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MULTIPERIOD PREDICTIONS FROM STOCHASTIC
DIFFERENCE EQUATIONS BY BAVESIAN METHODS

1. INTRODUCTION

Existing methods of parameter estimation, be they
versions of least squares, maximum likelihood, or Bayes, that
have been applied to systems of dynamic econometric eguations
to produce forecasts were not designed for the purpose of fore-
casting. 1In this paper, it is argued that these estimation
methods may be inadequate if the resulting estimates are to be
used to make ex ante predictions for more than one period ahead,
and if the accuracy of the predictions is measured, as it
usually is, by the mean squared errors. A formulation of the
multiperiod prediction problem is presented. It will then
become clear that the same set of parameter estimates cannot be
optimal in making predictions for different time periods into
the future, when optimality is defined by minimum mean squared
errors in small samples.

Recently there has been much interest in comparing the
ex post forecasting performance of different econometric models,
€.g. Hickman [k], and of different estimation techniques applied
to the same econometric model, e.g., Klein [8] and Fair [3].

It has become generally recognized that, in terms of ex post
Prediction tests, models or techniques that perform better for

one-period predictions may do worse for multi-period predictions.




If one wished to have a model perform well in ex post predictions

-

for many periods ahead (well in the sense of small squared pre-
diction errors), cne could fit the data with such a criterion
in mind, A related, though different, question naturally arises
as to whether different estimators should be used for making
X ante forecasts for different periods into the future. The
former topic is one of fitting equations to a set of data. The
latter topic is one of statistical decision, and is the subject
of this paper.l

Section 2 treats the case of multiperiod predictions
for a univariate time series which satisfies a first-order
autoregression, A completely analytical solution to the pre-
diction problem is given by the Bayesian method. The result
of this section could be considered complementary to the recent
work of Orcutt and Winokuy [1o]on first~order autoregression.
Section 3 generalizes the result of section 2 to the case of a
higher order system of linear stochastic difference equations
with exogenous variables. It provides an alternative approach

to multiperiod forecasting by the use of the reduced form of a

system of linear econometric equations.
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2. MULTI-PERIOD PREDICTIONS FROM A FIRST~ORDER AUTOREGRESSION

Consider the simplest case of a univapriate first-order

autoregression.
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The intial value Yo is treated as fixed, and U, is assumed

to be normally distributed. The parameters are the coefficients

T' = (a ¢) and the variance h™t of the residuals. The problem

is that, having observed y' = (yl,.,.,yn), one wishes to predict
~ A

Yo+ + FYor the predictor Y = yn+k(Y) of Y4 » aSsume the

risk function to be
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where, as elsewhere in this paper, the symbol p denotes proba-~
bility density function which is assumed to exist, We will take
the Bayesian approach of choosing the prediction function §n+k(y)
to minimize expected risk, given a prior density p(m,h) of the

barameters.




It will simplify the derivations to rewrite the risk (2.2)
as an expectation taken over the future un+l""’un+k » rather
than the Ffuture Yn4x + By the model (2.1), and on repeated

substitutions of u's for y's , we have
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Then, noting the fact that the future u's are uncorrelated

with the observed Y , or with the parameters, we can write the

risk (2.2) as

(2.4) B(Ypu - yn+k>2

] k-1
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Since the prediction function yn+k(y) affects only the
first term on the right side of (2.4), the Bayesian approach

A
amounts to minimizing, with respect to vy the expression

n+k’
» k k-1 2
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This minimization will be achieved by minimizing

(2.6) f[Yn+k"akyn-(ak~lc+..,+c)]2p(y[n,h)'p(ﬂ,h)dﬂ dh .

~

Setting the derivative of (2.6) with respect to Yoy equal to
zero, one obtains
(2.7) g, = et [la¥y, + (a5 Yot 1) ]

o7 yn+k = Yn Cteoe

Jp(y|mh) p (n,h)dx an

-p(y]n,h)Ap(n,h) dn dh
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(72" plxly)arly, + (2 Ter.. ae)p(x]y)an .

