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l. THE PROBLEM

Given a linear econometric model in its reduced form
(1.1) Ye = Ay _; + Cx, f b + U

where Y is a vector of p dependent variables, Xy is a vector of

q variables subject to control, and where Eu, = 0, Euwu! =V and
Eutué = 0 for t £ s, and given a guadratic welfare function for T
periods
T
. = Z - ! !

K being symmetric and positive semi-definite, an important, and

familiar, problem is to find Xiseee,X to maximize expected welfare

T
W , the expectation being conditional on the given initial condition

Yy However, this problem can be formulated in different ways, two

o)
of which will now be stated. The solutions obtained by these formula-
tions will be different and will serve different purposes.

The formulation familiar to economists is the one due to Simon

[5], and adopted to linear econometric systems by Theil [6]. It

requires expressing the econometric model in final form, i.e.,

(1.3) Yy = Cxy + (Ayo + b + ul) = Ryy%q + S1
Y, = ACX; + Cx, + (Asl + b + u2) = Ry Xy + RypX, + S,
Yz = AQCXl + ACx, + Cx5 + (A82 + b + uB)
= Rlel + R52X2 + R55x5 + 55 s



where the notations Rij and sj are Theil's [6]. It treats each X

t
(t=1,...,T) as a function of past S15-++,8,_ 1 @and the parameters in
the conditional distribution of the future St""’sT Its main result

is concerned with the optimal Xy for the first period. This optimal

X, is expressed as a linear function of the expectations Es ., Es

17

¢ in (1.3). If the economic model

T
of all future random vectors s

were deterministic, with U, in (1.1) being zero, i.e., if s in

t
(1.3), which are functions of ul,...,ut s Were non-stochastic, the
optimal X, for the maximization of (1.2) would be the same linear

function of S12+-+,8p as the above linear function of Esl""’Es

T
This result is the well known first-period certainty equivalence.

A second formulation of the maximization problem, the one chosen
in this paper, ié to retain the reduced form:(l.l) and to express each
optimal Xy as a function of Y .1 + It seems natural to ask how the
control variables X o such as government expenditures and money
supply, should respond to recent observations Yy .1 ©On economic varia-
bles such as GNP, employment, and the price level. It seems less
natural to express the optimal X+ @as a function of the ( not directly
observed) variables SyseresSL g gr e

In the solution, we obtain simultaneously the optimal feedback
relations between X, and Yi.1 for all periods from 1 to T , and
not just the optimal x, for the first period. True, in the beginning
of period 1, the decision maker does not have to act on X, (if his

decision can be implimented without delay), and he can do better by

waiting till the beginning of period 2 when more information shall




have become available. Yet, if the econometric model (1.1) remains
valid, all useful additional information for period 2 will be contained
5 and the random vector u,

with a known distribution); our solution tells how he should respond

in ¥q (since Yo depends only on Yy, X

optimally to additional information in his future decisions. Thus the
problem is solved for all periods.

If an economic decision maker were willing to take an econometric
model (and an accompanying welfare function) so seriously as to accept
the maximizing Xy for each period without questions, then the dif-
ference between the above two approaches would reduce simply to a
difference in methods of computation. In the first approach, a T-period
problem would be solved only to yield the solution for the first period.
In the second approach, the T-period problem would be solved to yield
answers for future periods - until, of course, the econometric model
or the welfare function is revised. 1Insofar as the decision maker has
to be convinced of the validity of the optimal solution, the second
form is easier to communicate to him sihce he is likely to think in
terms of reacting to recent observations contained in Y¢_q - Further-
more, even if existing econometric models are not accurate enough for
fine tuning, they may be used, in conjunction with the second approach,
to indicate possibly desirable patterns of policy responses to recent
economic‘events, and thus also to evaluate the observed patterns of

responses by actual decision makers. It is for these applications

that our formulation is intended.



