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CONDITIONS FOR THE GRAPH AND THE INTEGRAL
OF A CORRESPONDENCE TO BE OPEN

Richard R, Cornwall

A correspondence ¢ from a probability space (M,WV2 ,H) to
a Banach space S assigns to each element m in M a subset

o(m) of S . A measureable (resp., integrable or continuous)

function f on M 1is a measureable (resp., integrable or con-

tinuous) selection from ¢ if £(m) & oelm) H-a.e. For any E in
QVI , let
[geat = {[gpfdt: £ an integrable selection from ¢}

I

f;de {fEde: f a continuous integrable selection from o}.
This paper gives conditions under which these integrals are open
or, when S 1is finite dimensional, relatively open. For the in-
tegral f;wdH, this involves giving conditions for ¢ to have an
open graph. There are two easy corollaries of the openness of
these two integrals: The first gives conditions for a relatively-
open-set-valued measure on qw to have a Radon-Nikodym deriva-
tive. The second gives conditions for fEde to eqgua: f;vdu,
Finally, we give a result close to the statement that :f ¢ and

¥ are two correspondences satisfying o(m) C vim), all m ,
then wadH is open in wadH

The author wishes to acknowledge helpful discussions on

the subjects of Sections 5 and 6 below with Birgit Grodal and
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Werner Hildenbrand and on the subject of Radon-Nikodym derivatives

of set-valued measures with Gerard Debreu.

1. Some Definitions and Preliminary Results,

The topological dual of S is S' . If peS' , we shall
denote the value of p at a vector x in S by p-x rather
than p(x). For any K (C 8 , sup p-K = sup{p'x: x¢K}. The in-
terior of a subset K of S is denoted int K . The smallest
affine subspace of S containing K is L[K]. When this noéau
tion is used we shall make the additional assumption that S 1is
finite dimensional or that int K is not empty so L[K] = §

The relative interior of K , riK, 1is the interior of K as a
subset of the topological space L[K]. H[K] will denote the
linear (or homogeneous) subspace of S gotten by translating

L[K] to the origin. The convex hull of an arbitrary subset K

of S is denoted conv[K] . An open ball in S of center x
and radius ¢ is denoted Be(x) . The complement of a subset K
of S is C©K . The notation E\F denotes set-subtraction, in

°ﬂ1 or for subsets of S

To distinguish a correspondence from M to S from a
function from M to S , we shall sometimes use the notation
@:M => S for a correspondence and £:M — S for a function.
Given a correspondence ¢ , intQ is the correspondence mapping
m into into{m) . Similarly, rio: m#=$ rio(m), o:m > o(m) (the

closure of o(m)), and Ll¢p]:mbk=> L{fm)] . We shall say ¢ is



positively unbounded if there exists a closed, convex conhe P with
a nonempty interior such that for every m there is some y in
o(m) with v + P C ¢(m) . (We shall indiscriminately add sets

and points: K, + K = {x&gS: x=x

1 5 tx,, x; 8K, i=1,2} and

1 72’
K14-Xl = Kl-F{xl}.) A partial order ( 1is defined on correspon-
dences by saying @ C ¥ whenever w(m) C ¥(m) ;, all m

We shall suppose throughout this paper that (M,qn,H) is a

complete probability space. A correspondence ¢:M = 5 is measure-

v

ble whenever its graph, G® , 1s measureable in the product
0-field on MxS (S has the Borel 0-field generated by open sub-

sets). The following result is a basic tool in this paper:

Measureable Selection Theorem (MST): If S is a separable
Banach space (or even a Polish space) and if @:M=>S is
measureable and nonempty-valued, then ¢ has a measureable

selection.

This is proven by Aumann [2], for example. When the hypo-
thesis of this theorem is met, we shall say (M,S,9) satisfies
.MST.TPTO state an analogous condition for a correspondence to have
a continuous selection, we need some kind of continuity condition

on ¢ ; namely ¢ must be lower semi-continuous (Lsc); i.e.

, for
any open G in S , (mgM: o(m)NG + P} 1is open in M; 9 1is
upper semi-continuous if, for any open G in S, {(meM: o(m)CG}

is open in M



Continuous Selection Theorem (CST): If M 1is a Hausdorf,

perfectly normal topological space, if S is a separable
Banach space, if ®:M =5 1is a convex-nonempty-valued LSC
correspondence and if either (1) 8 is finite dimensional or

(2) ¢ is closed-valued or int?® is nonempty-valued, then

¢ has a continuous selection.

This is proven by Michael [10]. When the hypothesis of this

theorem is met, we shall say (M,S,¢) satisfies CST.

5 Conditions for the_ Graph of a Correspondence to be_ Open.

THEOREM 1: If (M,S,Q) satisfies CST and ¢ 1is open-valued

and positively unbounded, then the graph of ® 1is open in MxS

(with the product topology).

PROOF: We shall show that the complement of GCP is closed: If

a o
({m”,y ); @eBA} is a net of elements converging to (mo,yo) and

, , o o
satisfying vy # o{lm ) , @A, we want to show that v° ; o(m°)
Define 9@ from S'xM to R U {+w } by
Uw(p,m) = sup p-®(m)

Since o(m) 1is convex and open, then y’¢’®(m) if and only if,

for some nonzero p in S' , p°y 2 U@ (p,m). In particular, for
o

each @ in A we can choose p of norm one in S' such that

a o a o e

p oy > UQ(p ,m ) . To show that v° % o(m®) , it is enough to

find a nonzero pO in S' such that



(2) o-q)(pO,mO) - lim infcrcp(pa,ma)

(04 2

since (1) and (2) imply that po-yo z U@(po,mo)

The unit ball B! of S' is weak*-compact [13,5.2 page

1
) . ‘ &4 .
141]. Thus there is a subnet of {p ; ®£A} converging to some
po . Without loss of generality, we may ease notation by assuming

n . . o
this subnet is the original net. Thus p converges weakly to

: 07 a a o
po . To show po + O , note that sup p ~o(m”) <pery <+ = so
0]
o) & p° , the polar of P . Because int P 1is not empty, p°

is pointed (i.e., contains no lines; otherwise P would lie in
some hyperplane). If O Bi is the surface of Bi , then we con-
clude that O ;. conv [P° N aBi] . On the other hand, pa £
conv [P° n 9 Bi] which is strongly closed and convex and thus
is weak*-closed [13, 3.1 page 130]. Thus p° § conv [P° nod Bi1.

