Ay

&

ON NASH EQUILIBRIUM POINTS
AND GAMES OF IMPERFECT INFORMATION

James H. Case
George Kimeldorf

Econometric Research Program
Research Memorandum No. 112

June 1970

The research described in this paper was supported by
the Office of Naval Research NOOOlk-67 A-0151-000T7,
Task No. OLT-086.

Reproduction in whole or in part is permitted for any
purpose of the United states Government.

Princeton University
Econometric Research Program
207 Dickinson Hall
Princeton, New Jersey



2

ON NASH EQUILIBRIUM POINTS AND GAMES OF IMPERFECT INFORMATION

James Case
ceorge Rimeldorf®

“Introductiogi

In this paper, we wish to study a very simple class of two
playef, nonzero-sum games. These will be distinguished by the fact
that each player has only local (not gldbal) information regarding
the payoff functions, and made simple by the assumption that each
player's strategy set be a subset of the real line R . Thus our
analysis may be confined to the Fuclidean plane, and certain tools
will be available to us which have no analogues in higher dimensions.
Moreover, Wwe consider no other solution concepts than Nash equilibria.

We restrict ourselves to such simple games, and to a single
solution concept, for several reasons. First, the study of non-zero
sum games with imperfect information is still in its infancy, and it
is our belief that the notion of a Nash equilibrium point 1is a highly
relevant one for such games. FoOIr we suspect that, when faced with
imperfect information, people and groups of people do in fact attempt
to gain additional information, and then to utilize that information
in roughly the manner we shall shortly describe. And second, we
hope that by confining ourselves to simple games, W€ shall reveal more
of the nature of Nash equilibrium points, the relationships which may
exist between them, and the methods by which they may be computed,

than is possible by the conventional fixed point procedures.

Department of Statistics, The Forida State University, Tallahassee,
Florida.



1. An Example

We begin with an example. Consider two firms X and Y , which
manufacture toothpaste. Suppose that it costs r cents to produce
a tube of brand X and s cents for one of brand Y . Let p be
the price at which X offers its toothpaste to the public on a given
day, and let g by the price for Y . Then if the function & be

defined for every real number x by the relation

X -g%ﬁ
(1.1) d(x) = of e de ,
so that 0 < &(x) < and o -x) = A7 - @(x), we shall assume

that the public demands m ®{g-p) tubes of brand X during the day
and m/7m - m #(q-p) = me{p-q) tubes of brand Y . Here m/T is
some large positive integer, and i1s equal to the total number of
tubes of toothpaste bought by the public during the day. For sim-
piicityy we have taken this number to be independent of p and g
That is, we have assumed the public's demand for toothpaste to be
totally inelastic.1 But we do not assume that the firms know this!
At the end of the day, the managers of X will know p ,

because they control it, and their own profit

(1.2) f(p,a) = mwm{p-r) o(g-p) ,

because they keep books. Also they will know g , because they will

have gone out and bought a tube of brand Y . But they will not

lIt has recently been brought to our attention that there exists a
considerable body of statistical data concerning such markets, and that
the demand is more likely to take the form: demand for X = ¢(log a/p) -




know Y's profit

(1.3) glp,q) = m(g-s) ¢(p-q) ,

or (equivalently) the public's demand for brand Y , because they do
not have access to Y's books. 1In short, X's information at the
end of a day is entirely contained in the triple of real numbers
(p, d, £(p,q)), while ¥Y's is summarized by the list (p, 4, glp,q)).
But in reality, the firms would never content themselves with
so meager a knowledge of the market structure. For by appropriate
experiments, they can at least estimate the effects of certain price
changes. And for simplicity, we shall allow them to measure exactly,
certain quantitites which in practice they could only estimate. TO
this end, we assume that both brands are sold at an infinite number
of outlets (drugstores, supermarkets, etc.) 91,929.0. . Then firm
X could, on a day when the prices were p and g respectively,

select a subsequence 6 ;

o O 5> of the set of outlets, and reduce
1 2

the price of brand X at those stores to the levels p, ,P, 5--c
1 2
where limk P, = P - Then X would know the derivative
k
£(p, »a) - £(p,q)
. k
(1.4) fp(p,q) = limyg
p, P
k

exactly. And Y could measure gq(p,q) by selecting some different
sequence of outlets at which to hold sales. Of course, they could
never really hold more than a finite number of sales, at different

prices, and in suitably distant locations. But since that number



is large, it is felt that fp(pﬂq) and gq(p,q) may be regarded as

known. We shall discuss various other experiments, which the firms
might wish to perform, a little later on.
In any event, though they do not know it, the fimms must, every

day, play the game

(Gl) maximize f(p,q) maximize g{p,q)
P ¢ R g e R

It was shown in [1] that Gy has a unique Nash equilibrium point

at the intersection of the curves C = {(p,q): fp(p,q) = 0} and
r = {{p,q): gq{qu) = O}.,l C was described geometrically as the

graph of a function p

tl

¢{q) such that ¢'(q) >0, o"(q) >0,

and lim ¢{q) = r . Similarly, r is the graph of +¢{p) , where
g =00
vi(p) >0, ¢"(p) >0, and 1lim ¥(p) = s . Thus ¢ and r
P =
are as shown in figure 1

=Y

%1 P* ¢ -

/ $:5

YO

lIf we replace o(p-q) by #(log p/q) in the statement of our
problem, the curves C and T still have the shape indicated in
figure 1. And since the rest of our argument depends only on the
shape of ¢ and r , it would be unchanged by the incorporation of
the more realistic demand function.



We may describe their relationship by saying that the graph T of

¢ crosses C from top to bottom as p tends from -= tO 4w

They do not cross again since neither can meet any line of unit slope
more than once. Let P¥ be their unique point of intersection, and
let (p*,g*) be the coordinates of P¥

We wish to point out that, using only the information that

we have allowed them, there are a variety of ways in which the
players X and Y may be expected to locate P¥ . For instance,

on a day when their prices are pg and  dg respectively, X might
select a subsegquence {Gn }izl of the set of outlets (in widely

k

separated communities, naturally), and choose a sequence {pn }i_l
x k=

of "sale prices" which is dense in the entire real lineol In this
way, he could locate the exact point (pl,qo) at which C crosses

the line g = 4, > and set his price thereafter at the level p =py
But having done so, X must surely expect Y to reply in kind,

and reset his price at the level g = dy which is optimal for him

against Py - And if we denote by RajPl,P ,... the sequence of
points whose coordinates are (po,qo), (pl,qo), (pl,ql),..., it
is clear from figure 2 that limn P, = P*

lor at least in the interval (r,o)
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Figure 2

We note too that the result is the same if Y is allowed to make
the first move,

Alternatively, X might wish to start, on a day when the firms'
respective prices are Py and d, > by switching to a new price P
which differs from Py by no more than ¢ . Accordingly, we would
choose a sequence [pn} of sale prices dense in the interval
Py-e £ p < Py * €, and take p; to be the price which optimizes
f(p,qo) thereon. And, not unreasonably, Y might then switch to
a price qy which maximizes g(pl,q) over anh interval 4,5 < g _<_qo+6.