Our formulation of the problem is certainly not new - feedback
control based on observations on the state variables is a familiar
concept in the literature of control theory, e.g., [7], [8], and [9].
Neither do we claim that the solution to optimal feedback control
with a linear stochastic model and a quadratic welfare function is
new - it is in fact well-known in control theory - although, perhaps,
we have stated the problem and éxpressed the solution in a simpler
and more convenient form than are often found in the literature. How-
ever, we do claim, first, that the sdlution to this problem by the
elementary technique of Lagrange multipliers given in Sections 2 and 3
i1s new. Second, although dynamic programming is a technique commonly
used for control problems, the exposition in Section k4 is simpler
and more transparent than what the author can find in the literature.
Third, we ha%e also applied the method of Lagrange multipliers to
solve the optimal conﬁrol problem when there are delays in obtaining
information or in carrying out decisions, thus providing a method for
evaluating the cost of delays in terms of the change in expected welfare.

Partly to achieve simplicity, we have considered only linear

feedback control equations, i.e.,

(1.%) . X 7 Gy 9y

and posed the problem of maximizing W with respect to the matrices
G, and the vectors 9y (t=1,...,T). We believe that the solution to
linear feedback control is itself important, for the purposes of com-

minicating the result to decision makers and of evaluating the



observed patterns of policy responses to recent economic data. 1In
other words, even if the optimal feedback equation is non-linear, the
optimal linear feedback equation is of interest. It so happens that
the optimal feedback equation is linear for a linear model and a
quadratic welfare function, as is well-known in the control literature,
e.g. [9], but we do not feel apologetic for not dealing with this
mathematical point in the present paper.

In a previous paper [3], the steady-state solution to the
problem wasbobtained by the elementary method of Lagrange multipliers.

When a steady state is reached, we assume expected welfare to be
(1.5) W = E(-ytKyt + 2k yt)

and the feedback control equation to be

-
.

(1.6) X, = Gy, 4 *+9
for all t . A steady-state solution could be obtained only by
assuming, first, that the parameters K. and k. in the welfare

function (1.2) are unchanging through time and, second, that the sys-
tem with suitable control, i.e., the system (1.1) with (1.6) substituted,
is covariance-stationary. By treating a finite time horizon, this
paper relaxes both of these assumptions, and will serve as a continua-
tion of the previous paper [3].

We will find it convenient to decompose Vi into its mean

Eyt and deviation from mean v¥ ,

- % — *
(l°7) yt - Yt +Eyt - yt + Mt



Since the welfare function will accordingly be decomposed into the

two parts involving y% and Hy Trespectively, there is no cost in

replacing (1.2) by the following slightly more general welfare function

(1.8) W = -

™M

| T
* 1 k3 - LI 7 1
EyE' Ryevf + fl( he Kophe *+ 2king )

t=1 t

which will reduce to (1.2) when the symmetric matrices and K

K1t 2t
are equal. The econometric model (1.1), when the control equation

(1.4) is applied, becomes

(1.9) Ye = (A + CG, ) Yeop + C9p + b o+ u

The problem then is to maximize (1.8) with respect to G, and It

t
given the system (1.9). Section 2 will present a solution to the
partial problem of maximizing the first term on the right of (1.8),
while Section 3 will give a solution to the complete problem. Section
L provides a solution by dynamic programming, for the purpose of re-
lating the present work with the more standard works on the control of
stochastic as well as non-stochastic systems. Section 5 containg a
few concluding remarks.

For the readers who are not familiar with the previous paper
[3], it should be pointed out that the problem here treated is more
general than it might first appear. The econometric model may contain

lagged variables of more periods, such as

yt = Alyt—l + Agyt_2 + coxt + Clxt-l + b + ut ;

oy



the control equation may actually be

= + +
X Gl G

Ye-1 ot¥eop t CxeXply I

the welfare function may involve both Vi and Xy o and the residuals

u, may be serially correlated. By redefining a new vector Y to

include the previous Ye s Ye_qpo and Xy in the above example, we are

able to convert the system into the form (1.1) and to deal only with
Vi in the welfare function. 1In this conversion, we note that the
number p of output variables Vi must be larger than the number ¢
of control variables x which are imbedded in the former. Serial

t

correlations in u, can also be eliminated by suitable manipulations

if U, satisfies an autoregressive scheme with known parameters. The
reader may wish to refer to the previous paper [3] for further moti-

vation and for discussion of economic applications.