In conclusion, po + 0

It is easy to demonstrate (1):

[04 (01 (04 (04 x
p ey - p%y° < |p (y -y + [(p -p°)-v¥°

Iy -v°l + 1(p%-p°) y°]

A

. o . .
since |[p || = 1 . But the first term on the right converges to

. . o
zero by assumption and the second converges to zero since p

o
converges weak* to p

To demonstrate (2), we show % is LSC on S'xM; 1i.e.,

for any real N , the set {{p,m) € S':{M:o¢(p,m) < N} is closed



(where S' has the weak* -topology). Suppose {(pB,ma); B g Bj

is a net of elements of this set converging to (pl,ml), but

on the other hand, Um(pl,ml) > A . Then there exists yl £ @(ml)
such that pl-yl > N . By the . : CST, we choose

a continuous selection f from ¢ so that f(ml) = yl . Then,
as in (1) above, pB-f(mS) - pl-f(ml) > N which contradicts

the choice of (pB,mB), pEB .'
COROLLARY: If (M,S,9) and (M,S,y) satisfy CST and if @ is
open-valued and positively unbounded, then (meM: o(m)NWm) + O

is open.

PROOF: We show that if x°¢ o(m®)n ¥(m®), then o(m) N ¥(m) is

nonempty for m in some neighborhood u of m® . Since (M,S,w)

satisfies CST, we can choose a continuous selection £ from

such that f£(m°) = x° . By Theorem 1, the graph of ¢ 1is open,
so we can choose an open Ui containing m° and an open ball

Be(xo) around x° such that t&)cBéef)) is contained in the graph

of ¢ . Choose U to be an open neighborhood of m® contained
in U, such that [f(m) - £(m®)|] <€ for m in U . Clearly
flm) eolm) 0 y(m), m e U . '

In case S has finite dimension N , one is tempted to
try to derive a conclusion similar to that of the preceding
Corollary under the weaker hypothesis that @ be relatively-
open-valued. This leads to the need for an extension of Theorem

1 to this case.



For any integer n between O and N , define

n : .
MCP = {m&gM: dimension of ¢(m) equals n }

THEOREM 2: If S is finite dimensional, (M,S,0) satisfies

CST and ¢ is relatively open-valued and if O < n < N,
for any m°€ M$ and x°& ¢{m°) there exists € > O and
a neighborhood U of m® such that meC N Mg and

XSBe(XO)ﬂL[CP(m)] imply x g ®(m)

PROOEF : We can imitate the proof of Theorem 1 if we first+ assume

that the graph of H[¢], restricted to Mg ;, 1s closed. This

assertion will be proven in the following lemma.

Given m° & Mg and x°¢ o(m®), there fails to exist such

an € > 0 and such a neighborhood U if and only if there is a

a

o
net {{m ,x ); agA) converging to (mo,xo) and satisfying

a a
m &g MY and x ¢ L[m(ma)] n o(m®) . The latter condition means

¢
that there exists a vector pa with HpaH =1, pa°x06 > G®(pa9ma),
and pa g H[@(ma)], the linear subspace parallel to L[@(ma)}.

The compactness of the unit sphere in S means we can (without
loss of generality) assume that pa cohverges to some po which

also has norm one. By Lemma 1 below, the graph of the corres-

pondence H[¢] 1is closed, so p° ¢ H[p(m®°)] . As in the proof

of Theorem 1, we conclude that po°xo > 0 (po,mo> Because

®
po £ Hlp(m®)] and po + 0 , we have shown that x° ¢ o(m®)



Remark: When S 1is finite dimensional, Theorem 2 gives a stronger

result than Theorem 1: GCP is open when (M,S,p) satisfies CST

and ¢ is open-valued. ¢ need not be positvely unbounded. It

would seem that this should be true for any Banach space S

LEMMA 1: If S has dimension N , (M,S,¢) satisfies CST

and if O < n < N, then the graphs of H[p] and Lig]
restricted to Mg are closed in Mg x S

a O . .
PROOF: If ({(m,x J); @t¢A} 1is a net converging to (mo9xo) and

o o o . .
satisfying x & Lle(m )] and m € Mg , then we want x°g Liofx°)71.

Choose n+l affinely independent points {yl}g in @(mo) which
span L[e(m®)] . By the ’ .~ CST, choose n+l con-
tinuous selections £- from o satisfying £5(m°) = yl , 1=0,...,n.

There exists a neighborhood U of m° on which {fl(m)}g are

affinely independent. Since mae.Mg ; then for & 1large enough,

(04 1 . .
L{e(m~)] is spanned by {fl(m Thus for some scalars h?

. . o a o
satisfying Zg ki = 1 we have x = ZI% g

i, O
o i )

f It is rou-~

tine to show that if uo,,.,,un are affinely independent, then

,.0..,0, exhibited in x = w2 ut

i=0 .
o1

the affine coordinates N
. . o] n . Qo
are continuous functions of (x, u,...,U ) over the set in which

uo,..,,un are affinely independent and in which x is an affine

combination of uo,a..,un° Thus, as & becomes large, x? con-

verges to some k? and these limiting scalars satisfy Zi;xi =1

and x° = Zg hi fi(mo) . Thus x°e L[op(n®)] as was to be shown.
To demonstrate that H[¢9] has a closed graph, we note that

the correspondence V¥ , defined by ¥(m) = o(m) - £f(m) where £



is any given continuous selection from ¢ , is also LSC and convex-
valued. By the preceding paragraph, H[¢o] = L[y] has a closed
n n
raph on M = M~ |
grap \VCP'

The preceding proof also demonstrates how to show that when

(M,S,@) satisfies CST, so do L{gp] and H[¢]: Given any

z° £ L[@(mo)], there exists a finite subset {Xi}g of @(mo)
such that z° = Zg hix%Zé%i = 1 . Choose continuous selections
£ from ¢ for which f£r(m®) = xt Then £ defined by £(m)
= Zg Ki fi(m) is a continous selection from L[¢] through 2"

It is easy to see that this means that L[¢p] is LSC.