The sequence PosPyse. obtained in this way is indicated in figure 3.
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The sequence P P5 P5 is the variant of P P P
o’ P15 Pls--: o2 Pys Poseoen
obtained by using 3e 1instead of e . Rather clearly, the process
does converge for any pair of positive numbers ¢ and % . And

again, the result is independent of which player is allowed to make
the first move. 1In what follows, we shall refer to the process of

figure 2 as the long-step process (WL) , and that of figure 3

as the short-step process (WS) . We shall also consider an infin-

tesimal process (T

\

I) first suggested by Rosen [3]; namely that

the players change their prices simultaneously and continuously in

time according to the laws

B(t) = £(p(), alt) )

(1.5)

alt) = qq(p(t)s alt) )



For completeness, we sketch the solutions of the ordinary differential

equations (1.5) near P* in figure L,

<\
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Figure b

All the solution curves (p(t),q(t)), -»< t < » , approach p*

as t —> + «, and all save the one labeled 7, are tangent to

the single solution curve AR This state of affairs may be sum-
marized by saying that the singularity P* of the system (1.5) is
a "stable node". We will have more to say about the singularities
of systems like (1.5) later on.

Finally, we observe that if r=s , the equations

It

I
o

-fp(p,q) (p~r) @'(gq-p) - ®(q-p)'

(1.6)

i

1l
O

-gy(Psa) (q-s) @'(q-p) - o(p-q)

have a symmetric solution p* = g*¥ , to be found by solving
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(1.7) (p-r) 8'(0) = olp-xr) = /2 = 8(0)
for p* = r +7T/20 = g*¥ . And the solution of (1.6) is unique
for all values of r and s . Thus at equilibrium, the profit on

a tube of toothpaste is «7/20 cents. And if we recall that the
public's demand for brand X on a day on which p =g + h 1is
m &(h) = me(0) +mh ¢'(0) = m/T/2 + m ho , it is clear that

mo is just the number of sales lost by firm X if they charge a

penny (h=1) more for their product than does firm Y . So if the
market is highly sensitive to small changes in price, o 1s large
and profits are small. But if it is insensitive, then profits may

be very high indeed.

Of course, if ¢ 1is too large, the firms will not likely
accept a profit of only J%/Eg cents a tube. They do not have to
because both f and g are increasing functions along both C
and ' . Thus one firm, say X , may choose a price p dJreater
than p* , the equilibrium price, and allow Y to maximize its
own profit against p . Then the firms would find themselves
operating at a point P to the right of P*¥ on T , at which they
both earn higher profits. And perhaps they can even negotiate a
compromise P' above P (but below ¢ ) at which their relative
shares of the market are more nearly equal. But the answers to such
questions go beyond the theory of Nash Equilibria, and we shall
not discuss them here. For it is our belief that, confronted with

the market described above, firms really do behave much as we have

said they would, and arrive at Nash Equilibrium prices.



2. Concave Games:

Initially, we shall confine our attention to the class of
"concave games" defined on the entire Euclidean plane R x R
Such a game is completely determined once we have specified the
payoff functions £(x,y) for player X and g(x,y) for player
Y . To play, player X chooses a "strategy" x ¢ R » player vy
chooses vy ¢ R 5> and the "bank" (the toothpaste-buying public,
in our example) pays f(x,y) dollars to X and g(x,y) dollars
to Y .

We shall assume that f and g are at least twice continuously
differentiable thréughout R X R . Also, we shall assume that
£(x,y) 1is bounded above on each line y = constant, that fx(x,y) =0
holds at a unique point (o(v),y) on that line, and that fxx(x,y)
is negative everywhere. Similarly, g(x,y) must be bounded above
on point (x, ¢(x)) on that line, and gyy(x,y) must be negative
everywhere. It then follows, from gy(x, v(x)) = 0, that
vi(x) = —gxy(x, w(x)ygyy(x, Vv(x)) 1is well defined and continuous
on the whole real line, and that because the denominator is never
zero, the graph of the function ¥ can never be tangent to any line
X = const. Similarly, the graph of ¢ can never be tangent to a
line vy = const.

A strategy X for X 1is said to be "rational for X" against
a particular strategy Y, for v if f(xo,yo) > f(x,xo) for every

x # X5 + And the curve C = {(x,y): fx(x,y) = 0} 1is called the
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"rational curve" for X . Similarly, r = {(x,y): gy(x’y> = 0}
is called the rational curve for Y . Any point (x,y) in their
intersection is rational for both, and is said to be a Nash

equilibrium point of the game

(G) maximize £(x,Vy) Maximize glx,v)
xeR yveR

That is, if (xo,yo) is in both ¢ and T , then
(2.1) £(x,,v,) 2 £(%,7,) and g(x_,v,) 2 g(X,,¥)

for every other point (x,y) in RxR. We assume that C and T

meet at only a finite number of points.

They need not meet at all. For if (example 1) £ = xy - % %Z
1l 2 . .

and g = (x+1)y - 5 Y , then fese = "1 = Iyy 7 C 1is the line
x =y, and T 1is the line y = x+1 . On the other hand, they
may meet any finite number of times. For if (example 2), £ is
again equal to xy - % x> , and g = (x+p(x))y - % y2 , then
fXX = =1 = gyy as before, C 1is still the line x =y , and T
becomes the graph of the pclynomial x+p{x) . So if p(x) =
= (x-1)(x-2)...(x-n) , T crosses C at each of the points
(1,1), (2,2),...,(n,n), and nowhere else. The interesting questions

in the theory of planar concave games ccncern not the location of
the Nash equilibria, but the various types of stability which they

may have.



3. _Finite.Stability of the Nash Equilibria

We shall consider the long-step process WL first. The process

WL(X) starting from the point Py s whose coordinates in RxR are

Yo+ ¥4, and in which player X 1is allowed to move first, may be
defined inductively as follows: WL(X) is that sequence PosPys-e.
of points in the plane (having the coordinates (xo,yo)y (Xl’yl>"°')

. . - : u , o
for which Prrs1 1S the (unique) intersection of the line Y = Yo

with C , for every %=0,1,... , and for which P is the (also

2k+2

unique) intersection of the line x = Xt 4] with ' . The process

WL(Y) is defined analogously.

