is,
the level curve x(t;a,c) may always be obtained from the level curve x(t;0, c)
by translating the latter upwards aN 2 units along the line x =t.

Now let us sketch the solution curves of (16). To do so, we observe that
X vanishes only along the two branches of the hyperbola x(x-t) = -%, and be-
comes infinite only on x(x-t) =1 . The slope of the solution curves is positive

everywhere save in the two narrow crescent-shaped regions which lie between

the respective branches of the hyperbolae. These are the shaded regions shown

x(x-t) =1

/ x(x-t) =%

wKooN
xoow
=2
1 i
Lol M

Figure 1

The level curves of x&'(t-x)-® (t-x)
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in Figure 1. In particular, we observe that the lines~ x =0 and x =t are asymp-
totes for both the hyperbolae, and that -lé- < x <1l in the two sectors of opening

w/4 formed thereby. The above information enables us to sketch the trajectories
shown in the figure. They partition the (x, t) - plane into three disjoint open sets.
The uppermost of these is filled with level curves which _attain their minima along the
upper branch of x(x-1) :15 . Clearly such curves can never cross the t axis.
Similarly, the lowest region is filled with curves which attain their maxima along

lz These all lie in the lower half plane. The

the lower branch of x(x-1t) =
third region, which contains the entire t-axis, is filled with solutions of positive
slope, which are bounded above and below by the upper and lower branches of
x(x-1) :15 . Hence these are defined on the entire interval -0 <t <o . The
poundaries which separate the three regions are the two solutions x>=< (t) and

X, (t) shown in the figure.

Next, observe that every solution of (16) crosses the line x =t exactly
once. Hence each of the sets SC ={(x, t): Qx(t,x, 0) = c} consists of just one
of the solutions of (16). In particular 8 is SO constituted. But since & must
lie in the upper half plane, it must lie on or above x* (t) . And since 3§ is not
contained in any right half plane, it can not be any of the curves crossing the
hyperbolae x(x-t) =%2- and x(x-t) =1 . Therefore g can only be the graph.
of x>:< (t) itself.

Reverting to our previous notation, we may express this fact by writing
xﬂ< (t) = x(t;0,0) . The latter function is now globally defined. And we

may calculate x(t;a,0) by translating x(t;0,0) along the line x=t as described
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previously. Hence we may obtain p(g;r) from x(t;a,0) by substituting x=p,
t=q, and a =r . And g(p;s) is got by setting x =d, t=p, anda =8 . The
resulting state of affairs is indicated in Figure 2. There the curves I‘p and T
are just the graphs of p(q;r) and q(p;s) respectively. Clearly the curves do

cross. We call the coordinates of the point A at which they do so p"\ = pq\(r, s)

Figure 2

b3 b
The location of the point A(p ,q ) from r and s

and 9 =q (r,s) . To see that there is only one such point, construct the line
%k %k ok sk
gq=p-(p -q) thru A(p , q )y . If I‘p and Fq should cross at another

point, one of them would have to cross this line a second time. But both I’
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b3 sk
and I‘q cross every line of unit slope exactly once. Thus A(p , q ) is the

unique point of intersection for I‘p and I‘q, arnd hence the only point at which

equations (12) both hold. Moreover it is a true equilibrium point because Ql

and Q2 attain their absolute maxima (in p and g respectively) there.

i 5k

Knowing (pm, u') and (qq\, v ), we may now proceed to write and solve
the Hamilton-Jacobi equations of the game. But before we do so, we deduce a
‘ % %
growth property of the functions p and g of r and s which we shall need

later. We deduce that if r-s increases monotonically and without bound, the

J,

difference p’P (r,s) - qq‘ (r,s) must do so too. For if we add any number A to
r and to s, the effect on the curves Fp and I"q is to slide them upwards and

to the right A'\/_Z units along the line p =q . And so the point A(pq\, qﬁ)

5 ES

sk s sk
where they cross slides along g =p-(p -q ), leaving p -q unchanged.