2. SOLUTION TO A PARTIAIL PROBLEM

As in the previous paper [3], we first consider maximizing the

welfare function

(2.1) EYf'Ki¥g = -

1 t

=

It

I
™A
N ™3

Hxy¥ ?
tr KltEytyt

t 1

To obtain the model governing the deviation yz from mean, assuming
the control equation (1.4) is used, we take expectation of (1.9) to

yield



(2.2) = (A + CGt)pt_l +Cg. +b

He
and subtract (2.2) from (1.9):

% * _ *
(2.3) ve = (A+cCe )yl | +u. - ReYeop + U

where Rt is defined as

(2.4) R, = (A + cet)

Since the welfare function (2.1) involves the covariance

Koy X 1 1-\

matrices Eytyt =

£ » say, and each Pt is a function of

Gl""’Gt by (2.3), one may try to write W, as a function of
Gl""’GT » and proceed to maximize. This direct approach turns out
to be extremely difficult. The simple approach adopted, as in the
previous paper [3], is to transform the problem to one of constrained

maximization by treating, somewhat artificially, an additional set

of variables Pl,.;.,PT » and to consider the welfare function as a

function of both sets of variables Wy = Wl(Pl,...,FT;

while these variables are subject to constraints.

Gl,...,GT)

We will derive a set of constraint equations by first post-

multiplying (2.3) by yt and taking expectation

XK, * * ! .

then by premultiplying the transpose of (2.3) by yz_l and taking



expectation

* * *
(2.6) EVi 1Y = (Evg_(Yilq)R{

Substitution of (2.6) into (2.5) gives the constraints,

*
(2.7)  Byy{' = V + R(BY, {¥{'{)RL

or

e = V o+ (A + cet) M1 (A + CGt)'

Note that To = 0 , since Yo = M and yé = 0 , and that

0 I

The Lagrangian expression, with H denoting symmetric

t

matrices of Lagrange multipliers, is

M
™M 3

(2.8) Ly = - t“ltr Ky T +t—ltr Ht[Ft-(A + CGt)Pt_l(A-FCG

)

We differentiate Ly with respect to G and T (t=2,...,T)

t t

using the differentiation rule

(2.9) é% tr BG = é% tr GB = B' ,
yvielding
) éLl
(2.10) &—;:E = “2C'HAT, 4 - 2C'HCG, T _1 = O (t=2,...,T)
aLl
{ ’ —_— _ - - 1 — —
(2.11la) T, - Kig +He “(A+CGL )" HL (A+CGL ;) =0 (t=2,...
| oL
(Eullb) BF; = = KlT + HT =0

Equations (2.10), (2.11) and (2.7) will determine the unknowns

Gy > Ht , and

t

=V

l_v]

2



1o

To solve for H_ and G_ , we simply use (2.11) and (2.10)

and work backwards. Given Hp = K from (2.11b), we set, from

1T
(2010),2

-1
)

— - 1 4 o
(2.12) Gp = (c H,C C'HpA

Then from (2.1lla), we obtain

A + CG.)

(2.13) ®H, , = Ky,p-1 (B + c6p)m Hy( -

T

The process continues until H2 and G2 are obtained. As we have

noted in connection with equation (2.7), Iy = O and ry =V
Hence Gy has no effect on ry > and we may as well set Gy = O
This does not mean that nothing is done to control the economy for
the first period; any control can be exercised through the choice
of 9; 1in the control equation (l.h4),

In the previous paper [3], we dealt with the steady-state
solution, with the control matrix G invariant through time after
equilibrium is reached. The optimal G was obtained by solving the

two equations

1

G -(c'HC) “cr'Ha

]

and
H = Kl+(A+an'MA+c®
These equations will give the steady-state solution to the above matrix

difference equations in g and He , 1f such a steady state exists

t

for sufficiently large T and for Kig = Ky for all t . we also note
that, in the present formulation, the matrices A and C can be func-
tions of t : the subscript t can be added to A and ¢ in the

appropriate places in equations (2.8), (2.10) and (2.11).