It is clear from our example in §1, that both WL(X) and
FL(Y) may converge, from every starting point (Xo,yo) in RxR to
the same equilibrium point (x*,y*) of the game G . But this need
not be the case. For if (example 3) the polynomial p(x) in ex-
ample 2 were just p{x) = x, T would be the line Yy = 2x and, as

indicated in figure 5 , the sequences T all diverge to «

Yy R
C
o

v |7

o

Figure 5
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Here the points P form the sequence 7_(X), while

O’Pl’Pg’ﬂo. L

Pd’Ri’P""' form. WL(Y) . We note that the two sequences diverge
not only from the unique Nash equilibrium point (0,0) of the game,
but also from each other. Indeed direct calculation reveals that,

for the game defined by the payoff functions

(3.1) f = % a x° + bxy + F(y) and g = % 0% y2 + gxy + G(x) ,
where a = fxx and o = gyy are negative numbers and F and G

"are arbitrary functions, the sequences T _(X) and WL(Y) both

L

converge to the origin from any P, 4 (0,0), whenever the ratio

bs/aa  is less than one in absolute value (i.e., |bp| < aa) , and
diverge to if it is greater. If bp/aa = -1 , the sequences
are both periodic, since P, = P), = Py for every starting point
L If bp/aa = + 1, T and C coincide.

The situation is more complicated still if we consider functions

f and g which lead to curved paths C and I . For instance (example 3)
if

2 ‘ 2
(3.2) £ - xyt/3 - (1/2) x g = (x0 - 3x)y - v

C and I are the graphs of x = o(y) = yl/5 and vy = ¥(x) = (x5 -3)/2
respectively. Then, as indicated in Figure 6, the square with corners
x=+1, y=+1 1is invariant under the process T s and the
process paths starting both within and without the square coanverge

to it.
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Figure 6

Finally, in games with multiple equilibria, the process m

may be coavergent but ambiguous,

starting points p WL(X) and

05

equilibrium points P* and p**

(3.5) £ - xy -(1/2)x"
the points P* = (1,1) and p**
are Nash equilibria. And, as an

always converges

reveal, WL(X)

in the sense that, from certain

WL(Y) may converge to different
Thus if (example 4)

and g = x/3 v ~(l/2>Y2 5

= (1,-1), as well as the origin,
examination of Figure 7 will

to P* from starting points Py



in the second and fourth gquadrants, while WL(Y) goes to PpPx¥

Both procedures lead to P* 1if P is in the first quadrant and

to p¥* if P is in the third. The origin is an unstable equili-
brium in the sense that, only if Py lies on a coordinate axis, does

even one of the sequences WL(X) and WL(Y) lead there.

YA\

H %

To fix ideas we say an equilibrium point P* 1is L-stable if
there exists a neighborhood N of P* such that starting from any

P eN both WL(X) and 7_(Y¥) converge to P*¥ . Without loss of gene-

1l
rality, we may take the equilibrium point P* under consideration to be the
origin. We shall show below that O is L-stable if for some ¢ > O

(3.4) lo(v{x))] < [x| for 0 < |x| <&,

or equivalently, if for some ¢' > O

(3.5) W(op(y))| < |yl for 0 < |yl < e

In particular, O is L-stable if |g'(0)¥7(0)] < 1 and is L-unstable

if |o'(0)¥'(0)] < 1 . Geometrically, this condition states that 0 is
L-stable if the slope of o at O 1is less in absolute value than that of

C , and is L-unstable if it is greater. If C and ' are straight lines

the neighborhoocd N can be taken as the entire plane.



With curved rational curves C and T s there exist isolated
points from which NL(X) or WL{Xﬁ converge to L-unstable equili-
bria in a finite number of steps. For example, in Figure 6 starting
from the point Q at which r© imtersects the positive x-axis,

WL(X} converges to the origin is cne step and '7£ﬁﬁ in two steps.
Hence starting from any point Q, from which Q is reached in a
finite number of steps, T, converges to the origin. Moreover, the
set of all QO is unbounded.

In studying the concépt of L-stability in a global sense, we
shall want to exclude such isolated points. Therefore, given that O
is an L-stable equilibrium we seek the largest set M of points from
which both WL(X) and WL(YJ converge to O through a path which

lies entirely in M ; that is, each line segment jolning P. and Pi+l

must lie in M . We shall call M the convergence regior of WL

»

The following theorem characterizes the convergence region M

THEOREM: Let O be an L-stable equilibrium. Then there exists

a unique open rectagle M for which:

(a) WL{X) and UL(Y) converge to O from any point
PycM  through a path lying wholly in M , and

{b) From any finite vertex of M either

(1) 'WL(X) and WL(Y) both cycle, or

{X) and 7. (¥Y! both converge in at most

{2) m{X L

three steps to an L-unstable equilibrium.



Moreover, M is the largest set having property (a). 1In

particular, M is the rectangle determined by (xo,yo), (xo,yl)

(xl,yl) and (xl,yl) and (xl,yo) where

x = sup{x<0: o{V(op(¥v(x))))

1
»

or o(v(o(¥(x))))

t
=8
<
X
pa——g
e
o

1
»

x, = inf{x>0: ol ¥ {op(¥(x))))

(3.6)
v, = sup{y<0: v(o(¥(o(y))))

or o(¥(o(v(x))))

il
S
~
=
~
b
~
~—
.
O
(7

il

y or ¥{o(v(o(y)))) =v{ely)

o
@)

11

y; = sup(y>0: v(o(¥(o(y)))) =y or ¥(o(¥(ely))))=¥(ely)) 4 O]
The proof of the thoerem involves the following lemma whose

proof appears in the AppendixX.

LEMMA: TLet h be a continuous function for which h{(0) = O

and for some ¢ > O
(3.7) o< |t] <e = [|n(t)] < |t

Let tO be the largest negative t and tl be the smallest
positive t for which either h (h(t)) = t or h(h(t)) =h(t #0.

