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ABSTRACT

In recent years much attention has been focussed on the
problem of discontinuous shifts in regression regimes at unknown
points in the dats series. The present paper approaches this
problem by assuming that Nature chooses between regimes with
probabilities A and 1-A. This allows the formulation of the
appropriate likelihood function which may be maximized with
respect to the parameters in the regression equations and X .
The method is tested in some sampling experiments and in a

realistic economic problem and is found satisfactory.
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I. INTRODUCTION

The standard problem of switching regimes in regression theory
consists of (1) testing the null hypotheses that no switch in regimes
took place against thé slternative that the observations were gener-
ated by two (or possibly more) distinct regression equations and
(2) estimating the two (or more) regimes that gave rise to the data.
Given n observations and k independent varisbles, the null

hypothesis is expressed by
Y =X8+U (1-1)

where Y 1is the nxl vector of observations on the dependent

variable, X the nxk matrix of observations on the independent
variables, U the nxl vector of unobservable error terms distributed
as N(O,cel) and B the kx1 vector of coefficients to be estimated.
The alternative hypothesis is expressed by asserting that there exists
some permutation of the rows of Y and X so that they may be

partitioned

¥I am indebted to Gregory C. Chow, Ray C. Fair and John Tukey for
useful comments and suggestions. Support was obtained from
NSF Grant GS 326h4.



and that

o
(1]

YlBl + Ul (1-2)

and

)
fl

X585 * U, (1~3)

where Ul and U2 are distributed as N(O,oil) and mN(O,GSI)
respectively and where (Sl,oi) # (82,02).

Various special cases of this problem have been treated in the
literature. Some of the most distinctive variants are as follows.

(1) If it is assumed that, under the alternative hypothesis,
the subsets of cbservations corresponding to (1-2) and (1-3)
respectively are identified on a priori grounds, the problem of
testing the null-hypothesis is solved exactly by the Chow-test [2].
The corresponding estimation problem is solved simply by estimating
(1-2) and (1-3) separately by least squares.

Other approaches to the problem deal with the more difficult
circumstance in which it is not known which observations were
generated by Regime 1 and which by Regime 2, if indeed there were
two regimes at all.

(2) The relatively simplest of these variants assume that if
there are two regimes, there occurred only a single switch between
the t° and (t+l)th observations (t being unknown), with the first
t observations having been generated by Regime 1 and the last n-t
by Regime 2. At least three approaches have been suggested to
cope with this variant: (a) Guandt ([9] and [10]) expresses the
likelihood of the sample as a function of t and maximizes it with

respect to the (continuously varying) variables B> ci, B> og



and the (discrete) variable t. (b) Farley and Hinich [4] assume
that all possible switching points are equally likely and derive a
likelihood ratio test for the null hypothesis with power character-
istics that appeared good in Monte Carlo experiments. (c) McGee
and Carleton [8] examine the same problem from the point of view of
the hierarchical clustering of adjacent observations successively
included in successively recomputed regressions. At each stage
left or right adjacent points continue to be included in existing
clusters unless the Chow-test rules this out on the grounds that the
new point could not have been generated by the same regime. The
process continues until a set of optimal clusters is determined.

(3) The most complex variants hypothesize that the system may
switch numerous times, either to successively newer regimes or back
and forth between two particular regimes. In these cases the like-
lihood approaches corresponding to the previous set of variants
tend to become impractical. For example, the condensed likelihood
function, as a function of t only, which was suggested in [8],
must be evaluated in the second set of variants (due to the discrete-
ness in the partitioning of Y and X) a number of times that is of the
order of n. In the present variant this likelihood function would
have to be evaluated a number of times that is of the order of Zall
Some of the approaches that have been suggested for this variant
are as follows. (a) Brown and Durbin [1] define recursive residuals
u, (r = k+1,...,n) where u, is obtained from employing the fth row
of Y and X and an estimate of B based on the first r-1 rows of ¥

and X. A generalization of the Helmert transformation is used by



them to transform these u, into a set of variables LS distributed
as N(O,OQI). They then propose testing the cumulative sums of the
w. for significant departures from zero. (b) Fair and Jaffee [3]
assume, as may be frequently justified in an economic context, that
there exists on a priori grounds an extraneous variable 2z on which
observations zi(i=l,...,n) are available and which may be used to
classify the x and y-observations between the two regimes;
accordingly, if zs é=zo (z0 assumed to be a known number) the ith
value of y is assumed to have been generated by Regime 1 and
conversely for Z; > 2 . (c) Goldfeld and Quandt [7] generalize
the approach of Fair and Jaffee by not requiring knowledge of the
cut-off value z, - Maximum likelihood estimates for the regression
parameters as well as for z, can then be operationally obtained