vy
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As it has been pointed out in the previous paper [3], if
there are delays in obtaining information and/or in carrying out

decisions, the control matrix ¢ can be partitioned into

t

(2.1k) G (Gig Gop) = (0 Gyy) s

Glt = O being coefficients of the components of Yeo1 in the control

equation (1l.4) for which no information is available at time t ; the

covariance matrix T can be accordingly partitioned

t

- T r
, ) 11,t 21,t
(2.15) Ty (rl,t rg’t) = < - - I
12,t 22,t

and equation (2.10) will be replaced by

oL
(2.16) i = = 2C'H,AT - 2C'H,CG,,.T =0

aGEt t 2, t-1 t-v2t 22,t-1 ’
but equations (2.11) and (2.7) will remain the same.

To solve equations (2.16), (2.11) and (2.7) for Gop » H

and Te (t=2,...,T), the following iterative method is suggested.

Start with an initial guess Ggl%
2

tion. For example, these matrices could be the appropriate columns

(t=2,...,T7) 1in the first itera-

selected from the solution for G, (t=2,...,T) obtained by equations

t
(2.10) and (2.11) when there are no information delays. Using these
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Ggl% , calculate Hﬁl) (t=T,T-1,...,2) by equation (2.11), and
3

pil) (t=2,3,...,T) by equation (2.7). 1In the second iteration,
compute Géi) by equation (2.16), i.e.,
-1
(2) - 1 (l) -1 (l) (l) (1) (t=2)"'JT)
Gap' = - (C'H{/C)™S CUHL AT, L qTholy g
These matrices will serve as inputs for calculating Hiz) by equation

(2.11) and ri2> by equation (2.7), and so forth.

5. SOLUTION TO THE COMPLETE PROBLEM

Return now to the maximization of the original welfare function

M

T T
Er Kyele = L5 u' Koou, + 2
-1 lt' t t=1 t2tTt t-1

(3.1) W o= - ok

£He

Since we have the constraints (2.2) and (2.7) respectively for by

and ' , one possible approach is to form the Lagrange expression,

using additional vectors of multipliers,

e

(3.2) L = %W +

N
M

t

1trI—It [re '(AfCGt)Pt-l (A +CG.) - V]

T
- Z

A

Straightforward differentiation yields

oL
oL 1 ™1 .
(3.3) Bat = 5 8@; + C'ktué_l = 0 (t=2,...,7)
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oL
oL 1 ™ _
(3.4) S < 5 5. < O (t=2,...,T)
t t
(3.5) S%Z.L“ = C')\.t = 0 (t=1,...,T)
t ‘
oL ' - -
(3.6a) 55; = Koprp tke - a +(B+CEL ) Ay = O (t_l,...,T‘l)
- OL_  _ - -
(3.6b) SMT = Kyphq + kT Ap = O

Using equation (3.5), we find that (3.3) and (3.4) are equivalent

to (2.10) and (2.11) for the solution of optimal ¢ and H in

t t

section 2. Thus policies to control the covariances are still obtained
and

by the previous method|are unaffected by the need for controlling the
mean u. . This point can be observed directly from equation (2.2).
Suppose that Gy maximize Wy o and that Gé » together with gz

say, maximize the remaining part of W , 1.e.,

(3-7) Wy = = ZwKyn + 3 2k'py
t t
But Gt can always be used to generate the same he as Gz can,

n

since, by (2.