Let I = (to,o) 5 1t - (o,tl), and I = (toﬂt If h[n]

} l)°
represéﬁ%s the n-fold composition of h with itself, then

: + [n] - [n]

(J) teI = h (t) < t s t eI = h (t) > t ,
(ii) h maps the pair {Fo’tlg into itself,

(iii) t e I = h e I

(lV) t e I =



To prove the theorem we note first that the successive points
of m (Y) from Pp_ - (x,y) are Ppo= (x,9(%)), P, = (ol¥(x)), ¥(x)
Py = (olv(x)), ¥(ol¥(x)))), ... . Hence (3.4) or, equivalently,
(3.5) is necessary and sufficient for O to be L-stable. Now let M s
be the open rectangle of the theorem and P, = (x,¥) ¢ M . That the
abscissas of P, belong to (x Xl) and converge to 0 follows by
applying parts (iii) and (iv) of the lemma with h = o(¥v). (wWe note
that (3.4) and (3.5) imply that "sup" and "inf" in (3.6) can be replaced
by "max" and "min" respectively, and hence always exist, although they
may be infinite.) To show the ordinates belong to (yo,yl) we first
show that Yo < o(x) < vy s 1n fact for every x ¢ (x xl) we must
have V(x) e (Yo’yl)° For suppose V(x) = y; for 1i-0 or 1 so that

Vio(¥(o(w(x)))) = w(x) or w(o(wlo(v(x))))) - V(o(¥(x))) # 0 . Then
o(¥( (¥ (p(x))))) = ol¥(x)) or PV (o(¥((¥(x))))N = plulo(v(x)))) . .

)

Hence either h(x) ¢ I or h(x) = 0 . The latter possibility can be
eliminated since @(yi) = O contradicts the definition of '
Therefore, by part (iii) of the lemma, x ¢ I . Applying the lemma

with h = ¥(¢) we have that the ordinates of P. belong to (yo,yl)

and converge to O . A similar argument holds for WL(X) and part (a)
is proved. The proof of part (b) is elementary. That M is the largest
such rectable follows'from part (b) since a continuous path from any

point outside M to the origin must intersect the boundary.

An example in which (b-1) obtains is the game

(3.8) £(x,y) = xy - x° g(x,y) = -y° - xy - xJy



in which C 1is the graph of x = o{(y) =y and T is the graph of
y = ¥(x) = %? (l+x2) . The origin is L-stable and the convergence

region of T

L is the open rectangle with vertices (+1,+1). (b-2)

obtains in any game for which ¢ and ¥ are either both increasing

or both decreasing. This situation is exemplified by the game (3.3)
and illustrated in Figure 7. The points P¥ and P** are L-stable
equilibria with corresponding convergence regions M¥* , the first
quadrant, and M** , the third quadrant. In the second and fourth
quadrants T i1s ambiguous. If ¢ and ¥ are either both increasing
or both decreasing and there are multiple equilibria at which C and
' actually cross, then moving along either curve the L-stable and
L-unstable equilibria alternate and the L-unstable equilibria

partition the plane into a '"checkerboard" of rectables: each "black"

rectangle is the T

[, convergence region of an L-stable equilibrium,

while from the "white" rectangles T is ambiguous.

The short-step processes Te have rather more satisfactory
convergence characteristics, both in the sense that they sometimes
converge when the corresponding lcng-step process does not, and in
that they reduce the size of the set of ambiguous starting points P

A particular
short-step process WS(X; € ,8) may be defined inductively as follows:
WS(X; €,5) 1s that sequence of points PosPqsoen {with coordinates

(xo,yo)y (Xl,yl),..a ) in RxR for which x is the (unique)

2k+1

solution of the problem



(%.9) maximize f(xgygk)
< .
subject to Xy "2 S x < Ko + €,

. - : A +9 £
Yoxso 1S the (also unique) solution of
(3.10) maximize g(x2k+l,y)
v ‘
subject to Yor.1 "8 2y < Yor.1 * 8

and for which oo = Xoral and Yorsy = Yox for each k=0,1,...

WS(Yj ©,8) may be similarly defined. Now let L, be the horizontal

line segment of lenth 2¢ centered at P If L

ok contains a

point of C , then that point is P2k’l . Otherwise

2k

P2k+l is the

endpoint of L which is closer to C . And if L is the

‘ 2k 2k+1
vertical line segmenﬁ of length 28 about Poka1? Popan is the point
on L.,y Dhearest to r

Locally Ty and T, are identical in that P¥*¥ is L-stable if
and only if it is S-stable. Aand if, as in the games (3.1), ¢ and T
are straight lines, then local stability is equivalent to global
stability for either process. Indeed, if we define a convergence
region for Tg as we did for T (a set M of points from which
the pfocess converges to a given stable equilibrium thru a path
lying entirely in M ), it is clear that the convergence regions

would be i1dentical.

Hence, for fixed ¢ and & , let us define the convergence

region MS of Tq with respect to a given S-stable equilibrium Pp*

-



to be merely the set of points P from which the processes
WS(X;e,a) and WS(Y;e,a) both converge to P* Then if ¢ and

are both increasing or both decreasing, the convergence region

S S L L

the paths of 7 are monotone toward O , and cannot end at

¥
M of T contains the convergence region M_ of w7_ . For in
M s

L 2

any point other than an intersection of 1 and C . But Mg may be

much larger than ML . For instance if, in the game {(3.3) illustrated

by Figure 7 , we choose ¢ = & very small, the region M corres-

S
ponding to P¥ 1is approximately the half-plane x + y > O , while

that corresponding to P** nearly fills the region x + y < O

Y, Infinitessimal Stability.

The process L starting from the point Po > whose coordinates

in RxR are (xosyo), may be defined tc be the solution x(t),y(t);

t <0, of the ordinary differential equations

©(t) = £ (x(t),y(t)
(L.1)
$8) = g (x(t),y(¢))
for which x(0) = x, and v(0) = Yo : Clearly, since we assumed

f and g to be at least twice continuously differentiable, there is

only one such solution. And if

lim x(t) = x* and lim vy(t) = y¥
t—ow tow

for every pair (Xogyo) in some neighborhood of (x¥*,y¥), we shall

say that the equilibrium point (x*,y*) of the game G 1is "I-stable"”.



For the games (3.1), the equations {4.1) reduce to the linear
equations

pis

ax + by

o~
=

UM

~

Y = BxX + ay

so that the origin 0 is the only equilibrium point, and it is
I-stable if and only if both roots of the characteristic equation

(see [2], pp. 88)

- A% - (a+a)n + (aa-bp) = O

have negative real parts. But the roots of {4.4) are just

(L.5) A= % (a+a + J(a-0)2 + hbs ) )

where, the radical denotés, as usual, the positive square root. So if
the quantity under the radical is not positive, both roots have the
real part (a+x)/2 , which is negative because fXX = a and

gyy = & are. And if that quantity is positive, both roots are
real, the smaller one is always negative, and the larger one is

also negative when ax >bp, zero when ac-bg = O , or positive when
ad < bp . In short, O is I-stable if aq > bg, or equivalently,
iff ¢'(0) ¥'(0) <1 . Geometrically, I=étability requires either
that C and I' lie in different quadrants or that the slope of

be smaller in absolute value than that of ¢ . If A = ax - bp = 0,

C and r coincide and there are infinitely many neutrally-stable

equilibria, a possibility we do not wish to discuss.