Therefore p'< -q depends only on the difference r-s . And if we increase r

unilaterally, the effect is to move l“p along p = g to the new position I'! ,

als als ate
<

which meets l"q at a point A' = A(paw, q ) below q=p - (o -q ) . Then

als als als ale J. J,
sksle sksk b

P -q > p>'< -q' , so that the dependence of p* (r,s) - q*(r, s) on r-s is
monotone and increasing. Also, the increase is without bound. For given any
number «, the curve Pq meets the line g =7p —ozz at just one point Aa . So
if we choose r so large that the line p =r lies to the right of Aa , the point

(pq\, qﬂ‘) must also lie to the right of Aa, because the entire curve I‘p lies to

sk sk 2
the right of p =r . Hence theline g=p - (p -9 ) lies below g=p-«

H

A
ps

sk 3 2
and p - g >a . This fact will be useful in discovering the properties of the

optimal strategies.
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Let us now consider the value functions V(t, x) and W(t, x) for players

T

1 and 2 respectively. These must obey the Hamilton-Jacobi system of partial

differential equations, as well as the initial conditions

V(T,M,S,1I)

PM + QS
(17)

W(T,M,8,I)

1l

QI

), als

sk sk
The Hamilton-Jacobi equations are obtained by inserting the strategy pairs (p ,u)

e

< 3
and (q , v ) into the Hamiltonian functions (8), and equating the results to

_Vt and —Wt respectively. Recallinthhat the vectors (xl, )\2, >\3) and
(pl, 19 93) are in reality the gradients V_ = (VM,VS,VI) and W_ = (WM,WS, WI)

we have for the present case

Vt + m(pﬂ\(r,s) -r)® (qw(r,s) - p*(r,s)) + (bVS - aVM)uﬂ\

+ chv o+ (aVM - VS)S -mNT vI =0
(18) . o
Wt+ m(q (r,s) - s)&(p (r,s) - q (r,s))+ (bWg -aWy)u

+ cva + (aW, - W8 -mNT Wg =0

Here we have retained the notations r = )\2 - )\3 = VS - VI and s = )\3 - )\2 =

WI - WS for simplicity. Into the equations (18) we now substitute the trial

solutions

V:)\I(T)M'I')\Z(T)S'l' o(T)
(19)
W = H3(T)I.+ () ,

where T is the backwards time variable defined by = =T-t, and )\I(T), )\2(7) , p3(~r) ,

o (T) and y(7) are functions to be determined. We now have

t+ See [1l], Theorem l.
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V. = )\1(T), VS = )\Z(T), W

M I

:p3(~r), r:)\z(-r), S :)\3(1-), andVI=WM=WS =0,

so that the equations (18) become

(e (1) - 2, (1) (a5 (1) = B (1) +8(an (1) - 2y (1) + (Bay(r) - an (T)u

(20a)

)\'I(T)M + )\‘Z(T)S + o' (T)

(20b) m(q" ()

by ()@ (0¥ () = @ (1)) # oVl (1) =y (M)T+ ¢! (7)

sk % sk
Here we have written p (7) and g (7) instead of p ()\Z(T), )\3(7)) and
qﬂ\ ()\Z(T), p3('r)) for convenience, and introduced the operator ' = d/dt . The
equations (20) actually represent six separate pairs of equations which result from

Mk 3
the six possible control pairs (u , v ), namely

b3 Sk sk ES ES

(21) (1) u =0, v =P (ii) u B (iii) u

i

*
aM, v =8

1
n
<

1

ate A,

(ii') u

1
n

iyu Vi1 (i u oM, v =1
2 b

i
o
-
<
I
—

The functions )\1(7) , )\Z(T) , and |..L3(T) may now be determined for each pair

ke als
» b

(u , v') , by equating the coefficients of M, S, and I on the right and on the
left. And once this has been done, it will be possible to obtain ¢(7) and ()
by quadrature. For instance if I >f, then v = B so that I appears only on the

right in (20b), and not at all in (20a). Then p3(-r} must satisfy the equation |
(22) wh(T) =0

Or if I <p, then vﬂ< =1, so that }.1.3(1') obeys

(23) by (1) = i (1)

Similarly, if b)\z - a)\l <0, then u* = 0, so that the equations for )\1(1—) and

N, (1) are



M(T) =0

24
=4 N () = ak (1) = N, (7)