An example which demonstrates that L[¢] need not be USC
even if ¢ is LSC and USC is constructed by letting M = [0,1],
s =R |, o(m) - ((x,x,) = t(l-mym): O < £ <1} . Then Llg(m)]
is the line through (0,0) and (l-m,m). For any € > O the only

m such that L[p{m)] is contained in the open set {(xl,xg):

lel <e} is m=1
It is also easy to see that L[9p] need not have a closed
graph in MxS: Let M =3Ri ,
{yaRl: m+y<1l, y >0} o<m<1
o(m) = ‘
{0} m 5 1
rl 0 <
m < 1
Lipm] = ¢ R
{0} m > 1
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COROLLARY: If S has dimension N , (M,S,9) and (M,S,y)
satisfy CST, ¢ is relatively-open-valued and L[y](CL[e],

then for O < n < N:
(m & Mfgz o(m) N y(m) 4 9)

n

is open in MCP

PROOF: If m® ¢ Mg and some x° is in o(m°) Ny (m®) s by

Theorem 2 we can find € > O and a neighborhood Ul- of m

such that m E,UlfWMg and XE:BG(XO)fWL[®(m)J imply x & ¢{m).

Choose a continuous selection g from V¢ with g(mo) ©

1
P

But then there is some open subset U of U, such that n® U and

1
lg(m) - g(mo)H < ¢ when me¢eU ., Thus nlgUWWMg implies g(m) ¢

o(m) Ny(m). §
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3. Openness of the Integral of a Correspondence

To derive conditions for fE@dH to be open whenever

¢ 1is open-valued, we define d®(m) to be the distance from

C

zero to the complement, o(m) , of o(m):

d (m) = sup{e > O: BE(O) C o(m)}

LEMMA p: If ¢ is measureable, so is dCP .
PROOF: This is proven by showing that for any finite, nonnega-

tive € >0 (m) <e} and (m: & (m) = € } are

»  (m: 4, o

measureable,

Because ¢ 1is measureable, ({(m,s)eMxS: s ¢ Bé(o)ﬂ “o(m)]
is measureable. But [m: d®(m) < e} = (m: B NSe(m) + @) = projy
{((m,s): s gBe(O)f7c®(m)}, so fm: dw(m) < e} 1is analytic and
hence is measureable since (qn ,B)  is a complete measure space.

[6 , 3.4, page 357]. = The proof that {m: dw(m) = €} is

measureable follows similarly by noting that {m: d®(m) = e} =
oo

{m: Be(O) Colm)} N N (m: Be+1§8> N “¢(m) 4 $)]. By the pre-
n=1

ceding, it is sufficient to show {m: BG(O) C ?(m)} is measure-

able. But this set equals [proj, ((m,s): ¢(m) NB_(0) $PTII\ {m:
dp(m) < e} . §

THEOREM 3: If o is measureable and open-valued, then,

for any E , IEQdHis open.
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PROOF: By a simple argument, we can let E = M ., We want to show

that if h is any integrable selection from ¢ , then [ ,hdbk is
in the interior of chPdH . By letting ¢ = ¢ - h , we have

Ogvy(m) , all m . It is sufficient to show that some neighborhood

of O 1is contained in yodp

In
Because V¢ 1is open-valued, dw(m) >0,
1, we can find € > O and a measureable FCM such that ®(F)>0

all m . By Lemma

and dw(m) >e, m inF . But then B (0) Colm) , m in F , sc

p(F) Be(O) C [g¥ ar C [y¥ ak . Since R(F) Be('O) is a neighbor-
hood of O, we are finished. '

LEMMA 3: If Gl is open, convex and dense in G2 which is

also open in S , then Gl = G2

PROOF: Because G, 1is open'and G, 1is dense in G, , G, C int .G.l'

Thus it is enough to show that int 61 C G . If xeint G |

there is some open neighborhood U which is symmetric around x
and contained in El . U open implies there exists vyveUNG, ;
U symmetric around x implies 2 x-y = x - (y-x) €U C_é_l .  But
then x = %y + % (2x-y) £G, since yeG , 2x—y£-§1 and G

is convex [l12, Theorem 6.1, page h5]..

COROLLARY: If (M,S,9) satisfies MST , if int o(m) is dense

in ¢(m) , H-are . and if either (1) int ¢ is convex-valued or
(2) B is nonatomic and S 1is finite-dimensional, then for

every E , .
int fE o apk = fE int @ dn
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PROOF: Suppose we knew

(%) . fE int  d¢ is dense in fE o dm

Then fE int ¢ d¢ and int fE dt  are both open sets in S (by

Theorem 3) and the former is a convex subset of the latter [1].

By Lemma 3, the two sets coincide. (By (3), if one set is empty, so is
the other.)

To prove (3), for any ¢ > O and any integrable selection

£t from ¢ , let Vv be defined by

¥(m) = {x ¢ int o(m): |x - £(m)|| < € )

¥ is nonempty-valued since int ¢(m) is dense in o¢(m) . Clearly
(see proof of Lemma 6) u

¥ 1s measureable|and so by the MST , has a measureable selection

g . Since £ 1is integrable, g 1is also and I/g (£-glan| < e . O

It is easy to see that the denseness of int o(m) 1in

¢(m) 1is needed for the result stated in the Corollary. Consider

the example where M = [0,1], ¥ is Lebesgue measure and o(m) =
{x aiRl: 0 <x< % or x =1} , m in M . Then int fMdeH = (0,1)
and ﬂnintcde = (O,%) . Less obvious is the need for int ¢ to

be convex-valued or else for M to be nonatomic: Suppose

M= (0,1,2}, S =IR1 and for each i=1,2,3: #({i)})) = % and

(i) = [0,§] U [$,1] . Then int [, © d = (0,1) but [y int o ar
= (o,p) u (£, v (3D u (F1D)

We derive an analogue of Theorem 1 for [© ¢ du:

THEOREM 3': If (M,S,¢) satisfy CST |, ® is positively

unbounded, and M is regular, then for any E fgcde is

2

open.