Thus the optimal predictor vy consists of two parts, the

n+k
first being the expectation of ak times the initial value

k--lc ak—e

Y,p» 2and the second being the expectation of (a + ct.ite),

where the expectations are evaluated by the posterior density
p(a,cfy) = p(W]Y) « If one had formulated a similar Bayesian
problem of estimating a and ¢ » and not of bredicting Yner 7
his point estimates ; and 2 would be the expectations of the
posterior density p(a,CIY)- A predictor constructed from these
estimates would be ;kyn + (;k-l ¢ Fauot 2) » and would not

in general be optimal by the criterion of minimum mean squared
error. The two predictors would coincide only for the prediction

of vy

n+1




It iswell-knownthat if the density p(y[w,h) is normal,
and the prior density p( ¥,h) is either diffused, being
proportional to h-1 as suggested by Jeffreys [5], or is
hormal-gamma as suggested by Raiffa and Schlaifer [11], the
posterior density is normal-gamma. Under the assumption of the

diffused prior, the posterior density is
in-
(2.8) p(w,hly) oc n2B 1 exp{~3h(y - 2w)! (y-2zu))

where
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: m = [a e] .

(2.9) y' = lyj..oy,. ]

On integrating over h » the marginal posterior densitv of =

iswell-known to be the bivariate density
, ~in
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The posterior density (2,10) can be applied to equation

(2.7) to obtain optimal predictions Yo+ ¢ For k=1,

-~

(2.12) Ype1 = [ Jap(w|y)ar 7y, + fep(n|y)an

it

(Ea)yn + (Ec) = a Yy, + ¢,

where the expectation FE is taken over the posterior density

(2.10). For k=2 ,

A

(2.13) Ypeo = (Eaz)yn + (Eac) + (Ec) .

To evaluate the second moments, we note
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where the second moments around the means for the multivariate
t density can be found in Raiffa and Schlaifer [11, p. 257].

Thus the predictor (2.13) differs from the usual one by
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2 _rle hel = Ln=2)st
(2.15) [Ea® -2 ]yn + [Eac ~ ac] = = [gllyn + 9151

where 934 is the i-j element of (z'z)~1 |

-~ v _ k
Yok hvolves E a

and terms of the form Ea'c . To evaluate E)ak » one uses the

In general, the predictor
marginal density of a » Which is univariate ¢ given by
[11,p.258]

~{nz1
(2.16) plaly) oo [ (n=2) + segll(a-g)g] 2n2l)

Let u; = E(a-a)’ . fThen by = O for j odd; and, for

even, b is given by [8, p. 60]

P35 +3) T4 w33 - 1)

(2.17) by = (n >3 + 2)

() I(4n-1)

E ak can then be calculated by the formula [8, p., 56]

, kK k n
(2.18) Ea]\ = Z {( j) “]{""' aj .
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j=0

i s
To evaluate Ea' ¢ » one can use the conditional mean of

c [11,p.258],

1
(2.19) [ ecple|a,y)de = e - 921911 @ * 9579;; a,




and then use

(2.20) E a'c = [ atl [ epicla,y) de ] plaly) aa
. -1 " i -1, i¥l
= (e~ 95977 a) fap(aly) da +g,,9, /2 aly)da
where the means of at and al+l can be calculated as in

the last paragraph.

Note that if predictions for Y1’ Yn+2""’yn+K
are required simultaneously, each can be constructed by the
method of equation (2.7). This procedure can be justified

K

by reformulating the risk function (2.2) to be kEIE(y )2

n+k Ynix’
and equation (2,7) for each value of k will follnw from
the same derivations as given above.
The result of this section complements those of
Orcutt and Winokur [10]on first-order autoregression, where
results from lMonte Carlo experiments on the properties of
some estimators and predictors were reported. It might be
of interest to compare the malti-period predictors of this

section with those examined by Orcutt and Vinokur through

further Monte Carlo exXperiments.,
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5. GENERALIZATION TO SYSTEMS oF STOCHASTIC DIFFERENCE EQUATIONS

Consider a (pxl) vector Y. obeying

-1
_ < - LI
(3.1) Ve = Alyt_l+...+Aqyt_q-+Coxt-+..y+Crxt_r-+ut (Eutus—-qth )

Again, yo’y-l’""y-q+l are treated as fixed, and U, 1s assumed

and

’

to be normal, The barameters are ' = (Al ces A CO---Cr)

H . Having observed VY' = (yl---yn) with n>qg +r +1, one

wishes to predict Yn4x conditionally on all future values of

the exogenous wvariables up to Xn4x ¢ For the predictor

£..0.(Y) of y assume the risk to be, with D symmetric
n+k n+k ?

and positive definite,

(5.2) R(LE) = B(¥p - Ynar!) DY - Ynix!