as follows. Let D be a diagonal matrix of order n with diagonal
elements d(zi) where d(zi) =0 if z, <z and d(zi) =1
otherwise. The observations can then be thought to have been

generated by
Y = (I—D)Xsl + DXB, + W (1-Lk)

where W 1is the vector of unobservable (and heteroscedastic)
error terms (I--D)Ul + DU29 and where 61,82 as well as the elements
of D must be estimated. This basically intractable combinatorial
problem is rendered computationally feasible by replacing the unit

step functions d(zi) in D by the continuous approximation

Z.,
1

E-2
1 1 0.2
a(z.) = — exp {-=(—)"}az (1-5)
1 Wr g 2' o



This introduces two new (unknown) parameters Zs and o Dbut makes
it now possible to write down the likelihood function for (1-4) without
the disturbing combinatorial aspects that are otherwise inherent in

this formulation.l The logarithmic likelihood function clearly is

_ 1 1 2 —oxe 1 ot v (T -
L = constant - Zlog|a| - 511Y-(I-D)XB,-DXB,] @~ [Y-(I-D)XB ~DXB,]}
where
_ 22, 22
Q = (I-D) o] + D70 .

The maximum likelihood estimate for Z, gives the estimate for the
desired cut-off value and ¢ has been interpreted as measuring the

"mushiness" of discrimination between the two regimes.

2. AN ALTERNATIVE MODEL
In the model to be analyzed in the remainder of this paper it is
assumed that there is an unknown probability A that Nature will

choose Regime 1 for generating observations and a probability 1-\ that

lA simpler approach, not unlike that in [9] will also work if
there is only a single extraneous variable 2z. This more complicated
approach seems unavoidable if there are several extraneous variables
Zl""’zp and if Nature is thought to make the choice between regimes

on the basis of some function of the z's, say Eyizi, where the

Y; are also unknown.

2An alternative interpretation, suggested by John Tukey, is that

the extraneous variable values may decide Nature's choice of regimes
only with some uncertainty. The assumption of the cumulative normal
integral as the suitable approximation in (1-5) then represents the
assumption that Nature's choice of regimes as a function of 2z is
normally distributed. If one assumed, for example, that Nature's
choice of regimes has, say, the Cauchy distribution, the appropriate
approximation would be d(zi) = %.+ %.tan'l(zi—zo), the cumulative

Cauchy integral.



it will choose Regime 2. Accordingly it addresses itself to the same
type of problem as the third set of variants deseribed in Sec. 1.
Assuming that the error terms in the two regimes are normally and
independently distributed, the conditional density of the ith value
of the dependent variable, ¥; o conditional on the values of the k

independent variables xli’ X2i""’xki is

! "1 k 2
hiy. 1%, . 500esx..) = exp {- —= (y. - = B..x,.)°} +
1711 21 /ono 202 i 3=1 15741
1 1
k
- 1 2
exp {- =5 (y. - T B,.x,,)7} (2-1)
= 2 Vi R 23741
/éngz 202 J=1 Jd
th . . .
where Blj and sz denote the J regression coefficient in the

two regimes and X is the ith observation on the jth independent
variable. The logarithmic likeiihood function is obtained by summing

the logarithms of (2-1) over i, yielding

n 1 k 2
L= 5 logf —2— e {- ;gg(yi - .Elsléxdi) }
i=1 Vemo, 1 J=
o 1aa 1 k 2
+ exp {- —5{y; - % 8,.x..)°N (2-2)
2mo, 207, g=1 <4 J

This function is to be maximized with respect to Blj’B2j (3=1,....k),

6,, 0,20 and 0 <X 1.
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This involves a nonlinear maximization problem and in order
to explore the feasibility of obtaining estimates by maximizing
(2-2), the sampling experiments performed for the purpose of examining

the properties of the method using the function d(zi) and reported



in [7] were repeated using the present method. These experiments
employed the following equations for Regimes 1 and 2 for generating

observations:

(2-3)

e
i

1.0 + 1.0x. + u._.
1 1i

and

(2-L4)

<
L}

0.5 + l°5Xi + uZi

The Uy g and U,; Were normally and independently distributed with
variances ci and Gg and the X, were uniformly distributed and

identical in repeated samples. The remaining characteristics of the

experiments are summarized in Table 1.