)5

(3.8) by (A-kCGi)ut_l-+Cgi-+b

(A-FCGt)ut_l-u:“Gi-—Gt)ut_l-+g;]-+b

, . : : * %
All that needs to be done is to replace gé by gy = (Gt Gt)ut_l+gt,

This also shows that the maximum of W can be achieved for any

2

arbitrary set of Gy
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To obtain the optimal 9. » We could solve equations (3.5),
(3.6) and (2.2) for J¢ > Hy and M (t=1,...,T), assuming that

the optimal @ have already been found by the method of section 2.

t

These are Tx (g +2p) linear equations in the unknowns gl,..a,gT,

Hyseeosk,, and ANpsses N This problem is an example of a non-

T T
stochastic control problem in discrete time where the objective

function W, is quadratic and the dynamic model (2.2) is a system

of linear difference equations in the state variables by and the
control variables I - This is precisely the control problem when
our model (1.1) becomes non-stochastic, with Hg = O . We have just

pointed out that maximum of welfare in this case can be achieved

for any set of Gy including G, = 0 . This means that, in the

t
world of certainty, optimal X, can be set independently of recent
information Ye_q > and nb feedback relation will be required.
Methods for solving this elementary non-stochastic control
problem have been treated extensively in the literature, e.q. [2,
Chapter 6], and will not be repeated here,5 However, since this
non-stochastic control problem is imbedded in the larger stochastic
and H to

t t
obtain an easier method of solution than merely solving a large set

control problem, one can utilize the results on G

of simultaneous linear equations (3.5), (3.6) and (2.2). 1n parti-

cular, if we let Kig = K = K in the welfare function, and apply

2t t

the relationship (2.11) between Hy » G. , and K. , Wwe can

rewrite (3.6) as
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+ R}

(3.9) A = kg - K t+lMe4l

t ot

kt - H

1l

+ R/

the t+l Hep1 RepaMe * Rip My

By the use of (2.2) to replace Re 1He > and (2.10) to nullify C'HRy,

(3.9) becomes

(5:10)  Ohg rHepg) = ke = Ry g [HE 0D = (O g =B g wg ) )
or ) b -
Be = K - RE (B P - b )
for the newly defined ht . If we premultiply equation (2.2) by

C'H, and solve for Iy > using also equations (3.10), (3.5) and

(2.10), we will obtain

1 _l ] 1
(3.11) 9. = -(c HtC) C(th—ht)

Equations (3.10) and (3.11) can very easily be solved. The former is
a linear difference equation in ht and can be solved backward in
time, from hT = kT . Given ht , the optimal I will then be
obtained by (3.11).

b, SOLUTION BY DYNAMIC PROGRAMMING

Recently, there has been a growing interest among economists in
optimal control theory for non-stochastic systems, as exemplified by
the excellent expository article of Dorfman [4]. It may be useful
to provide an elementary exposition of some aspects of optimal control

theory for stochastic systems as it is treated in the literature,
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e.g., [71, [8], and [9], and to relate it to control theory for
non-stochastic systems.

In this paper, we have treated a stochastic control problem in
section 2, and a non-stochastic control problem in section 3. 1n
the former, the dynamlc model (2 3) is st0chast1c and the welfare
function (2.1) is in the form of a mathematical expectatlon In the
latter, the dynamic model (2.2), with Ky treated as output variables
and 9y @s control variables, is non-stochastic or deterministic.
These two problems should serve to illustrate the nature of stochastic
and non-stochastic control problems. The method that we have used to
solve both problems is the method of rLagrange multipliers.

In this section, we will solve the problem of maximizing the
welfare function (1.2) by dynamic programming [1], which is a method
commonly used to solve stochastic as well as non-stochastic control
problems [4], [7], [8], and [9]. Readers familiar with Dorfman's
péper [¥] will see that the same principle of optimality is being
applied here to a problem of stochastic control.