1k

PROOF: As with the proof of Theorem % above, it is sufficient to
consider only the case where O £ ¢(m), all m . We then want

to find some neighborhood of O which is contained in fg Par

By Theorem 1, for any m° there exists € > O and an open set

U containing m° such that UxB_(0) C G, . If M were compact,
we could then find an €' such that M)cBi?) C G, so that

(0)

H(E) B,

C JSpdar . In the general case, since P 1is reqular,

E
we can choose a closed subset F of UNE with positive measure.
By Urysohn's Lemma [8,page 1L6], we can choose a continuous func-

tion N from M to ([0,1] such that

1 m¢gF
x<m>={o . i

For any z & B_(0) , X(:)z is a continuous selection from ¢ whose
. . 0]

integral on E is [fp A dulz . Thus [fE A dp] Bi ) C Gfmdu

Since fE Adp 2 w(F) > 0 , this exhibits an open neighborhood of

O contained in ﬁchdu . .
o

COROLLARY: If (M,S,int¢) satisfiesCST , if M is regular,
if int ¢ is positively unbounded and if, for every m , int o(m)

is dense in @(m), then for every E 5
. c c .
int [~ ¢ g = %1nttde
E

The proof of this is similar to the proof of the Corollary to
Theorem 3 with continuous selections replacing measureable

selections.
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When S 1is finite-dimensional, we can sharpen Theorem 1.

We first establish a preliminary result.

LEMMA L: If (M,S,®) satisfies MST if £ 1is an inte-

2

grable selection from ¢ and p £ S' , then for any E

2

p=fEf(ﬂ*= sup pafEcPdH if and only if p-f(m) = sup p-¢(m)

M-a.e. on E

PROOF: Sufficiency is clear, since if p-f(m) = sup p-®{m) H-a.e.

on E , then

sup p-[p @adk > pr [y f£ar

1!

fE sup p-o de

> sup p°fE o ae

To demonstrate the converse, suppose p-fE fdb = sup p-fEdeH.

If we define

F o= (meE: p-flm) < sup p-o(m)} ,

then we want N&(F) = O
It is readily checked that F 1is measureable since the mapping

m > sup p-®(m) is measureable [ 7 ]. Suppose W(F) > O

Define a correspondence & on F:

6(m) = (x¢e olm): p-x > p-flm)}
Then G, = Gcp N{{m,s) ¢ FxS: p-s > p-£f(m)} 1is measureable so
© is measureable. © is nonempty-valued on F so there exists

a measureable selection glF from 6 . If g P is not integrable,
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then there is some integer n such that F = (meF: [g(m -fm) | <n)
has positive measure (since F =tJFn) . Define an integrable

selection h from ¢ by

g(m) m g F
h(m) = n
" { £(m) otherwise

Then p’fE hdt > p-f £d¢. Since h is an integrable selection
from ¢ , we have found that M(F) > O contradicts p-fE £ au =

sup p«fE ®de . Thus H(F) =0 .'

The result in Lemma 4 1is closely related to the result tha:
if ¢ 1is measureable and [ 94t § @ , then sup p-fp ®ar =

[z sup prodr[7],[9].

THEOREM L : If S is finite dimensional, (M,S,¢@) satis-

fies MST , if ¢ is relatively-open-valued and either ¢
is convex-valued or M is nonatomic, then for every E

s

Jg ©dk is relatively open.

PROOF: To show that fE]ndH £ ri fE ¢ d  for any integrable
selection h from ¢ , it again suffices to show that

O g ri fE ydt , where ¥ = @ - h , since ri[fE(®~h) dan] =
ri[fE ®dar] - fE hdk . If L 1is the smallest affine subspace
containing fEu;dH , then O g fE1VdH means L is a linear
subspace. By the separating hyperplane theorem and the convexity
of ri fE yar [1], it is enough to show that for any nonzero

p in L', O < sup p'fE v a
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2

Suppose that for some nonzero p in L' O = sup p-[pvdr.

By Lemma 4 (letting f£= O0), we see that
(&) O = sup p-vim) , M-a.e. on E

Relation (4) together with O & ri y(m), H-a.e. imply that

y{m) C p_l(o), M-a.e. on E . But then p_l(O) NL is a proper
subspace of L containing fE ¥ dt . This contradicts the de-
finition of L ., Thus fE hdrh g rifE o aw . ﬂ

We note that the proof given above cannot be extended to
give the infinite-dimensional result stated in Theorem 3, since
the proof given for Theorem ! would require that the interior of

fE ®d¥  be nonempty if S were infinte-dimensional.

COROLLARY: If S 1is finite dimensional, (M,S,9) satisfies
MST , if ri ®(m) 1is dense in o¢(m), HM-a.e., and if either
(1) ri 9 1is convex-valued or (2) ¥ is nonatomic, then, for
every E |

ri fE o dp = fE ri @ dam

The proof of this is anlogous to the proof of the Corollary

to Theorem 3 with S replaced by L[fE © dr ]

LEMMA L': If (M,S,¢) satisfiesCST

, if £ is a con-

tinuous integrable selection from ¢ , if M is tight and
c

if p £ S' , then for any E , p=fE fdrk= sup p- [y @ d¥

if and only if p-f(m) = sup p-¢(m) H-a.e. on E



18

PROOF: Sufficiency is again clear. To prove necessity, we want

to show that the set

F = (mem: p-flm) < sup p-olm) )

satisfies M(ENF)=0., Since £ 1is continuous and the mapping
m > sup p'®(m) is LSC , F is open (proof of Theorem 1).

We define a correspondence ¢ by
8(m) = (xée olm): px > p-flm) )

We want to apply the CST to 6 on F . Since € is nonempty-

convex-valued on F , we need show only that 6 is LSC

Suppose m_ € F and for some open G in S, Q(mo) NG+ o gv
By the , CST applied to ¢ , there exists a con-
tinuous selection g of @ such that g(mo) £ e(mo) NG . But
then there exists a neighborhood U of m, such that g(U) C ¢
and p'g{m) > p-f(m) , me U. Thus me U implies 6(m) n G
is not empty, so 6 is LSC ., By the CST applied to € , choose

a continuous selection h from 6 (h is only defined on F).