But if b)\2 - ax

1>0, then )\I(T) and )\Z(T) obey

x'l('r) =0
(%) M (1) = (b=D) %, (7)
if S<aM, " =8, or
M(7) = —aan (1) + ban, ()
(26)

‘ - -—
)\Z(T) = a)\1 xz

if S >aoM and }.L* =aM . Then ¢(T) is given by
‘ Toox s s
(27) p(r) =m [ (p (1) - (the(a (1) -p (t)dt
0
where the functions p* and q* are as above. Of course we can not expect to
write down ¢(T) explicitly, as we have only qualitative information about p*
and q* . But the required integration can in theory be carried out over any interval
0<T1T<B on which )\Z(T) and p3(-r) are known. {(7) is obtained in a similar
manner. And since the equilibrium strategies do not involve the functions ¢ and
g, it shall suffice for our purposes to be assured of their existence. For then the
process which we have described does in fact lead to the solutions of the Hamilton-
Jacobi equations (18). We now pass to the actual construction of these solutions.
First, let us suppose that on some backwards time interval A <T <B, we

have bxz('r) <a)\l('r) . Then the equations (24) hold, so that )\I(T) is con-

stant and xz(—r) is a decreasing function of 'rT. Therefore the above inequality

+ In this problem, the adjoint variables \ ,\,,\, and p,p,,u, are shadow prices,
and so must eventually turn out to be no]n-r%ega%ive. 1772703
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actually holds on the entire half-line A < T < o, and if u* (A) =0, then u*(-r)
must vanish also for every T >A . If we call the region of (t,M,S,I)-space
wherein u* = 0 the '"region of rapid growth', ‘or RG (because 1 is devoting
himself exclusively to the expansion of his productive facilities there), we may
rephrase the above fact by saying that once the state S(t), M(T), I(7) of the
game enters RG, it never againwill leave it. In partic'ular, if bQ <aP, the
entire game is played in RG . This corresponds to the fact that if the world
price PWof coal minesis sufficiently high relative to that of coal, 1 will go
out of the cod business entirely in order to become a builder of mines To rule
out this uninteresting possibility, we shall assume hereafter that bQ > aP

Our procedure now will be to solve the equations (18) locally at first (that
is, in a neighborhood of the initial manifold T = 0), and then to extend our
solutions as far as we are able. Now at the instant 7 =0, we have @ (p-4d) =
NI (g-p) = N7 - @ (q*(O) - p*(O)) =N —qb* <~ . Andsince weassumed that
mT < cpB, thereisaline I:I* inthe (I, T) planeabovewhichthe solution I(r) of (6)
decreases with T near thel-axis, and below which I(7) is initiallyincreasing. Mean-
while, the (S, M)-plane will be divided into tworegions by the line §=aM . In theregion
where S < oM, whichwe shall call the "'region of nogrowth" (NG for short), because

M (T) is constant there, the equations for S(t) and M(T) are just
(28) M'(T) =0 S'(t) =m&(q (1) -p (7)) - (b-1)S(7) ,

while in S >aM (which we shall call the''region of slow growth', or SG), we
have

(29) M'(7) = a(aM(T) - S(7)) S'(T) =md (p () -q (1)) +S (1) ~baM (7) .
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Thus the behavior of the trajectories S(t), M(7) for small values of T is as

indicated in Figure 3.

S' <0
M'=0

Figure 3
The flow in the (S,M)-plane near T = 0

Next, let us’ study the curves S(t), M(T) which lie in NG for larger

values of T . Here )\I(T) and )\Z(T) satisfy the equations (25), so that

Qe(b_l)T

)\I(T) =P and )\Z(T) = Therefore be(T) - axl(-r) is both positive

and increasing on any interval 0 <t <B on which S§(t), M(7) remains in NG,

e

ES b3
so that the switch from u >0 to u =0 (which takes place when b)\2 —axl

changes sign) never occurs in NG . Also, by the growth property established

sk sk S sk :
above for p - g asa functionof r-s, p (7) - q (1) must increase mono-