Let us first restate the problem. Given a dynamic stochastic

model in discrete time

+ b +u

(k.1) Ye = Ayt-l + Cxy £

and a welfare function of the form

T
()-I-,E) W(S:Ys7 xS—!—l"“"xT) = E t?'s(_y'Ktyt + EkEYt) 2

find Rgppr 0¥ to maximize W , with each x to be determined

T t
by the linear feedback control equation

e
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(W:3) xg = ey v 9

Note that welfare depends on the initial period s , the initial
value Y of the state variable in that period, and on the values

of future control variables x ., X The expectation in (L.2)

417 T

is conditional on Vg

Let W (s,ys) denote the maximum welfare obtainable given

the initial value Vg in period s , with x determined by the

t
optimal control parameters ‘G; and g; $t=s+l,...,T) according to
the equation (L4.3). 1t will first be observed that W° must take

the form

° ' 1 -
(B.B) w(s,yg) = -ylHGy_ +2hly, -p_

for some symmetric matrix H, , some vector hé and some scalar

ps To see this, we note that each yt can be written as
(h-5) Yt = (A»FCGt)yt_l + Cgt + b + ut

= Rtyt_l + Cg; + b + u,

= Ue P ReUp g r ReRp U o tee st (ReRe g---Rg o)ug g

+ (cgt-fm + Rt(cg%_l+lﬁ+...+(Rth_l..-RS+Q(Cgs+l+-b)

+ (Rth-l°"Rs+l>ys ?

2

that the expectation of VLKLY + 2k£yt must be quadratic in Y
and that the welfare function (4.2) is a sum of these quadratic

functions, thus having the form (L.h),



18

Once the form of W°(s,ys) is ascertained, we can apply the
brinciple of optimality in dynamic programming:

(L.6)  w(s,y,) = max  Bl-ygReyg + 2kiyg + Wo(s+l,y_ )
s+l

According to this equation; thé.maximum welfare from period s on

is the maximum, with respect to Xo.1 2 of the sum of the welfare
contribution of this period and the maximum of welfare from the next
period on. The expectation in (k.6) is conditional on Yy 7 the term
W°(s%l,ys+lj depends on Ys.1 which is yet unknown, or is a random
vector, from the vintage point of period s . .Using the form (L4.k4)

for W° , we can write the term to be maximized as

(h'7) -yéKsys + Ekéys + E(_Ys'+le+lys+l + 21‘ls';+].ys+l _ps}l>
= YKy o+ Ekéys _(Ays * CXs+l +b) Hs+l(Ays R B b)
- E us';+le+lus+l + 2hs',+l (Ays + st+l + b) _ps+l

Maximizing (4.7) with respect to X5,1 Py differentiation yields

(4.8) -EC'Hs+l(AyS S S b) + 2C'hs+l = 0 ;
(k.9) Xs41 = Gsi1¥s Is41
where
(k.l0) @ - - (cH. .0) Y .a
’ s+l = s+1 s+14 7
..l .
(%.11) Is41 = - (C Hg,1C) ¢ (Hg, P hoi1)
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Thus, the optimal control parameters are given by (4.10) and
(L.11). To find Hy and h_ , we substitute (4.9) back to (L.7),
and equate the result to the left-hand side of (4.6). The maximum

of (Lk.7) is

(k.12) - YRy + 2KRly - yi(A o+ CGS+1)' H, (A + cc )Y

s+1

- (Cgs+l + b>’Hs%l(Cgs+l +b) - 2<Cgs+l'+Mf Hs+fA'+CGs+ﬁys

- tr Hs+lv + 2hs'+l(A‘+CGs+l)ys + 2hs'+l<cgs+l + b)"ps+l

which should be equated to

(k.13)  we(s,y ) = yiHy_ + 2hly

s s?sg fg ps 4

yielding the following two difference equations for H and hs :

(L.1h) H

K, + (A + CGg .1

J'H (A + ce ;)

s+1

(k.15) h, = kg = (A+ce 1) 'H, q(Cg, ; +Db) + (A+ce ) hy 4

ks '(A'FCGS+1)Y(Hs+lb - hs+l)

Equations (4.10) and (4.14) are identical with equations (2.10)
and (2.11) of section 2; they can be used to determine Gy and Hg
Given @G, and H, , equations (4%.11) and (4.15) can be used to
determine Ig and hs - They are identical with equations (3.11)
and (3.10) respectively.