>

The origin may be I-stable for the games (3.1) without being
either L-stable or S-stable (as is the case, for example, when a = g-= -1
and b = -g = 2). But L-stability and S-stability always imply
I-stability, since bp < |bp| . This is one reason for our conviction
that I-stability is a more fundamental concept than the other two,

We point out that if O 1is I-unstable, it is a "saddle point" of
the system (4.%), and the sclution curves have the form indicated in

figure 8.

XV

The rays 7y+ and y~ are straight-line solutions of (L4.3) which are
directed away from the origin, and are called (see [2], pg. 212)
separatrices. The other pair of straight-line solutions are called
separatrices also, and are directed toward the origin. Observe that
the lines C and T divide the plane into four guadrants, and that
each quadrant contains exactly one separatrix. In particular, in the

case we have shown, C and I have positive slopes, so the outward-



directed separatrices 7+ and y  must lie in the first and third
quadrants, respectively. We remark that the digstinguished sclutions

7y and 7 in figure L. are also called separatrices, and are all
directed toward (and at) the origin. Separatrices play an important
role in the analysis of two dimensional systems of ordinary differential
equations, and are discussed extensively by Lefschetz in chapters X

and IX of {2].

If O is I-stable, it can be either a stable node {two negative
real roots ), as shown in figure L, or‘a spiral point {complex roots
A). In the latter case, the sclutions of (k.3) are logarithmic spirals
which approach the origin asymptotically as t becomes infinite.

A few simple cases deserve mention. If, for instance, we relax
our hypotheses temporarily to allow a, o, F, and G all to vanish,
{3.1) becomes the simplest example of a nonzero-sum game with bilinear

2

payoffs. The characteristic equaticn (4.L4) reduces to i~ = bg , so

that the origin may be either a saddle point (if bg > 0) or a "center"

(if bp < 0). In the latter case, the solutions of (4.3) are ellipses

7

centered at O , which now has only neutral stability., Or if B = -b,
the games (3.1) are essentially zero-sum. For then the eguations (4.3)

are of the form

(9—#,6) % = CEX( XJY) and i’ = 'q’y( xjy‘) 2

and their solutions may be expected to lead to a minimax point of the

game

(h,7) max min e{x,y) ,
X Yy

where ¢ 1is just %ax2 + bxy - %ayg - Indeed, this expectation is



realized, because p = -b 1implies that the characteristic function
(4.4) is positive when A = O , and roots must both be either real and
negative or complex with negative real parts. 1In either case the
origin is a stable equilibrium point for the system (4.3).

Finally, if a =0 =0 and B =1 = -b, we are left with the

classical penny matching game, whose matrix is

v x -1 +1
-1 -1 +1
+1 +1 -1

At each play of the game, the players X and Y decide whether to
play heads or tails. Then they reveal their choices to the referee.
If they both have made the same choice, he awards X's penny to Y ,
but 1f they have chosen differently, he gives Y's penny to X . Here
x and y are strategy mixtures for X and Y , the values 1 and -1
corresponding to the pure strategies "heads" and "tails" respectively.
And the game has the single minimax pair x = O, y = 0, at which both
players play either heads or tails with equal probability.

But our players would never discover this by the procedure T

I
For the solutions of (4.3) are now given by

x(t) cos t - sin t X
(L.9) = ‘ ’
vit) sin t cos t Yo

and describe circles about the origin in a counter clockwise direction.

This corresponds to the well known fact from ordinary game theory,



that the method of repeated {or '"ficticious") play need not converge
1f the contestants remember only the most recent play of the game., For
then the loser always charges to his other pure strategy before the
next play, while the wirner stands pat, and the successive strategy
pairs \xo,yo),\xl,yl), .. cycle about from corner to corner of the
urnit sqguare agair in a courter clockwise fashien. Traditionally, one
avoids this difficulty by having recourse to the Brown-Robinsor technique,
whereby each player recalls all previous plays of the game, and assumes
that his opponent will choose, in the upcoming play, that pure strategy
which he has choser most often in thebpasta But for nonzero-sum
(bimatrix) games, even the Brown-Robinson technique does not work. So
1t seems doubly remarkable that augmenting concavity (blinearity) with
the slightly stronger conditions a < 0 and & < O should so alter
the problem as to render even the much less sophisticated procedure VI
effective.

Moreover this fact does not depend on the dimension of the strategy

spaces. For Rosen [3] has shown that every "strictly diagonally concave"
game has a unique Nash equilibrium, and that the process we have called

T  ~converges to it. The class of diagonally strictly concave games

includes all zero-sum games (4.7) for which the n-vector x must be

chosen from a compact convex set S in E., Y from a compact convex

5 1n Em , and for which the Jacobian matrices Qxx and ®yy are
negative and positive definite respectively. Many other games are
included as well. But we do not wish to digress further from the subject

of concave games in the plane.



If the functions £ and g are not polynomials of order two,
the equations (L4.l1) are not linear, and the curves C and T are no
longer strainght lines. So there may be many Nash equilibria. How-
ever, near any one of them, the solutions of (Mil) behave much as though
the equations were linear. To see this, we shall make use of Poincare's
theory of two dimensional systems. This theoryihas been considerably

extended and refined by Bendixson and others, and is admirably exposed

in Lefschetz' book [2].

Let (xo,yo) be a point of ¢ N r . Then in terms of the new
variables ¢ = X=X and 1 = Y-Y, s the equations (4.1) may be rewritten
) )
E = ace + by +  £x(g,m)
(k.1l0) , ;
=B & +an +  g*(e,m)

providing that £ and g have at least continuous third order partial
derivatives near (xo,yo). Here a = fXX(xO,yO) , b = ny(xO,yo),

B = g_ (x (xo,yo), so that a < 0 and o < O

<yl ¥07¥)s and a =g

%
The right hand sides of (L4.10) are the leading terms of the Taylor ex-
pansions of £ and g about (xoﬁyo). The functions £* and g* are

the remainder terms in those expansions, and satisfy

(L.11) lim éfi%fﬂl -0 and lim EiL%Lﬂl o ,
r— 0O r—>0
2 2 .
where r = (£ + n7)2 is the distance from (&¢,n) to (xo,yo) . The

constant terms in the expansions do not appear because fyand Iy vanish
at  (x_,y,)
Under the above assumptions (namely that £ and g are of class

CB), we may conclude (see [2], pg. 177), that the remainder terms have



have but a negligible effect in the immediate vicinity of (Xo,yo),
and hence that (XO’yO) is a saddle point of the system (4.1) if
the characteristic equation {L.L) has a positive real root, a stable
node if there are two negative real roots, and a spiral point if
both roots are complex. Or, since (a,b) and (B,a) are normal
vectors to the curves C and [ at <Xo’yo>9 we may summarize by
saying that the equilibrium at (xoﬁyo) 1s stable if the angle ¢
between (3,b) and (B,a) is negative, and unstable {a saddle point)
if 6 1is positive.