To achieve a generalization of the result of section 2,

we rewrite the model (3.1) as a first order system

~ e '-, - - - .- r B - s
yt Al AE‘ . .Aq yt—l CO' . .Cr xt ut
Yeel [= T 0 .0 v + 1o 0 : + 0
t-e LI 4 -
(3'3) * ° L I— * . . . th"r :
yt-q+l 0. . .10 Yt-q 0 o 0
: - L " A
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Oor, in new symbols,

* - ¥ T ¥*
(3.4) Yy = A vi, 1 C U
™% . .
If yn+k denotes the predictor of y;+k s We are interested

only in its upper~-most subvector vy but let us first use

n+k 7

model (3.4) to express Vi 10 terms of the future u* 's as

in (2.3),

= aKox k-1, . Ak~1 N
(3.5) yﬁ+k" A yﬁ-&(A C&§+l+"°+cxg+k>4'®' u§+l+"‘+un+k)'

. , %
The relevant subvector Ynp4x 1S obtained as M Yhix where
the matrix M = (Ip 0+++0) selects the first p rows of y;+k.
Using (3.5), the definition of M » and the independeirce of the

future u* 's, we write the risk function (3.2) as

A .2 ’A i 2

(3.6) Bllyp - yn+k"5,D = Bl —Ihyg+k”D
N ~ VN ST T k=2 . % 2
= E”yn+k HAT y* - (A Cx¥ ., +A CxX oFee ot an+k) HD

+ Ef(aF Tux 4. e )”2
n+l *"°*" “n+k D

where, the term involving future u¥'s is nhot affected by the

predictor Ve
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The development from (2.5) to (2.7) can be follnwed exactly to

yield the result
~ ! . k-1
(3.7) v = [fwn® p(m[v)amly* + [fua Co(n|y)amlxx

teeor [fmco(nmfv)anysy

The interpretation of (3.7) is similar to that of (2.7). Rather
A s -~

-~ ~
than first obtaining the estimate I' = (Al,..,Aq7 Co...Cr) of

I' as the mean of the posterior density and then form the
K x k-1 % AR
o Y *
as MA Y, t+ MA C Xigq TeeotMC X+ » one
should compute the expectations of MAk s MAk-lc,...,MC by the

predictor of Ynix

' » ) - «, ¥
posterior density, and then apply them to y; B £§+l""’xn+k
respectively. Again, the two methods would give the same result
only for the prediction of Yne1 *
It iswell-known that if the density p(y|m,H) is normal,
and the prior density p(I,H) is either diffused, being propor-
-1
tional to |H 2(p+1) sy Or is hormal-Wishart, the posterior
density is normal-Wishart. Under the assumption of the above

diffused prior, the posterior density is
Al pmna
(3.8) p(m,H|Y) o« |g[2(n-P l)exp{~%trH<Y-zrr)'<Y-zn))

where Y is nxp, 7z is nxs (s=q+r+l), and T is SXp , as

defined by
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Yo yn-ﬂ
7 * g
1 D | zl—q ' yn-q t
(3.9) ¥ = [lyjeeey ]2 2" =% x, [0 = [a...c. .
L}{r Xn_r

an integrating over H , using the integral of the Wishart
distribution [1, p. 15L4], cne obtains the marginal posterior
density of I to be the matricvariate t density2
-

(3.10) p(I|Y¥) oc |(Y - 2H)'(y-2zm)} 2"