The exposition of this section has, in fact, also demonstrated
the solution of a non-stochastic control problem by dynamic pro-

gramming, since we could easily convert the stochastic model (L.1)
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into a non-stochastic model by letting u O ; the welfare function

t=
(L.2) could remain unchanged since the expectation E , though un-
necessary in the non-stochastic case, is harmless. We could follow

the same development from equation (4.2) on, noting wu 0O 1in all

£ =
places, thus Vv = 0 in (k.12), and still arriving at the same results
(4.10), (4.11), (4.1k) and (4.15). This exposition is presented
because it ties together the theories of stochastic and non-stochastic
control, and because, to the author's knowledge, an elementary treat-

ment of stochastic control theory using dynamic programming is not

available in the literature.

5. CONCLUDING REMARKS

In this paper, we have replaced the assumptions of a previous
paper [3] that the welfare function is constant through time and that
the linear econometric system under control is stationary, by the
assumptions that the welfare function is a sum for a finite number of
periods and that the econometric system under control may be non-
stationary. We still believe that the assumptions of the previous
paper [3] are relevant for many economic applications, especially
when the variables Yy, are interpfeted as the first differences of
certain economic variables, or perhaps of their logarithmsa Under
these assumptions, the present papér provides the transient solution
to supplement thé steady-state solution given earlier.

In some economic applications, one may wish to relax these
assumptions. For example, if one wishes to have the variables Yi

(first differences or not) follow certain target vector a in the

t 3
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sense of minimizing the sum, over t , of certain positive semi-
definite quadratic forms in the deviations Ye = 3 > the welfare
function can be reformulated as in this paper, namely

T
w = E[ - = (yt - at)vKt(yt = at)]

t=1

Bl 1 (-y&eye + 2a{Ky )] - : 2K
t=1 t=

which is equivalent to (1.2). There is also the possibility that

the system under control may be non-stationary. uUnder these circum-

stances, the solution given in this paper will be applicable.
However, even if the objective is to follow closely éertain

growing target vector AL the assumptions of the previous paper [3]

might still be valid. Aas an example, let a satisfy the difference

t

equation a, = Da,_y , where D is a diagonal matrix with some
diagonal elements greater than one. we may augment system (1.1) by

the above difference equation, redefine a new output vector to include

both Vi and a, and consider maximizing the welfare function

T
W= E - oz (yg - a)) Rlyg - oa)

t:l

Y

foen T \

= E| - = (y; a!)/x -K y

-1 t t t

- -K K a,

The parameters of this welfare function are time-invariant. Equations

(2.10) and (2.11) might have a stationary solution for ¢ and H s

identical with the solution of the previous paper [3].
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While relaxing the assumptions of the previous paper, we
have applied the same method, that of Lagrangian multipliers, to
solve the problem of this paper. We have also provided an exposition
of the method of dynamic programming to solve a stochastic and a
non-stochastic control problem, thus pointing out a unifying element
in optimal control theory for stochastic and non-stochastic systems.
It is hoped that the methods of these two papers will be applied to
empirically relevant econometric models and welfare functions, so

as to contributue to our knowledge of optimal policies for economic

stability and growth.
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FOOTNOTES

An earlier version of this paper was written while the author
was with the IBM Research center. The present work has been
supported by NSF Grant 2799. .

In the original model of Simon [5]1, the control variable, pro-
duction, was assumed to depend on past sales, and sales were the
random variables in the model. Simon's formulation was quite
natural, but when Theil [6] adopted Simon's model to an econometric
system, the variables on which X, depends became the somewhat un-

natural Sys++58_ 1 and Es -, ES in equation (1.3).

g2 .
Of course, the inverse of c*HTc might not exist. 7Tn this case,
the optimal reaction coefficients GT are not unique, and we

interpret (C'HTC)_l as a generalized inverse.

One fairly obvious approach is to reduce the size of this linear
problem by»eliminating the variables ul,.a.,uT and ISERRRERY

T
Using the model (2.2), each Hy becomes a linear function of
gl,..”,gt , and ul,..,,pT become linear functions of gl,.a,,gT.
The welfare function (3.7) then becomes a quadratic function in

gl,...,gT > and can be easily maximized with respect to these
remaining variables. ‘

y i