But if C and ' are no longer straight lines, it is also
possible for them to meet tangentially. 1In this case 0 is zero, and
one of the rocts of {4.4) vanishes. Then the other root must be
A= a+a < 0. 8o, by a theorem of Bendixscn, (see [2], pg. 230) we
may conclude that a point (xoﬁyo) at which C and  meet and share
a common tangent is either a node, a saddle point;, or a third confi-
guration consisting (in Lefschetz:® terminoclogy) of "two hyperbolic

sectors and a fan". The latter configuration is sketched below.

Figqure 9



The two "hyperbolic sectors" are the regions immediately above and
below the distinguished solutiocn Sy > which are filled with curves
which approach either S, or S5 as t becomes infinite. The "fan"
is the region across 82 U S5 from Sl , S0 named because all the
solutions in it eminate from the origin (they are all tangent to C
and ' , originally), and "fan out" to fill the right half plane.
Moreover, the "indices" of the three types of equilibrium are 1, -1,
and O so that the index serves to distinguish the various possibilities,
The index of an isolated singularity (equilibrium) (xo,yo) of
the system (L4.1l) abocut a particular oriented rectifiable Jordan curve
J surrounding (Xoyyo) is defined by
(4.12) Index J - = fdg~gdf _ .1 jg arc tan

2T J f2+92 2T 5

HhQ

and has the value (p-n)/2 , where p is the number of times the field
vector fX'(x(t), vit)), gy(x(t),y(t)) crosses the (upward) vertical
ray thru (x(t),y(t)), as the point (x(t),y(t)) describes the curve
J once in the positive direction, and n 1is the number of times it
crosses in the negative direction. It is clear from the expression
(k.12) that Index J 1is a continuocus function of the curve J , which
takes on only integer valués, and hence must be independent of J

It is easy too, to show (see [2], pg. 186) that if the deter-
minant A = ax - b 1is not zero, the index of the equilibrium point
(xo,yo) of the system (4.10) is the same as it would be if f* and
g*¥ were identically zero, that is 1 for a node or a spiral point

and -1 for a saddlepoint. Thus, finally, we may determine the nature
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(stability) of a given equilibrium point from the nearlkry behavior of
the curves C and 1 alore. For if T© crosses C from top to
bottom (in the direction of increasing xX) at (x ,v ), the index of

(xoﬂyo} is 1 and the equilibrium is stable {either a node or a
spiral point}. Or if 7 crosses C  from bottom to top, the index

is -1 and the equilibrium is unstakle {a saddle point). And if

I does not cross C , but only strikes it tangentially, the index is
zerc and the equilibrium is again unstable {two hyperbolic sectors and
a fan).

This completes our discussiorn of local phenomena. We have shown
that the behavior of the system (%.1) near an isclated equilibrium is
completely determined by the manner in which the curves C and ' inter-
sect there. 1In the next section, we shall consider the multiplicity

of equilibria, and discuss the global behavior of the system {L.1).

5. The Global Configuration

In order to discuss glchal guestions, it seems easiest to project
the xy-plane stereographically onto the Reimann sphere, the unit sphere
in  Xyz-space with its center at {0,0,1). Cc and r then map onto
regular curves on the sphere which we shall also call < and 1 , and
which meet at the North Pole {0,0,2). Thus the point at must
also be regarded as an equilibrium point of the game G . C is now
homeomorphic to a circle. So it makes sense to say that one equili-

brium point "separates” two others, meaning of course that it lies on

the segment of C cut off by them, which does not contain the North



Pole. Also we may speak of the "neighbors" of a given equilibrium
point, by which we shall mean those nearest to it, on either side,

along C . Clearly, a given equilibrium may fail to have a neighbor
(other than NP) on either or both sides, although in the latter

case, it will be the only equilibrium point which the game G possesses.

Next, let us assume that C and I actually cross one another
every time they meet. Then if recrosses C from bottom to top at a point
E ,  must cross from top to bottom at each of E's neighbors. Thus
the neighbors of an unstable equilibrium (if any) must be stable And
similarly, the neighbors of a stable equilibrium are unstable. From
this fact alone, we can completely describe the qualitative behavior
of the solutions of (4.1) for many games.

Let us begin by assuming that ¢'(y) and v '(x) are both
positive everywhere, and let us examine the solutions near an unstable
equilibrium E , flanked by its two neighbors E* and E~ . The
situation is indicated in figure 10. Here E has been chosen as the

origin of coordinates, and the arrows indicate that the direction field

v
R ¢
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is horizontal along T , pointing toward C , and vertical on C ,
pointing toward r . Thus the regions between ¢ and r (labeled
R+ and R™ in the figure) are filled with solutions of positive
slope, which are directed away from E . 1In fact, since E 1is a
saddle point, the solutions near E can only be slightly deformed
versions of those in figure 8. 1In particular, the separatices

y* and ¥~ must (though they are no longer straight lines) lie in
R* and R- respectively, while the incoming separatrices must lie,
one each,; in the second and fourth quadrants.

Every solution of (4.1) which passes thru a point of R*
converges to Et as t becomes infinite. And in particular, since
y* contains points of R* , ¥*¥ must converge to Et . To see this,
let K be a circle about E* which does not surround E . Let A
and B be the points of intersection of K with C and T , respec-
tively, and observe that the field vectors at points of XK n R
all point into K . And the same is true on any smaller circle as
well. Thus no solution that meets the curvilinear triangle E+AB
may ever again leave it. And in this case (see [2], pg. 202), every

such solution must tend to the vertex E' of the triangle. The

assertion concerning 7+ follows by taking successively larger
circles K

If E has no neighbor on the right, then the image of ¥+ on
the Reimann sphere must remain between C and r ; ahd converge to

NP as t becomes infinite. To see this, let P be a point on

7t , which lies in R' , and let KP be the circle about E which



passes thru P . Balance a unit sphere on E , and project the
plane stereographically onto it. Then project the sphere, along
rays emanating from E , onto the plane z=2 . The x and y axes
in the original plane will then map onto new x and y axes in
z=2 , with NP as origin. C and I will map onto a pair of curves
which lie in the first gquadrant, and which meet at NP . And if we
again use A and B to denote the points of intersection of KP
with € and I , we again have a curvilinear triangle NPAB which
vyt enters, and in which all solutions tend to a single vertex,
namely NP

Finally, by using the negative x and positive y axes in
the roles of C and I , and replacing the time parameter t by -t
in the system (4.1), we may repeat the above argument to show that
the other two separatrices (the ones which end.at E) must tend
to NP as t approaches -

Thus a game with 2n equilibrium points, at each of which
C and ' really cross, must have exactly n saddle points. And
if C and r have everywhere positive slopes, the separatrices
which connect the saddle points to NP partition the plane into
n+l strips, of which all but one contain a single stable equili-

brium. The situation for n=2 1is indicated schematically in

figure 11.