Table 1

Characteristics of Sampling Experiments

Number of Range of 5 5
Case Observations x~values 9y o5 A
1 60 10.to 20 2.0 2.5 .5
2 120 10 to 20 2.0 2.5 .5
3 60 10 to 20 2.0 2.5 .75
4 60 10 to 20 2.0 25.0 5
5 60 0 to ko 2.0 2.5 .5

The experiments were not intended to be exhaustive in any sense but
were designed merely to test the computability of estimates under
slightly varying circumstances. Fach experiment was replicated 30
times. The likelihood function (2-2) was maximized by employing the

modified quadratic hill-climbing algorithm ([5], [6]). The initial



approximation to the location of the maximum used to initiate the
iterative computation were the same in each replication as that employed
by Goldfeld and Quandt [7], with the initial value of ) set at

2, in order to facilitate comparison of the two sets of results.
Satisfactory convergence of the maximization algorithm failed to

take place in 22 per cent of all replications.

The basic results are displayed in Tables 2, 3 and 4. Table 2
contains the mean biases, Table 3 the mean square errors, and Table bk
the ratio of the mean values of the asymptotic variance estimates
for the successful replications in each experiment to the mean square
error. Thus, denoting by 51 the estimate for some coefficient in the
ith replication of an experiment, by 6 the true value and by n the

number of successful replications, Table 2 contains values of

n . n .
(1/n) = (9i - 6), Table 3 contains values of (1/n) % (ei - 6)2 ,
i=1l i=1
n o n . 5
and Teble b4 contains values of £ o,./ % (8, - 6.) , where
. il ., 1 1
i=1 i=l
0.. 1is the appropriate diagonal element of the negative inverse of
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the matrix of second partial derivatives of (2—2).3 For the sake of
comparability, Tables 1 and 2 report the earlier results of Goldfeld
and Quandt in columns A and the results of the present experiments

under column B.

3As is well-known, the asymptotic covariance matrix of the
maximum likelihood estimators is consistently estimated by the
negative inverse of the matrix of second partial derivatives if the
maximum likelihood estimates are Jjointly sufficient.



Inspection of Tables 2 and 3 reveals that the two methods are
of comparable quality in the experiments performed. Out of the 20
possible coefficient-case pairings in which comparisons are possible
the present method exhibits smaller mean biases in 10 and smaller
mean square errors in T instances. The procedure proposed in this
paper has a distinct advantage over the procedure employed in [7]
in terms of the ratios of the mean asymptotic variance to the mean
square error. This ratio converges to unity as the sample size is
increased indefinitely. For the procedure reported in [7], con-
vergence seemed to occur for samples of size 120 but not for samples
of size 60; in the present method nearly all the ratios are close to
1 (but note the value for A in Case 5).h The relatively good
performance of this method is all the more impressive in that, unlike

the methods of Fair and Jaffee (3] or Goldfeld and Quandt [7], it

does not require prior knowledge of an extraneous variable z. It

is by the same token inferior to those methods in that it does not
allow individual observations to be identified with particular regimes
but computes only the probability that one or the other regime

was operative during the sample period.

hThese ratios are easily affected by outliers in the estimates
for the asymptotic variances. Outliers may oceur relatively more
often than would be expected since second derivatives were computed
by numerical differencing.
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Table 4

Mean Asymptotic Variance/Mean Square Error

Case
Coefficient 1 2 3 L 5
ay 1.0221 1.h1k1 1.3675 1.367h 1.0508
by 1.0348 1.k212  1.4781 1.6648 1.1801
a, 1.5468 .9211  1.1646 .930k 1.163h
b, 1.8365 1.1368 1.1136 1.1626 2.4603
A 2.135h .T694 .9238 .Th92 13.2621

3. A CONCRETE EXAMPLE
In their analysis of markets in disequilibrium Fair and Jaffee
examine the market for housing starts with the following demand and

supply functions:

Vg = O F X F 0K, Fagxy +ou,, (3-1)

and

[

Vg = By ¥ ByXgp ¥ By o+ BoXo, + BeXe +u,, (3-2)

where Yy is the observed number of housing starts in month t,

Xy is a time trend, X, & measure of the stock of houses, x3t the
mortgage rate lagged two periods, X), & moving average of private
deposit flows in savings and loan associations and mutual savings banks
lagged one period, XSt a moving average of borrowings by savings and
loan associations from the Federal Home Loan Bank lagged two periods
and Xep = x3t+l° They estimated their model in several ways, two of the

principal cnes being based on the ocutside variable z, = x6t+l - X6t’
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i.e., the change in the mortgage rate. They classified the

observations into two groups depending on the sign of z according

t:
to the elementary economic theory of markets in disequilibrium z, >0

implies that there is an excess demand and hence the observed value
of Y lies on the supply function and conversely for zg < 0. Their
two methods differ with respect to the treatment of observations
corresponding to 2, = 0.