- Suppose KM(ENEF > 0. since ¥ 1is tight, there exists a compact
set K CENFsuch that K(K) > O . Because M is a normal topo-
logical space, there exists an open neighborhood F' of K
which is also contained in F and on which h and £ are bounded.
By Urysohn"s Lemma [8, page 146] there exists a continuous
function A:M —> [0,1] such that

1 m & K
Mm) - { o m ¢ F!
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Define a function e on ‘M by

AMm) h(m) + (1-A(m)) f(m) meg F'
e(m) = {
f(m) otherwise
Thus e 1is a continuous integrable selection from ¢ . For

every m , pre(m) > p-f(m), 6 and for m € K, p-e(m) > p-£(m)

3

Thus p°fE e db > p‘fE f d* which contradicts the hypothesis

that p«fE £ dr = sup pwfg @ d+ . Thus Y(E N F) = O . '

THEOREM 4': If S is finite-dimensional, (M,S,)
satisfies CST , M is tight and o is relatively-open-

valued, then for every E , f; ¢ dMt  is relatively open.

The proof of Theorem 4 carries over with Lemma L replaced

by Lemma L',

COROLLARY: If S 1is finite dimensional, (M,S,p) satisfies

CST, and if M is tight, then for every E

2
rifEcde = fEricde

This result is proven analogously to the Corollary of

Theorem 3.

L. DApplication 1: Existence of a Radon-Nikod¥m Derivative of a
Relatively-Open-Set-Valued Measure

A correspondence @:‘n?=> S 1is a set-valued measure (or

countably-additive correspondence) if it is countably additive:
for every sequence (Ei} of pairwise disjoint elements of

(YW s ®(lJEi) =Z:©(Ei) , where, for any sequence (X;} of
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S, X, = {x £ S: for each 1 there exists x; € X, such that
2?}%_ converges absolutely to x }. We say that o¢: M = §

(resp., ©:¢7ﬁ=ﬁ> S) is positive-valued if there exists a closed

convex pointed cone P such that o¢(m)CP for all m (resp.,

o(E) CP, all E) . & is MK-continuous if WK(E) = O implies

o(E) = (0}
If o(E) = fE pdt  for all E , we say ¢ is a Radon-

Nikodym derivative of & . The very basic work of Debreu and

Schmeidler [7] characterizes those set-valued measures which
have closed-convex-positive-valued measureable Radon-Nikod{m
derivatives. In this section we show that a similar characteri-
zation of those set-valued measures having relatively-open-
convex-positive-valued measureable derivatives follows imme-
diately from Theorem Lt of this paper and the work of Debreu and

Schmeidler.

THEOREM 5: If S has finite dimension, then @ 1is a

countably additive, p-continuous, positive-convex-relatively-opern-=
set-valued measure if and only if it has a positive-convex-rela-
tively-open-valued measureable Random-Nikod?m derivative,

PROOF: The "if" implication is an easy corollary of Theorem k4,

To prove the converse, define a partial ordering on the corres-

pondences from qn to 5 by Ty C I', whenever Pl(E) C P2(E)

for all E 1in ﬂn . The conditions assumed on & ensure that

there exists a set-valued measure ¢ which is maximal for the

partial order ( in the collection of set-valued measures T

on S which satisfy & C I' C & (by Theorem 1 of Debreu and
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A

Schmeidler [7]). By Theorem 2 of Debreu and Schmeidler, &
has a closed~convex-positive-valued measureable RadonéNikodﬁm
derivative $ . Let ® =ri ¢ . By Theorem 4, for any E R
fgodu = ri [y au - o(E). §

5. __Application 2: Every Integrable Selection can be Replaced
by _a Continuous Selection

In this section we use the results of Section 3 to give
conditions under which it is possible to assume that any vector

in fE ® dM  is actually the integral over E of a continuous

integrable selection from o

THEOREM 6: If (M,S,p) satisfies CST, if M is
regular and has compact support and either (1) ¢ 1is open-
valued and positively unbounded or (2) S is finite-

dimensional and ¢ is relatively-open-valued, then for

every E ,

C
Jg o ab = fECPdH

PROOF : Since M has compact support, we may assume without
loss of generality that M is compact. We shall consider first
the case where S is finite-dimensional and o is relatively-

open-valued. Suppose we knew

(5) f§¢ dt  is dense in fEcde



22

Then L[fE odk ] = L[f; pddk ] so by (5), Theorems 4 and L'
and Lemma 3 we get the desired equality.

To establish (5), we consider only the case where ¢ di

/g
is not empty. Choose any integrable selection f from ¢ and
€ >0 . We want to find a continuous integrable selection
whose integral over E 1is within e of fE:EdH

Because ¢ 1is nonempty-valued, we can choose from it a
continuous selection e . e 1is integrable since M has compa *t
support. This compactness also means that P is tight on ths=
Borel subsets of M , so, by Lusin's Theorem [1l, page 691, we
can choose a closed subset F of E such that f’F =is con-
tinuoug and the integrals fE\F”f”dH and fE\F”eHdH are both
less than €/2. By the s CST, there is a con-
tinuous, integrable selection g from ¢ which extends f’F
By the regularity of M on M, we can choose a sequence
(F,} of closed subsets of E\F such that H((E\F)\\Fn) ~ 0
By Urysohn's Lemma [8, page 1l46], there exists a continuous

function A Mo—> [0,1] satisfying

1 t e F
(€)= {o teF
n
Define '
hn(t) = Kn(t) g(t) + (l-hn(t)) e(t)

Since M 1is compact, hn is a continuous, integrable selection
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from ¢ and han = f’F , hn‘F = e' Finally, b (t)] <

n n
lg(e)|| + [le(t)| , so the sequence {h,} 1is uniformly integrable.

Then

g I -£lak -£|ar

A

IE\F”hn

11+ et S i

A

From the choice of F , the uniform integrability of {hn} and

H((E\F)\Fn) — O we conclude that eventually fE”hn—f”dH < e

In the case where S is infinite-dimensional, we have
. c . ‘ . '
int fEcde is not empty by Theorems 3' ;. so we have

c ! .
L[fE o dt] = L[ fE ® dt] = 8 . The rest of the proof goes

through unchanged.