Figure 11,

Here we have taken all of the equilibria to lie on a single great

circle in the Reimann sphere, which also passes thru NP , and

shown only one of the hemispheres so formed. Region (1) corres-
ponds to a semi-infinite strip, cut off by the separatrices joining
NP to the unstable equilibrium U, - It contains no stable equili-
brium. Region (3) is also semi-infinite, and is cut off by the
separatrices from NP to U, . It comntains the single stable equili-

2

brium S, - Region (2) comprises the rest of the plane (sphere),
and contains Sl

The disparate roles played by the stable and unstable equilibria
under conditions of uncertainty are now clear. The stable equilibrium
points are the strategy pairs toward which the players will be driven
if they follow the procedure of continuous experimentation and
strategy mgdification outlined earlier, while the unstable ones
serve to partition the plane intoc regions from which the various

stable equilibria may be reached. Thus if the players begin the

game G by playing a strategy pair (xo,yo) in Region (1), and



thereafter alter their strategies according to the rules (4.1), they
will be led in time to play strategies approximating x = - , vy = -
But if they start in (2) or (3), they will be led eventually to play
near S, or 82 . And only if they start on one of the separatrices
joining NP to U, or U, , will they be led to any other strategy

2

pairs. The situation for larger n is of course similar, but there
are more strips and more stable equilibria.

Finally, there are two ways we can make up a game with 2n+l
equilibria from one with 2n without violating our assumption that
C and ' always cross when they meet. We can add an extra stable
equilibrium S, between Uy and NP , or we can add an extra unstable
one U 4 between Sy and NP

Of course, we can always add an arbitrary number of equilibria
at which C and ' meet but do not cross, between any pair of neighboring
equilibrium points at which they do cross. But it is our feeling that
such equilibria are less important than the other kinds, because they
would never be observable in practice. So we shall term them
"inessential,” and confine our attention to games having only essential
equilibrium points.

The reason that inessential equilibria can never be observed,
of #ourse, is that in reality we can perform only finite experiments.
So the functions £ and g can only be approximately known, and it can
never be determined whether the curves C and I actually meet at a point,

with out crossing, or just lie very close to one another there. In any

case, we shall not discuss inessential equilibria further.



Our results thus far show that the qualitative properties of the
sblutioms of (k.1), for a particular game G , are completely determinedx
by the number of stable and unstabkle equilibria G has, provided that
{a) the equilibria are all essential, and (b) that C and I are the
graphs of increasing functions. The latter would be the case, for
instance, in any market game of the sort considered in §1 , if it were
known that whenever firm X increases its price from Pg to Py the
new optimal price q; = w(pl) for ¥ is higher than the o0ld optimum
d, = ¥{p,)-

There are, of course, many interesting games for which (b) does
not hold. And we should like very much to obtain the complete phase-
portraits for these games as well. But without (b), or something to
replace it, there is no apparent reason that the separatrices emanating
from an unstable equilibrium E (see Figure 10) must end at the neigh-
bors E¥ and E° of E , rather than at any other equilibria. Indeed
it is not even clear that they must end at stable equilibria, although
we have been unable to procduce an example for which they do not. 8o
it is our conjecture that the number of possible global configurations
grows rapidly with n , and is probably too large to allow for a simple
enumeration like the one we have obtained above under assumption (b)

In any event; we shall leave our discussion of global behavior at

this point, and turn tc other matters.

*For we have determined what Lefschetz [2] calls the "complete
phase-portrait" of the system.

&



But first we should like to argue briefly that properties such
as I-stability are the "right" ones toc study. For there is no reason
why X might not adjust =x(t) by solving X = 2 £ instead of the
system (L.l). And in general, X might choose a "scale function"
r(x,y) while Y <chooses o(x,v), so that the strategy pairs

(x(t), y(t)) would satisfy

No
il

r(x,y) £(%,7)
(5.1)

v O(XBY) gy<XBY>

But our results are not affected by this! For all we have established
about the system (4.1l) follows from the assumptions (a) and (b)

on the rational curves C and ¢, which are unchanged by the intro-

duction of the scale functions r and p . 1In our view, this observation

adds greatly to the "robustness" of our conclusions.

6. Rational Processes

In addition to the processes s T and T discussed earlier,

L EAF-Y I

there is at least one other process which deserves mention. This we
may call the "discrete rational process", because of the essential
use it makes of the rational curves C and I' . To employ it, one
player (say X) names a strategy x, , and allows Y to choose his
optimal strategy Yo = w(xo) against it. X then names a second
strategy Xy 5 differing from X, by no more than ¢ , such that

f(xl, w(xl)) > f(x w(xo)) .  The process terminates when X can

O}



no longer find an X,,1 Such that f(xn+l, w(xn+1)) > f(xn, w(xn)),
and in that case (xnJ W(Xn)) is obviously an equilibrium point for
the game G . We denote the above-described process by the symbol

WR(X;e) . A typical process path consists of the line x = x plus

[o) J
a polygonal approximation to a portion of r ; leading from the point

where x = X5 meets T , to some stable equilibrium point E . We

shall sketch a proof of this fact shortly. But before we do, we wish

to point out that 7 also has an infinitessimal analogue 7

R RI

This infinitessimal process consists simply of a straight line

beginning somewhere on x = X5 s followed by a curve which follows

along I in the direction of increasing f£(x, y(x)) . And it too

(

Figure 12.

always converges to a stable equilibrium. To see that this is so,
observe that, as shown in Figure 12, there is a well defined direction
of increasing £(x, V(x)) at every point (x, ¥(x)) of T that is

not also a point of C . For if we consider such a point of P , and



recall that the field vector (fx(x,m(x)), gy(x,w(x))) is horizontal
there, it is clear that the vector may be resolved into components
which are respectively normal and tangential to I . And furthermore,
the tangential component cannot vanish unless either the whole field
vector (fX,gy) vanishes, or T is vertical at (x,¥(x)) . But we
saw in §3. that T 1is never vertical, and that the field vector
vanished only on C n I . Thus the component of (fx,gy) which is
tangent to I may vanish (-1i.e. change direction) only when
(x,¥(x)) crosses C

Finally, the field vector (fxygy) must point toward the stable
equilibrium E in all sufficiently small neighborhoods N(E) . And
so, therefore, must its tangential component, at points of I n N (E).
But if that component can change direction only at points of Cc nr ,
it must continue to point along T toward E , not only in N (E),
but also at all points of I between the neighbors E' and E  of
E . This completes the proof that the process WRI(X) must converge
to a stable equilibrium point of G , unless the line x = X, basses
thru an unstable equilibrium. In that case, the process consists of
a segment of x = X only, and converges to the unstable equilibrium
which lines thereon.