(b-1)T" eC'r)

tonically and without bound. For here r-s = )\Z(T) - p3('r) = Qe
increases monotonically and without bound because of our assumption (namely that

b -1>c) on the relative efficiencies of the two firms' production processes.
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Thus &(7) =md (q*(-r) - p*(-r)) must decrease monotonically to zero. And dif-
ferentiating again the second of equations (28), we have S8'"(r) =6'(7) ~(b-1)S'(7)
and S"(7t) =&'(7) <0 for any value of T for which S'(t) =0. Hence S(T)

may have one local maximum, but no local minima in NG . In order to interpret
these facts, let us suppose that the play begins at »'r = O at a point (MO, SO) in
NG . Then the entire subsequent motion in NG takes place in the plane M =M

O ]
so that the problem of sketching the trajectories in NG reduces to plotting S(T)

TT C
, Q
\ Py

M=M
directions \ 0

Figure 4

The optimal trajectories in NG

against T in the following figure (Figure 4). Here the fact that the trajectorics

ES
beginning to the left of S = m®& /(b-1) decrease monotonically is due to the
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facts that they decrease initially and that they can have no minima. Those be-
ginning close to (1\/[0, aMO) must escape from S <aM because of the smooth
dependence of the s'olutions of (28) on initial conditions. In particular (see
Figure 3), if MO > mé*/a(b—l) , there must be a curve C which strikes the plane
S = oM tangentially, and then returns to NG . Letus denote by P(MO) the
point at which this contact takes place. Then if we let MO increase from
mfp*/oz(b—l) to infinity, the locus of P(MO) will be a curve I' in the plane

S =aM, as shown in Figure5. Every point in S = aM which lies below I' is

T 4«
=
1’4
M /
S
S =aM

Figure 5
The surface Z in SG
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the end point of a trajectory emerging from NG, while the points above I' are
the initial points of trajectories moving back into NG . Let P* be such a point,
and let S(t), M(t) be a forward time trajectory out of NG thru P* . Because
the right hand sides of the equations (28) and (29) are continuous across S = oM ,
the curve S(t), M(t) must be continuable into S >aM . Now consider the solu-
tions of (29) which pass thru points Pﬂ< on I . They form a surface X in
S > oM, which divides the latter into two regions. The region under 2 is filled
with solutions of (29) which beginon S =oM and descend to the plane 7=0 (orrather
t =T, since we are speaking now of forward time). What this means is that if
tirm 1 begins the game at a point P* in S = oM which lies under I'y he may
choose to proceed éither into S <aM or S >aM, his payoff being the same in
either case. In order to better describe the behavior of the curves lying under
2, and indeed in all of S >aM, it is necessary to discuss the behavior of the
solutions of (29) with some care.

For this purpose, it is convenient to make use of the following theorem on
differential inequalities.
Theorem: Let f = (fl, ceey fn) be a function defined and continuously differ-

entiable on an open set Rx[0,T] of En which takes values in En, and suppose

+1

that each f  is monotone increasing in each of its first n variables. TFor any

continuously differentiable function u(t) fromtheinterval [0,T] into R de-

H
fine P(u) = (u(t) - f(u(t),t)) . Then the inequalities u(0) <v(0) and P(u) <P(v)
imply that u(t) <v(t) forall 0 < t <T . This is a slight specialization of a

theorem to be found on page 85 of Walter [6]. A more general version is to be
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found on page 25 of Szarski [5]. In order to apply it to the System (29), we

introduce (temporarily) the new variables x = M and y =-S. Then (29) takes
]

the form
x'(T) = aax(T) + ay(T)
(30) y'(T) =bax(r) + y(r) - §(r)
and the right hand sides are indeed increasing in both x and y . So let (x(7),

v(7)) be a solution of (30) starting at (xo, yo), and let (x*(-r), y*(T)) and

(x*(-r), y>‘<("r)) be solutions of the related systems

X, (T) = aax, () +ay,(r) and x*'(’r) =aaxﬂ:(—r) . ay*(—r)
(31) ‘ :

Ve (T) =bax, (7) + Y (T) - mm Y*'('r) = ba x*('r) + Y%(‘r)

s

which also pass thry (xo, yo) when T =0. Now write

p(T) p'(T) - aap(T) - ac(T)
(32) Hlee | 1o () - bap(r) - o(n)
for any two functions p(T), o(7) defined on 0 Xt < oo , Then
X, (7) 0 0 %(7) 0 x" (1)
(33) p| ° = _ | =< = P < =Pl , ,
Y, (T) -mN/ ~8(T) y(T) 0 y (1)

so that X A7) <x(T) __<X>l<(T) and Y, (T) <y(T) < y*('r) . Thus if we write the
sSystems
M' = aaeM - a8 M' = aaM - a8