Remark: The assumption that M has a compact support can be
replaced by the assumptions that ¥ be tight and that there

exist a continuous bounded selection from ® . This selection
would serve the role played by e in the preceding proof. In

this case it would also be possible to show that g could be

chosen to be a continuous, bounded extension of £ F
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. . o
We give an example to show that I o dF need
E

not equal fE ©® dM unless ¢ is relatively-open-valued.

Define Py 2 [(0,1] = r' by
1 1
Io,g] 0<mc< 3
@y (m) =
[0,1] Z<m<1

Clearly, Py is LSC and convex-compact-valued. Let M be

Lebesgue measure on [@,1] and define an integrable selection

from I

o=
O
A
3
A
PO =

£,(m) = {

Then

o

C
£, dr = e [ fM ¢ ArIN [ fM ¢, dv]

In

This example can be extended easily to give an

2

unbounded correspondence: Define 9,3 [0,1] = R by
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1 1
{(Xl’xé) 0 < X < 5 0 % > 0} 0O <m < 5
o (m) = < )
2 <m<
((x,%,): 0<% <1, x,>0] S<m<1
If
£,(m) = { = A
(l) O) §<m§l
then [ £,db = (£,0) & [f o arIN[[S g ar]
M ° M M

Given a correspondence ¢:M => S , Theorem 6 appeatrs to
be useful in studying continuity properties of a mapping
N> Jo AN defined on some collection of probabilities on
(M, Wﬂ\) with the weak topology. Another application of
Theorem 6 is to provide conditions under which the correspondence
on CWQ , which takes E into fg ¢ dd , is countably additive.
To see that fg pdHt  is not always countably additive (unlike
fE @ dH ), suppose 91 and g, are two continuous, integrable
functions from M to ZRI' such that gl(m) < gg(m) everywhere.
Let o(m) = {gl(m), gg(m)}. Then f; ©dt  is clearly not

countably additive.

6. Openness of One Correspondence Relative to Another
Correspondence

If ¢ and Vv are two correspondences from M to S
such that, for every m , o¢(m) is an open subset of y(m) ,
we say ¢ is open in ¥ . 1In this section we give conditions

under which, if ¢ is open in Vv , then [ ¢dt is open in



e
[0

[ ¥dr . Our procedure to show [ ¢d¥ is open in f v ar will

be to prove something a little stronger: [ q¢dt is open in

1i

L{/ ¢ a4 ] . This will be done by showing that L[ ¢ di ] Lif o di]
and using Theorem 3 or 4. Thus, in effect, we shall reducs the more

general problem posed here to the problem solved in Secticn 3.

LEMMA 5: If (M,S,¢) satisfies MST, if L[fE pdt]  is closed

and if O g ¢{m), HM-a.e. on E , then
Lio(m)] C L[fE pdé] o, M-a.e. on E

PROOF: It suffices to show that M-a.e. on M, olm) is a

subset of the linear subspace Ly = L[fM @dd] . If this were false,
then the graph G@ of ¢ would not be contained in MxLy . In

fact, if we let H = GCP \(MxLl)j then we would have H(projM(H}) >0,
(For the measureability of projM(H)y see [ 6, (z.L} page 3571.)

Since S is separable and Ly is closed, we can chcose a

" s o] . n
countable collection {Ck} of open, convex sets in S whose union
1

is S-L,. (The sets C,, need not be disijoint.) ILet H = (chk)
n Gcp so H =y H_ . Then projM(H) = E projM(Hk), so for some
&7 3 > . " — om T 5
LS H(prOJM\Hk ) 0 Let M projy,(H, )
o o
Define a correspondence Ui MO = Cp by
o)
o {m) = o(m) n Cp
o

Then Py is nonempty-valued and measureable and so has a measureable

selection h . Clearly
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fMO'h ar & fMoch av C fyoar C L,

where the first inclusion uses the assumption that O g ¢(m) H-a.e.

We obtain the desired contradiction by showing that fM h ap

o
is also in H(MO)Ck which is disjoint from L, . If
fM h am % H(MO) Ch ( a nonempty, open, convex set), then there
o o
exists nonzero p in S' such that
. : /
P fMohdl~L >k > p'x , x E.H\MO) Cko

But then we have the contradiction:

p'fMOhdH = fMop°hdH < k <= p-fMohdH ,

where the strict inequality follows from the fact that p-h(m) <

_____ . . , .
H(Mo) , m in M, , since h(m) g Cko for m in M, - ﬁ

It is easily seen that the assumption that O £ o(m) M-a.e.

cannot be omitted: suppose ¢ is a positive-single-valued-

correspondence (i.e., a positive function).

________ Suppose (M,S,p) satisfies MST . Then for any
E, if L[jﬁ@dH] is closed and nonempty, we have L[fE @ di]
= JgLlolaw

PROOF: We may assume E = M . Let L, = L[fM odu] and L2==fML[cp]dp°

To show Ly C L, , we show first that L, is an affine

subspace: If x" < L2 and ts is a scalar, i=1,2, and tl-Ft2= 1,
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then there are integrable selections £' from L{p] such that

i .
fo ak = x° . If f = tlfl + t2f2 » then £ is also an integrable
selection from L[¢] and fodIL = tlxl + t2x2 . Thus L, 1is
affine. Since ¢ C L[], then ﬂn(de Cng . Since L, is

defined as the smallest affine subspace containing fM o dr ,
then Ly C L2

We show L, C L, first for the case where O g o(m), H-a.e.
In this case, Ly is a(closed)linear subspace. Thus it suffices
to show Ligp(m)] ( L, M-a.e. But this was established in Lemma 5.
Thus if O & ¢(m), H-a.e., then L[fM pdp] = fMIJ[@]dH

In the general case, since ﬂm(pdﬂ is not empty, there
exists an integrable selection f from ¢ . Define V¢ by
vV = ¢ -~ £ . Then qu;dH = chde —fodH , L[melde]=
L[ﬂncde] - fM:EdH and L[y¥] = L{p] - £ . By the two preceding

paragraphs we have

i

Lify ® dB] - [y €d¢ = LIJ v au]
" Jy Llviaw

[y Llolak - [ £ av

i

.80 L[fM o dr] = fM Liglar . .