Similar remarks can of course be made for WRI(Y) , and the
corresponding convergence proofs for the methods WR(X;e) and
WR(Y;E) follow from the fact their process paths lie within e¢-neigh-
borhoods of the 7 paths. We point out too that methods quite

RT

similar to the methods Tr have been used with some success [4] to

compute optimal pursuit and evasion strategies.



7. Constraints

Most of the classical work in game theory has assumed that the
strategies x and y were to be chosen from compact convex sets X
and Y . In our case, these must each be contained in R , so we may
as well take them both to be the unit interval I = [0,1]. And we
shall refer to the game

(G) max £(x,y) max  g(x,y)
Xel yel

as the "restriction of G to IxI", or simply "the restriction of G"
Clearly, any points of C N I which happen to lie in IXI are
equilibrium points of GI as well as of G . But GI may have other
equilibria as well. We may call them "induced equilibrium points",
as opposed to the "natural equilibria" which lie in C A T . The
induced equilibria may be of several types.
To begin with, I must cross each of the lines x = O and
x = 1 exactly once, say at (O,yo) and at (l,yl) - If 0<y <1,
and 0O < vy < 1, these points are possible equilibria. To test
(O,yo), Observe that ¢ must cross the line Y = ¥, at a point
(xo,yo), and that: (O,yo) is an induced equilibrium point of G,
if and only if X, < 0 , or equivalently, if fX(O,yO) <0 . 1It is,
of course, a natural equilibrium if X, =0, and it is not an equili-
brium if X, > 0 . similarly, to see if (l,yl) is an induced
equilibrium point, let (xl,yl) be the point where C meets vy = Yy
Then if x; > 1, (l,yl) is an equilibrium point of G; - ©No other

equilibria can lie on the vertical sides of IXI, save possibly at

the corners.



There are, similarly, at most two possible equilibrium points
orn the horizontal sides ocf 1IxXI, and these may also be tested in a
straightforward manner. Either, koth, or neither may turn out actually
to be equilibria.

If y_ <0, then (0,0) but not (0,1) may be an equilibrium
point. To test, lock at the point (XO,O) at which C crosses
Vo =0 . If x, <0, then (0,0) 1is an equilibrium. Otherwise it
is not. Similar tests may be performed at the other corners,

Thus GI may have at most four induced equilibria; no more than
one may lie on a single side. 1In fact, there may never be more than
two. For suppose that three (say the top, bottom, and left) sides
of IxI contain distinct equilibria. Then neither (0,0) nor
(0,1) 1is an equilibrium. So there must be equilibria at (xo,o)

and (Xl,l) , where both X and x are positive. And 1f so, the

1

points (Xogyo) and (Xl,yl) at which T meets the lines x = X

and x = Xq must lie below and above 1IxI , respectively. But r

must also pass thru the equilibrium point (0,y*) which lies on the

left side of IxXI . Hence TI' must either cross the line x = 0
twice, or be tangent to it at (0,y*¥) . And either of these possi-
bilities would contradict the fact that g‘yy < O . The reader is
invited to construct examples having 1 and 2 induced egulilibria.

How many stable and unstable natural equilibria must such examples

posess? And can an induced equilibrium pocint ever be unstable?



- hp .

We intend to return to these and related guestions at a later
date. But for the moment, we are content to suppose that we have
revealed something, perhaps quite unexpected, about the set of Nash
equilibrium points of a game and the relative ease with which they
may be computed. And we hope that others will try the methods we
have recommended {especially the raticnal processes T s for which

R
we have great hopes), and find them useful. For we expect that,

particularly for games with imperfect information, they are both

natural methods to try, and as likely as any to achieve success.

APPENDIX: We present a proof of the lemma in Section 3. The

condition (3.5) guarantees that t, and t; exist (perhaps + o )
and that for sufficiently small positive t we have h(t) < t and
h(-t) > -t . Since h(t) { t for all t e 1 U T , part (i) 1is
proved for n=1 . A similar argument shows that h(h(t)) < t if

t e I' and h(h(t)) > t if t e T

We now show h(to) = to or h(to) = t; . By the definition of

t, we have h(to) ¢ 1. If h(to) < t, then, by the continuity of

h(t)-t , there exists t ¢ I  for which h(t) = t , a contradiction.

So h(to) =t or h(to) > t; and similarly h(tl) = t, or

1
h(tl) < t, . Suppose h(to) > t; . Then there exists t' ¢ I for

which h(t') = t If h(t;) = t; then h(h(t')) = h(t') , a

1
contradiction; on the other hand, if h(tl) < t, then h(h(t')) < ty<t!
so that by the continuity of h(h(t))-t there exists +"e¢ I  for

which h(h(t")) = t" , a contradiction. This proves part (ii).



Suppose there exists t ¢ I for which h(t) = t . By part (i)
with rn=1 we have t e I . If h(t ) = t; then hh(t))> t, a
contradiction; if h(to) = tO , then h(h(t)) = h(t), a contradiction.
A similar argument shows we cannot have h(t) = tl for t e¢ 1 Hence

(iii) is proved for n=1 and follows for general n by induction.
The case n=1 having already been proved, we use induction to
prove (i) by assuming it true for n=1,2,...,m-1. Suppose t ¢ I
and hi™(g) o ¢ . 1f nl3lie) <o for al1 j=1,2,...,m-1, then
h[m—l](h[m-l](t)) _ h[mugj(h[m](t)) : h[m-EJ(t) <‘h[m-lj(t) . a
contradiction; on the other hand, if h[j](t) > 0 for some j < m-1,
then t = h[m](t) = h[m-j](h[j](t)) < h[j](t) <t , a contradiction.

A similar argument holds for t ¢ I

To prove (iv) fix t and consider the subsequence

n. h.

{h[ j](t); ht j](t) 2 0}. This is a monotone decreasing sequence and
hence converges to some t > 0 . Suppose t >0 . Then the subsequence
is eventually in any neighborhood of t . But by the continuity of

h[ij , Lf t 1is in a small neighborhood of E, h[i](t) is in a small
neighborhood of h[iJ(E) < t so the subsequence cannot remain in any
neighborhood of t . This contradiction proves that the subsequence

converges to 0O, and a similar argument proves that the complementary

subsequence converges to 0 as well.



[1]

[2]

[3]

(4]

nh—h— o=
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