Their model was reestimated employing the A-method developed
in this paper. A slight additional complication is due to the fact
that the error terms ult and uzt must be assumed to be serially

correlated. Assuming first order Markov processes Uy = P18t1 + €t
and Uy = Polny 1 + €, for the error generation, equations (3-1)
and (3-2) can be transformed to contain only the independent

errors £, and €t and the likelihood function corresponding to
(2-2) can then be written down. Maximizing it yields results that
are displayed in Table 5 together with those of Fair and Jaffee.
The parenthesized figures are the absolute values of the estimates
divided by the square root of the estimates of the asymptotic
variances. It may be noted that the results are broadly comparable
to those of Fair and Jaffee with the notable difference that the
responsiveness of demand is less for each independent variable than
~had been found by Fair and Jaffee. 1In a rough way the A-method can
also be said to be in between the two methods of Fair and Jaffee;
for example the estimates of u3, Bl, Bs are close to their Model I;
the estimates of Py and P, are close to their Method II. It is

finally interesting to observe that the estimate of A is .181. The



1k,

probability A was associated in the formulation with the demand
regime. Of the 127 observations used by Fair and Jaffee L1 corresponded
to price increases and thus represent points on the supply function,

19 corresponded to price declines and thus represent points on the
demand function, and the remaining 67 corresponded to a zero price
change and can be thought to lie on both functions. The number of
demand points as a fraction of all points is 19/127 = .149; the number
of demand points as a fraction of all points not lying on both functions
is 19/60 = .316. Our estimate of A is between these two limits and

seems accordingly quite reasonsble.

L. CONCLUDING REMARKS

The main results of this paper exhibit (a) that the A-method
proposed for estimating different regimes when the switching point
is unknown is a computationally feasible procedure and (b) that it
yields results that appeared sensible both in a limited set of sampling
experiments and in a realistic economic problem. The: one notable
disadvantage of the method is that it does not allow individual
observations to be identified with particular regimes.

There are at least three possible extensions of the procedure,
of which the first two are thoroughly straightforward.

(1) The number of regimes does not have to be limited to two.
If it is assumed that the number of regimes is h, with probabilities
? Ar = 1, and that the

r=1
conditional density of y given the x's for the r regime is

of being selected by Nature Al’ Az,...Ah,

fr(y[xl,...,xk), then the conditional density corresponding to (2-1) is

Byglxygsee o) = AL G fxgyeemy)



Table 5

Results for the Fasir and Jaffee Model

Fair and Jaffee

Fair and Jaffee

13.

Method I Method 11 A-Method
193.16 328.43 190.09
(3.10) (6.06) (4.23)
6.78 3.9L 2.25
(2.01) (1.69) (3.26)
- .055 - .032 - .016
(1.93) (1.63) (2.73)
- .2h - JhT1 - .195
(2.27) (5.73) (2.50)
-Lo .84 -75.87 -4,58
(1.29) (1.74) ( .1k)
- .236 - .332 - J2LT
(3.12) (2.71) (2.66)
.0kL8 .oLT .057
(6.20) (4.32) (6.39)
.033 .012 .033
(2.76) ( .62) (3.79)
116 .190 .1h3
(2.69) (2.7h) (2.72)
76.38 65.45 27.53
- - (2.04)
57.61 47.06 3445
- - (4.85)
731 Lg9 .538
- - (5.76)
5Th 697 .698
- - (9.71)
.181

(2.73)
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from which a likelihood function corresponding to (2-2) can be
immediately derived.

(2) The method of Goldfeld and Quandt [7] may be combined
with the present method if one assumes that the probability with
which Nature selects regimes depends on some extraneous varisble z.

Thus, defining d(zi) as in (1-5), the conditional density (2-1)

becomes
a(z,) k
i 1 2
h(yi[xli,...,xki) = — exp{- (yi - E Bljxji) } o+
2ng 20 j=
1 1
1-d(z,) k
i 1 2
———exp {- —(y. - I B..x..)%} .
V2mo, 262 SR PG R N R

The corresponding likelihood function is then maximized with

respect to the B's, as well as the two additional parameters

9y Oy
appearing in d(zi).

(3) It may be plausible to argue that if the estimated value
of X is very close to either O or 1, there is in fact only one
regression regime in operation.5 This suggests that a likelihood
ratio test is feasible for testing the null hypothesis that only

one regime is in operation (A=0 or 1) against the alternative that

there are two regimes (A unrestricted between O and 1).

5This may , of course, only indicate that the numbers of
observations coming from the two regimes is very unbalanced.
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