We remark that the inclusion L[fM @ dm] (ij Lipldm
required no assumptions. The opposite inclusion can easily be

seen to be false without the condition that (M,S,p) satisfy

MST. Let fl be an integrable, real-valued function on M and

let f2 be a nonmeasureable, real-valued function on M such that

N
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£2(m) 4+ £8(mn) for all m . 1f o(m) = (£5(m), £5(m)} , then

L[fM o dr] = fM f dr but fM Llpldt = B! since Lip(m)] = rY

for all m . It is also easy to construct an example where (M,S,0)
satisfies MST, where ® has no integrable selections, but
Lio(m)] = R} for all m . Then [y Llplar = R ang L[, ar]

is empty.

COROLLARY 1: If (M,S,y) satisfies MST, if P: M = §

satisfies L{o] C L{y] and if L[fE ¥ odM] is closed and nonempty,

then
L[fE o drh] L[fE voodm]

PROOF: From Theorem 7 and the remarks following it we have

Pliged] ClgLleldr C [pLlvlar = LIf_y av] .

COROLLARY 2: If (M,S,0) and (M,S,y) satisfy MST,

L] = L{y] and if the sets L[fE ©dt]  and L[fE v dMh ] are

closed and nohempty, then

Lifg ®dk] = L/, var]

LEMMA 6: If (M,S,p) and (M,S,y) satisfy MST, if g
is open in ¢ , if v is convex-valued and int ¥ is nonempty-
valued, then for any E , either fE ¢ dM is empty or has a

nonempty interior (and then so does fE v dr ),

PROOF : If fE ®dM  is not empty, there exists an integrable

selection f from ¢ . Because ® 1is open in V¥ , for any m
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there exists & such that 0<s§ < 1 and such that U(m) =
Bg(f(m))n ¥(m) is open in v¥(m), contains f(m) and is contained
in ¢(m) . Because +¥(m) is convex and int ¥(m) is not empty,
'then int y(m) is dense in ¥(m) [12, Theorem 6.1, page 34]. Thus
U(m) n int ¥(m). is not empty. Further, [U(m) n int y(m)1Cint o).

If we define a correspondence 6 by
6(m) = Bl(f(m)) N int o(m) ,
then 0 is open-nonempty-valued. To check that 6 1is measureable,

let {sn} be a dense subset of S . Following the procedure at

the start of Section 3, we define

n -

dw(m) = sup{e > O: Be(sn) Co(m)y .
By Lemma 2, dg is measureable for each n . Thus for e >0 ;
{me M: Be(sn) Colm)} = (dg)—lQﬁe, + o )) is measureable. The

graph of int ¢ equals Uy {m: Bl/r(sn) C o(m)} x Bl/r(sn)

b4
which is clearly measureable. Since the graph of 6 equals

Gintq)(ﬁ{m,s): s £ Bl(f(m))] » 6 1s measureable.

By Theorem 3, fE &d¥ is open in S . By the MST, there
exists a measureable selection ¢ from 6 . Since |lg(m) - £(m) || <1
for all m and £ 1is integrable, so is g . Thus fE 6dk  is a

nonempty open subset of fEcpdﬂ.so fE ® d*  has a nonempty interior.'

THEOREM 8: If (M,S,0) and (M,S,y) satisfy MST, if

® is open in ¥ , if V¥ 1is convex-valued and if int ¥y is
nonempty-valued or S is finite-dimensional, then for any E,

either L[fE ® dt] is empty or it equals L[fEW ar]



PROOF: Suppose L[fE ® d¥] is not empty. If S is not finite-
dimensional, then by Lemma 6 fE o d¥  and fE ¥ dt  have nonempty
interiors so L[fE o dk] = S = L[fE v dh] . IFf S is finite-
dimensional, then L[fE ©dH ] and L[fE ¥ dk]  are closed. Because
¥V is convex-valued and o9 1is open in ¥ , Lipl = L{y]. Thus by

Corollary 2 of Theorem 7, L[fE @ dr] = L[fE ¥ a] 0@

COROLLARY 1: If (M,S,0) and (M,S,y) satisfy MST, if o is

open in ¢ , if V¥ 1is convex-valued and if inty is nonempty-
valued or S is finite-dimensional, then for any E , ri fEcde

is open in L[vawdH] and hence open in fEurdH

This Corollary follows at once from Theorem 8 and the defi-
nition of relative interiors. This can be combined with the

Corollaries of Theorems 3 and 4 to give:

COROLLARY 2: If (M,S,9) and (M,S,¥) satisfy MST, if ¢ is

open in V¢ , if ¢ and ¥ are convex-valued, if ¢ is relatively-
open-valued, and if int ¢ 1is nonempty-valued or S 1is finite
dimensional, then for any E , fEcde is open in LEIEQrdH} and

hence open in wa'dH

The results above have not made essential use of the
condition that ¢ be open in ¢ . This is seen by noting that the
conclusions of the Corollaries above remain valid in the case where
S is finite dimensional when the conditions @ open in V¥ and

¥ convex-valued are weakened to ¢ C ¢ and L[o] = L[v] . In
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our next result we provide the basis for a substantial extension
of the redsults gotten so far by showing that when ¢ is open in
¥ , then the only points in [fE o de I\ [:ij&l@'dﬂ] are also in
the relative boundary of qurdH - The condition that ¢ be open

in ¥ is important for this result.

THEOREM 9: If (M,S,9) and (M,S,y) satisfy MST, if o

and ¥ are convex-valued, if ¢ is open in ¥ and if either

int ¢ is nonempty-valued or S 1is finite dimensional, then

for any E

J

rifEcp ar = [fEcde] n [riquf ar]

PROOF: We assume fEQ)dH is not empty. From Theorem 8 we have
Lifpoar] = LIfg¥ dr] . Hence the inclusion rifpo ax C [Jgodr] n

[rifExh dt]  is obvious.