A A A A ——é—n
« (Y - zO)(y-2zI) + (I-0)'z'2(01-1)|
where I is (Z'Z)"lZ'Y . The posterior density (3.10) can

be applied to eguation (3.7) for obtaining the optimal prediction

N
Ynex

While the problem of numerical integration of (3.7) remains
to be further investigated, the following analytical results may
be used at least for evaluating predictions when %k 1is small.
To evaluate §n+k by (3.7), it is required to calculate expec-
tations of products of at most Kk elements of I . et the
p columns of I be arranged into a column vector T = (Wl. .spby
of ps elements. To calculate the expectation of T TaeeoT s

one can use the posterior density p(@,H|Y) and integrate first

over I :



1h

(3.11) f(vivrj co.m ) p (U,E|Y) 4N« a8

[N

o flu|E(n-p-1-s) [f>(7ri.. ) E|*exp( -} tr B(I-T) 'z z(1-1)}an]

~ A
e exp { ~4trH(Y-2I)'(Y~20I)}dH

where the density of I , given H , is seen to be multivariate
A
normal with mean I and the covariance matrix of the vector T

is H—]

i

@ (Z'Z)~l V = (v..) . The expectation of the product

1]

Wiwj...vm of k T's is known, as it can easily be derived from

the characteristic function of the multivariate normal density,

~A >~ ~
to be Wivj"'wh , plus products of cne vig and (k-2) 7's ,

plus products of two Vi and (k-k) s , etc., the k sub-
scripts in each product being a permutation of (i,j,+0.,m) but
with vij and vji counted only once.3 Thus for k = 2,3 at

most one vij is involved in each term; for ks=k,5 the product

of at most two vij is involved in each term. The former involves

one element of H“l , and the latter involves the product of at

most two elements of H T,

Having found the expectation of the product TieeaTy
given H , one has to perform the remaining integration of (3.11)
over H . The remaining density of H in (3.11) is the Wishart

A A
density with parameter set [{Y-2zI)'(Y-2I) , (n-s)]. It is thus

required to find the expectation of an element (for k=2,3), or
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of the product of two elements (for k=k,5), of H—l , as the

~ -
T's and the elements of the matrix (2'z) L are given for the

purpose of this integration. Let h>J be the i-j element of

1

the pxp matrix H ~ , s,. be the i~j element of

1]
A A
(Y-2I)'(Y-zI) , and let v = (n-s)-p+ 1. Kaufman [6, p. 1k]

has obtained

i3 1 ]
(5012) E h = oy Sij .
E(hijhk{7 = e L (v-3)s..8, p+s,. s
(v-1)(v-2)(v=k) 137kt T Cik® 54

These results complete the ahalytical solutions to the pre-

diction of ¥y for k wup to 5.

n+k
Insofar as the reduced form equations in linear econometric
models are systems of stochastic difference equations, the
result of this section applies to multiperiod predictions by
econometric models. While this paper has brought out the
dynamic aspect of forecasting, it has ignored the non-linear
restrictions on reduced~form coefficients induced by over-
identification of the structural equations, an aspect
emphasized in the existing literature on the estimation of
sumultaneous equation systems. Which aspect of the problem will

turn out to be more important for forecasting purposes remains

-
an open guestion.,
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FOOTINOTES

I should like to acknowledge that my interest in the subject
of this paper has partly stemmed from conversations with
Ray C. Fair in connection with his work on the former subject

[3}.

Recent applications of the matricvariate ¢t density to
econometric problems include papers by Zellner and Chetty
tlj],Sewell 2], Kaufman [7], and Dreze and Morales[2],
among others. None of these studies deals with the multi-

period prediction problem of the present paper, however.

Thus for k=5, we have

A AN

5
+ (2) terms of the form Vij”k”%ﬁh

A A Y
W’E}T

NN
ET, T T, T)T_ = T.T
Ty = 7 m

ik
Li5y¢3 ﬂ -
+ 2(2)(2) terms of the form Vijvk%?h .

Of course, both aspects could be incorporated, at least in
principle. One way to do this would be to utilize the
posterior density p(B,T'|Y) of Dreze and iMorale [2] for the
coefficients B and T in the structure B'yt = I"zt +
residuals, where a priori restrictions on the elements of

B and I' have been imposed. Our solution would require

evaluating elements of the integral
1 -1.1
[ 2% p(ujy)an = p(r8™H* p(m,r|v)a(s,r) .

I have not examined the feasibility of this numerical problem.



