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I. Introduction

The technique of using polynomials to approximate distributed
lags has become widespread since its initial broposal by Shirley Almon [1]
in 1965. A major advantage of the technique is that if a distributed lag
is assumed to lie on a polynomial of a specified degree, then the distri-
buted lag can be estimated by standard linear regression methods, A
disadvantage of the technique, when polynomials of degree three or higher
are estimated, is that one usually believes that the lag distribution is
of & more restrictive shape than this, Even the general third degree
polynomial, illustrated in Figure 1la, may have too unrestrictive a shape,
since one usually does not believe that the lag distribution hes both a
trough and a peak. It may turn out, of course, that the undesirable peaks
and troughs of polynomials occur outside of the estimated range of the
lag distribution, but in general this will not happen.

The purpose of this note is to evaluate the estimation of
restricted polynomial distributed lags, The shapss of polynomials can
be restricted in a variety of ways, and it is of interest to.examine
how many restrictions have to be placed on a particular polynomial in
order to eliminate the possibility that an undesirable shape will be
estimated. It turns out that the shapes of fourth and fifth degree
polynomials, once they are restricted to exelude undesirable peaks and

troughs, are not much different from the shapes of second and third




degree polynomials. The use of fourth and higher degree polynomials is
therefore not in general recommended, and if a second or third degree
Polynomial is not considered to be a good enough approximation to the lag

distribution, then the Almon technique should probably not be used.

IT. The Use of Polynomial Distributed Lags

The Basic Model

The general distributed lag model can be written:

Mo

(l) Ve = W, X )

t k=0 k™t-k
where Ve and xt-k are economic time series at time t and t-k
respectively, and W, are the coefficients of the lag distribution,
The length of the distributed lag is L+1 periods. The Almon [1] proposal
is a means of lmposing linear constraints on the estimated coefficients
in such a way that the lag coefficients lie on a polynomial of some
specified degree, say P.l In what has been termed the Direct Method,
the specification of the polynomial takes the form:

P

(2) w, = T on.kJ , k=0,1,...,L .
J=0

Substituting (2) into (1) then yields:
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lSee Babb [2] for s development of Almon technique from this viewpoint.
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L .
where Z, = % kat~k are linear combinations of the observed
k=0

data series Xt—k'

Using equation (3) and the constructed Zj variables, the P+l 03
coefficients can be estimated using standard linear regression techniques.

Then using equation (2) and the estimated 03 coefficients, the Ve weights

of the distributed lag can be easily calculated. Because the W, can be

interpreted as linear combinations of the 03, any standard statistical

tests of significance that can be performed on the 05 can also be quite

easily performed on the Wk'2

End Point Restrictions on the Polynomial

It was recognized with the first use of the polynomial distributed
lag technique by Almon [1] and Bischoff [3] that it may be desirable to

constrain certain of the w, polynomial values in (1) to be zero. TIn

k
particular, they suggested that Vo = 0 or wp o= O might be useful
constraints.3 The imposition of these constraints on the estimated 03

coefficients is straightforward. For example, setting Wy = 0 in

equation (2) yields:

P
(4) S a, =0 |,

2The same final result can be obtained in a variety of ways using different
specifications for the polynomial of equation (2). A common alternative %o
the Direct Method is the use of Lagrangian interpolation polynomials., A
comparison of the Direct Method and the Lagrangian technique is given in
Cooper [4], Hall [5], Robinson [8] and Sparks [9]. Robinson also discusses
other alternative specifications for the polynomial., It should be stressed,
however, that all techniques will lead to the same answer. They differ only
in terms of computational convenience in performing the statistical tests
and in robustness to rounding error.

3More specifically, Almon and Bischoff suggested that V_1 and wL+l be set
to zero. The rationale for their brocedure was that if the distribution




and setting W, = 0 in equation (2) yields:

(5) g a9 =0 .
SR

It is apparent that (4) ang (5) are both linear constraints (given L) and
thus can be easily incorporated into the estimetion of (3).)+ In the
following discussion, these two constraints will be referred to as
"zero head" and "zero tail" constraints,

Recent work has also suggested the desirability of constraining the
slope of the polynomial to be zero at k = L.5 This can also be easily
accomplished. Differentiating equation (2) with respect to k and evaluating

the result at k = 1, yields:

Q/
=

p .
e s ad o, |
ko 5= Y

(6)

O/

Again, (6) is a linear constraint on the 03 coefficients and it can be

directly incorporated in the estimation of (3).

extends over the range (0,L), then it might be reasonable in specific
applications to assume that the polynomial is zero cne period outside

this range. This approach has been questioned by Robinson [8], who argues
that no theoretical Justification has been offered for constraining the
polynomial to be zero outside of the interval over which it is estimated.