To derive the opposite inclusion, we show that if

x° & [fEcde] \ [ri fEcp de] , then x° ){ ri fE\lf ddk . We shall show

first that if we have any hyperplane supporting fEcde at x°

2

then it also supports [ v dM at x° : Suppose p 1is a nonzero
E
element of S' and p-x° = sup powadH . By Lemma 4, if £9 is

an integrable selection from ¢ whose integral over E is x° 5

then

(6) p-£°(m)

]

sup p-o{m) M-a.e. on E

We shall show that

I

(7) P'fo(m) sup p-v(m) M-a.e. on E
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If m, 1s an element of E for which thers exists some N in
w(mi) such that poyl > p“fo(ml) » then we could chcose a
sequence of points yn from the line segment comv{yl, fo(mlﬁ}

which converged to fQ(ml) and such that poy’’ > pof%mlﬁ for all

. o) . . : . . s . »
n . Since f (ml) is in @(ml) which is open in ¥imy ), then

for large enough n , v 1is in @(ml} . By {6} this is possible

o)

only for a null set of such points m; . Thus (7} is valid. By

Lemma 4 again, p°xo = sup poqude

We have assumed that x° 1is in the relative boundary of

fEcde (which is convex). By assumption, either ¢ d¥ has a

jE
nonempty interior {Lemma €), or S is finite dimensicral. Thus

: age 647, ‘thare exists
b 2

{

by the Separating Hyperplane Thecrem |1

\

a nonzero element p in the dual of HEfEcde] = H[qude} such
that pcxo = sup p°fE ®dd . By the preceding paragraph,
p°xo = Sup p“fEﬂrdH - Since p 1is a nonzerc element of the dual

of H[fEﬂde], x% is in the relative boundary of qu;dH<o '

COROLLARY 1: If (M,S,9) and (M,S,y) satisfy MST, if o

and ¥ are convex-valued, if ©® 1is open in ¢ and if either
int 9 is nonempty-valued or S 1is finite dimensional, then for
any E , [fE@cﬂL] n [rifEny dbk]l  is cpen in L[fEdrdH] and hence

open in wa am

This result is immediate from Theorem 9 and Corollary 1

of Theorem 8.
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COROLLARY 2: Suppose (M,S,¢) and (M,S,y) satisfy MST, o
énd ¥ are convex-valued, ¢ is open in ¥ and either int g
is nonempty-valued or S 1is finite dimensional. If x ¢ fEcde
and y ¢& rifEmb dd , then some proper convex combination of

x and y is in ri_“EQ aw .

PROOF': The result is trivial unless x is different from v

Suppose no point of conv[{x,y)] is in qu>dH . By the preceding
corollary, x 1is in the relative boundary of wa'dH . Let L
be the line spanned by x and y . Suppose z in L 1is on the

side of =x opposite y {i.e., =z = ME ALY A th, =1 and

Mo 1 ). Then =z ¢‘qurdH since if =z ¢ fEQde , then x¢ef(z,y)

1 A=l

and A, <O, then z ﬁ'fEcde , since otherwise y , which is a

SO xarifExV dk . Thus =z ngcdea If z=xlx+h2y, A

convex combination of x and =z, is in the convex set fEcde
In summary, the line L is disjoint from rij}lm dt . By the
Separating Hyperplane Theocrem, there is a (closed) hyperplane H
containing L and disjoint from ri “Em dk . In particular, H
supports fEcde at x

It was demonstrated in the proof of Theorem 9 that H
must therefore support fEW dd at x . But v £ H N riway dH,‘
e} qude C H . This would mean fEcde C H which is impossible

since we chose H to be disjoint from ri.ﬁgw as . .

Corollaries 1 and 2 have been derived by the author in a
very different way in an earlier paper [4, Theorems 3 and 4],
The usefulness of these results in mathematical economics has been

shown in [3].



Corollary 1 gives a partial answer to the gquestion raised
in this section. A complete answer has so far only been given
under very restrictive assumptions on ¥ . (For example y{m) =
for all m where P 1is a polyhedral cone). In order to demon-
strate that some additional conditions must be met in order for
J ® a to be open in [ ¥ au , we consider an example.

Let M = [0,1] and let P be Lebesgue measure on M

Define ¢ by

2 , 3

"JI(HI) = {(XI’XE) E R (X]_’Xg) = t(l“mﬂm)ﬂ O

A
+

1A
‘__I
“:*F

N =

Let g be a selection from V¥ defined by g{m) = (1-m,m)

Define ¢ by

o(m) = {x e¥(m): x> g(m) and x + g(m)} .

i

For every m , +4(m) 1is a subset of the convex set

{(Xl’xg) > 0 : + x, < 1} . Thus ﬂww'dH is a subset of this

1 2
(

set. The point %,%) is in the boundary of this set and is the

integral of the selection f from ¢ defined by £{m) = {1l-m,m).
1 l/2 | 1 (1 1.

(Note that (595, = fo/ f ar so (0,0), (%Qg) and (3,5 are

in fEﬂrdH . Thus fEﬁrdH has a nonempty interior in IR2). We

shall show that fM:EdH is not in the interior of chde rela-
tive to qu/dH by showing that no other boundary point of
fMﬂde is in chde and that there exists a sequence of points

in the boundary of fMdde which converges to fM:EdH
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We first describe the boundary of qurdH . A poipt x
is in the boundary of the convex set fMQrdM if and only if
p°X = sup p°fMude for some nonzerc p in R . By Lemma 4

p
R

this happens exactly when there is an integrable selection h

from V¥ such that p°hp(m) = sup pev{m), M-a.e. and

fMlﬁ)dH - x . But this determines h" unigueely MH-a.e.:
If p >0, then hP(m) = (1-m,m) 0<m<1
If p <0, then hP(m) = (0,0) 0<m<1
Py
; (0,0) m > ——t
If Py >0, p, <0, then h (m) = 17P2
(L-m,m) otherwise
L b
b (©,0) m < -2
If py <0, p, >0, then h (m) = P2=Py
(1-m,m) otherwise

Thus if p; <0 or p, <O , then hP(m) equals zero on a
nonnull subset of M . Thus hPY is a selection £rom ¢ only
when p > 0 . 1In this case nP - £, we conclude that

fM:EdH is the only boundary point of qude which is in
chde . Finally, if we fix p; > 0 and let pE]\O s then
fMlﬁ)dH - fM:EdH . Thus [, fd¢ can be approximated by

points which are in fMQrdH but not in chde
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