(34) (a) (b) _
S'" = -baM + § S' =-baM + S + m\T s

and let (M*(-n), S*(-r)) and (M*(-r), S*(-r)) be solutions of the homogeneous

and inhomogeneous Systems (34) respectively, which pass thru (MO, SO) when
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T =0, while (M(T), S(7)) is the solution of (29) which satisfies the same
initial condition, we have

M, (1) <M(r) <M ()
(35) 5, (1) >8(1) >8 ()

b
forall 0 <7 < o . Thus the point M(T), S(7) is always contained in the rec-

tangle in the (M, 8) -plane whose upper left-hand comner is (M>,< (), S* (t)) and

whose lower right hand comner is (M (7), § (7)) . Moreover, if M (1), S (1)

is any solution of the homogeneous system (34a), then (ch(*r) + ?;i?)a R
sk mr\/»n-— . . .
S (7) + zb——l)— ) is a solution of the inhomogeneous system (34Db).

Now since the determinant of the inhomogeneous system does not vanish,
it has a single stagnation point at the origin. And since the characteristic equa-
tion is
(36) )\2— (1+aa)x + (1-blaa =0 ,

there are always two real characteristic roots of opposite sign. Moreover there are

two straight line solutions of the form S (1) = k, M (1) and 8" (r) = kZM*(T) ,

 where k1 is a negative number and ]<2 is greater than « . Hence the origin

becomes a saddle point (see Coddington and Levinson [ 3] page 373), and the
solution curves have the form indicated in Figure 6. And by the remark of the

previous paragraph, the curves for the inhomogeneous system are obtained by

. translating the origin mvT (1+a2)/a(b—1) units to the right along the line S =aM .

The resulting state of affairs is indicated in Figure 7 . I f play begins at time

g

Al
K

T =0 ata point Pl above the line S = kZM’ both the curve T (which is a

trajectory of the homogeneous system) and the curve ", (inhomogeneous) cross




Figure 6

The solutions of the homogeneous system (34)

_mw
 (b-1)
— M
- _ m T
" (b-1)a
Figure 7

The estimation of the point (M(7), S(7))
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the S axis after a finite time. And since the rectangle R which contains the

1’
point (M(T), S(7)), must cross it with them, we may conclude that the solution

b

1 escapes from the first quadrant no later than the solution

of (29) beginning at P

I of the homogeneous system. And similarly, the solutions of (29) beginning
at points P;:< beneath the line S + mvm/(b-1) = k, (M + mV7/ (b-1)a) must cross
the line S = aM no later than the solution I“* of the inhomogeneous system (34).
About the solutions of (29) beginning at points P2 between the lines S :kzM

and S + m'\/?/(b—l) = kZ(M +. m\/-;/(b—l)oz) however, we have no such accurate
information. For here the curves I‘* and I‘;k diverge rapidly, so that the rec-
tangle R2 of Figure 7 grows quickly and without bound.

Nevertheless, weare now ina position to complete the sketching of the equilibrium
trajectories begunin Figure 5. Forabove the surface = shown there, there mustbea
second such surface Z', looking verymuch like = » whichis the boundary of that portion
of SG whichis filled with trajectories beginningon S =oM and descending (in for-
ward time) to the plane T =0 . Above and to the right of 2'  the region
S >aM is completely filled with trajectories beginning on M = 0 and descending
into the plane T =0 . And close to that plane, these are indeed the equilibrium
trajectories. Butas T increases, there is the possibility that (M(1), S(T))
may cross the boundary separating RG from 8G, so that u* switches from the
value oM to zero. Beyond such a boundary, of course, the solutions of (29) are
no longer optimal paths.