The imposition of linear constraints is an example of another case in which
all the polynomial specifications described in footnote 2 must yield the
same results, although some specifications may be more convenient than
others. In particular, imposing zero restrictions of the type described
here is trivial when the Lagrangian interpolation polynomials are used.

PThis constraint is referred to in Cooper [4] and Sparks [9].




Other Restrictions on the Polynomial

End point restrictions do not, of course, exhaust the kinds of
restrictions that can be placed on the shapes of polynomials; other linear
constraints on the 03 can be imposed. Each constraint reduceg the number
of estimated coefficients by one and places some constraint on the shape
of the polynomial, It will be seen below, for example, that additional
constraints are necessary in order to insure that the fifth degree poly-
nomial has a desirable shape. Also, the shape of the fourth degree
polynomial ean be easily constrained without having to consider the use
of end point restrietions. In the following analysis these additional
constraints will take the form of setting certain coefficients of the
polynomial equal to zero, but similar conelusions would hold if more

general linear constraints on the coefficients were considered.

IITI. The Shapes of Polynomial Distributed Lags

First and Second Degree Polynomials

The estimation of restricted first and second degree polynomials
is only of limited value and requires no extended discussion here. For
the first degree polynomial, for example, zero restrictions can be placed
at either the head or the tail of the distribution, in which case the singla
estimated coefficient determines the slope of the distribution. For the
second degree polynomial, if either zero head or tail restrictions are
imposed, then the two estimated coefficients determine the height and
horizontal position of the peak of the lag distribution. Furthermore,

if both zero head and tail restrictions are imposed, then because of the
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symmetry of the second degree polynomial, the peak or trough of the
distribution oeccurs halfway between the head and tail, The single

estimated coefficient in this case determines the height of the distribution,

Third Degree Polynomials

The general third degree polynomial is.illustrated in Figure la.
For this Polynomial, end point restrictions are sufficient to insure that
the polynomial does not have an undesirable shape within the estimated range
of the distribution, This can be done by constraining the polynomial and
its slope to be zero at the tail of the distribution, as is illustrated in
Figure 1lb, The resulting polynomial is then a function of two coefficients,
where the two coefficients determine the height and the horizontal position
of the peak of the distribution, If the head of the distribution is also
constrained to be zero, then it can be shown that the beak of the distribu-
tion must occur one~-third of the way between the head and the tail.6 The
one estimated coefficient in this case merely determines the height of

the distribution,

Fourth Degree Polynomialsg

The general fourth degree polynomial is written as

_ 2 3 o
(7) Ve = Oy tajk + k" + cx3k + ok

and is illustrated in Figure 2a. There are two basic ways to insure that

the fourth degree polynomial does not have an undesirable shape. One way

6This can be seen by imposing the three restrictions on the polynomial and
then solving for the zero derivative points of the polynomial. These pointa




Figurel -- THIRD DEGREE POLYNOMIALS

a
Unrestricted

Figure 2 -.

a
Unrestricted

(4 coeffs. estimated)

(5 coeffs. estimated)

b

Zero Tail and Derivative Restrictions
(2 coeffs, estimated)
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FOURTH DEGREE POLYNOMIALS

b C
Zero Head, Tail, and Derivative Polynomial Res-
Restrictions

tricted to have
Only One Peak
(3 coeffs, estimated)

(1 coeff, estimated)
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Figure 3 -. FIFTH DEGREE POLYNOMIALS

a
Unrestricted
(6 coeffs. estimated)

b
Zero Tail and Derivative Restrictions

and Polynomial Restricted to have
One Peak and One Tro

ugh
(2 coeffs. estimated)
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is to constrain the polynomial and its slope to be zero at both the heag

and the tail of tha distribution, as is illustrsted in Figure 2b, In thiga
case the estimateq polynomial is g function of only one coefficient, and it
can be shown that the pzak of the distribution occurs one-half of the
way between the heagd and the tail.7 The one coefficient eztimate determines
the height of the distribution,

The fourth degree pelynomial can also be conshrained to have the
general shape illustrated in Figure 2e¢, 7o go €0, however, reguires that
restrictions other than end point restrictions be cengidered. The bolyncmial
in Figure 2¢ has only one peak, and g necessary and sufficient condition for

the polynomial in (7) to have only one peak or trough isB

<, &/

= 2_ 3,73,
2 3
(8) EH + %? >0, where .