To preclude this phenomenon, we recall that in SG, the variables )‘I(T)

and xz('r) obey the equations (26). These are linear and homogeneous, and
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have a single stagnation point at the origin. Moreover, the latter is again a
saddle point, since the characteristic equation for this system too has one posi-
tive and one negative root. Thusﬁthere are two straight line solutions )\Z(T) =

11)\1(7) and )\Z(T) :JZZ)\l(T), with £ being negative and £_ being in the

1 2

range a/b<£2 <a . Moreover, along the line N, = llxl,

while on )\2 =4 2)\1, )\i("r) > 0 . Hence all the solutions of (26) which begin in

we have )\i(-r) <0,

the first quadrant of the ()\l, >\2) -plane tend asymptotically to the solution

>\2 = 12)\1, as indicated in Figure 8. This shows in particular that solutions

Figure 8

The positive solutions of (26)

which start from points (P, Q) above the line Ny (a/b))\1 can never cross the

line )\2 = “0'2 L sothat the indicator function pr(T) - apl(-r) never changes sign. Hence

the control u = 0 is never optimal, either in S <oM orin S >aoM, and the
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curves sketched in the previous sections (which fill the positive orthant of

(S,M, 7)-space) do indeed appear to be the optimal trajectoriesfor firm 1. The solution
process will thus be complete if we can describe the optimaltrajectories I(7t) for

player 2. For we will then know (qualitatively at least) the entire subsequent
behavior of both players, starting from an arbitrary initial point (to, MO’ SO’ IO)
under optimal play.

In the (I, 7)-plane, the governing differential equation is

(37) I'(1) =T - cv - §(r)

H

ale

where v =1 if I <B and v = B if I>B . Andsinceweassumedthat m\/_1r_<c{3, I'is
positive along I =0 and negativeon I = B, so that the curves are those sketched

in Figure 9. Note the two distinguished curves I.(t) and I*(-r) , which start

Ia

I:}:( T)

Figure 9
The solutions of (37)
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from I = 0 and I =8 respectively. I, (t) 1is important
because, if the game starts from a point (TO,IO) such
that I, < I*<To) , and if firm 2 adopts the same price
strategy it would use on or above I«(7) , namely

q = q*(T) s then 2 would run out of coal before the end
of the game. And this, as we showed earlier, could never
be optimal. Thus the optimal strategy for 2 below I,(r)
must be to charge prices q(7) > q*(T) s, and so to delay
the exhaustion of its coal inventory until ¢ = O . But
the calculation of the optimum there would be difficult,
as the second of the equations (18) has no solution of the
form W = uB(T) I + ¥(t) in the region under I,(z) . So
we shall rest content with the qualitative information
gained so far.

I*(7) is important too because, in the region RI
between the line I =g and 1%(1) , the value function
W(I,r) , 1is again not of the form W - uB(T) I + ¥(q)
Rather the equation for it must there be solved anew,
starting from the initial data W(p,t) = Q B+ V(1) given
on the line I = g instead of the condition (19) given on
T = O . But we shall not do this either, as it seems
apparent that the curves in RI can only be as we have

already sketched them in Figure 9.




o
~

Similar remarks apply in the portion RS of NG
which is filled with backwards trajectories which eventually
cross the plane S = oM into S G . For here too, the
solutions of the Hamilton-Jacobi equations (18) must satisfy
boundary conditions other than (17) on the plane S = g M
But in RS too, it seems apparent that the qualitative
aspects of the trajectories can only be as previously
described. So rather than face the prospect of solving the
Hamilton-Jacobi equations again, we elect, at this point,
to rest our case. It would surprise us if further analysis
should yield other types of qualitative behaviour.

As a final remark, let us point out the applicability
of our model to the theory of protective tariffs. For
tariffs are important to the economic policies of many
nations. And clearly, the range of mountains we postulated
at the outset provides perfect protection for our firms in
the period tO <t <T, but no protection thereafter. So
by assigning values to the physical constants a,b,c,a, and
B , one could actually calculate the prices which might be
expected to evolve, if the government of our small country
were, in an effort to encourage the development of a coal-
export industry, to promise the firms "full tariff protection"

for a given period. And one could calculate a tariff rate




k4
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R(t) such that (1 + R(t)) 0 > p*(t) > q'(t) > 0 , which
should be sufficient to guarantee the desired "full protec-
tion". It seems incontestible that, if such calculations
could be made for more complicated and realistic models,

there are a great many people who would wish to do so.
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