3, 2a o1
= 2 343 k 2y, 1
b = o7 ( haﬁ )” - Eaﬁ‘)( 252') : QQ&

Wl

==

An easy way to insure that (8) is satigfieq (although obviously not the only

way) is to set Oé and Oé equal to zero, The fermula then reduces o

Q
e

(7 )2 > 0, which is satisfied for all nonzero values nf @ and Gty

e

7See footnote 6, The Zero derivative points in this case occur at 0, 7%-L,

and L.

A necessary ang sufficient condition for a fourth degree polynsomial io
have only one beax or trough is for the derivative of the pclyncmial
(which ig itself a thirg degree polynomial) to have only one real root,

A necessary and sufficient condition for g third degiee polynomial to have
caly one real root is well known and is given, for exannle, in Hodguan [6],
p. 282, This conditiop 1s the condition in (8).
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Setting Oé and Oé equal to zero leaves three coefficients to be estimated,
and the resulting polynomial has either the gerneral saape in Figure 2¢ op
the inverted version of it., If the polynomial in Figure 2¢ ig further
restricted to be zero at the head and the tail of the distribution, then
the polynomial ig g function of only one coefficient. In this case the

peak of the distribution occurs at 3 Ti L, or approximately two-thirds
L

of the way between the head and the tail,

Fifth Degree Polynomials

The gereral fifth degree polynomial is written as

i 2 3 L, .5
(9) W, o= o+ ok + %k" + aék ok + ask

and is illustrated in Figure 3a, 1In order to insure that the Fifth degree
polynomial does not have an undesirable shape, it ig necessary to consider
both end point restrictions and other kinds of restrictions. The most
straightforwarg way to insure a desirable shape is to constrain the poly-
nomial to have only one peak and one trough and to constrain the bolyromial
and its slope to be zero at the tail of the distribution. The polynomial
then has either the general shape illustrated in Figure 3b or the inverted
version of it. It can be seen that setting the coefficients @, and Qh

3

equal to zero insures that the polynomial has only peak and one trough.9

9An easy way to see this is the following, The derivative of (9) is a
fourth degree polynomial, and in order for (9) to have only one Peak and one
trough, its derivative must have only two real roots. With 03 and Oh set

equal to zero, the derivative is: Oi + zaék + 5a5kh. Setting this derivative

. b b & 2 "
equal to zero and solving for k Vields: k' = = - o %y K. Now, k', when
503 505
graphed against k, is simply a u~shaped curve symmetric about the origin, and
a 20,
1

- T— - o k, when grapheq against k, is g straight line, It ig apparent

can have at mogt two real roots,
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The resulting polynomial isg then a function or only two coefficients.

If the head of the distribution is also constrained to be Zerd, then the
polynomial ig g funetion of only one coefficient., The coefficient deter-
mines the height of the distribution, with the peak Occurring at

approximately .38L.lo

Conclusion

The restrictiong discussed in this section do not, of course,
exhaust the total number of restrictions that can be impcszed on bolynomials.
An attempt has been wade, however, to discuss the more important kinds,
One of the conclusions of thig eéxercise is that polynomials are not as
general as one might hope for in approximating distributed lags. The fourth
degree polynomial, for eéxample, appears to be of limiteq usefulness, since
the shape in Figure 2b can be approximated, at least roughly, by a second
degree polynomial ang since the shape in Figure 2c¢ is not likely to be copn-
sistent in most cases with a gg}ggg views about the shape of the lag

distribution. Likewise, polynomials of degree six and higher are likely to

mamner, their shapes are not likely to differ much from the shapes in
Figures 1, 2, and 3,

For many burposes the restricted third degree polynomial in Figure 1b
may be sufficient for approximating lag distributions. Another leading
candidate is the restricted fifth degree polynomial in Figure 3b, but the

principle of Occam's razor would dictate using the restricted third degree

loImposin,g the five restrictions ang setting the derivative of (9) equal

to zero yields: 3L -~ 8L3k + 5kh = 0. The two real solutions to this
equation are k equal to L and k approximately equal to . 381,
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polynomial unless one had sufficient & priori information for doing
Otherwise. (Both polynomials are g function of two coefficients, and

80 no added flexibility is gained on this score by using the fifth degree
polynomial.) In general, if a second or restricted third degree
polynomial is not considered to be g good enough approximation to the

lag distribution, then, as mentioned above, the Almon technique shoulgd

Probably not be used.
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