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1. Introduction

The purpose of this paper is to point out how the efficient
instrumental-variables technique discussed by Brundy and Jorgenson [2] can
be modified to take into account auto-regressive properties of the error
terms. The limited-information and full-information estimators proposed in
this paper are consistent and asymptotically efficient if the auto-regressive
coefficients are known with certainty. For the case in which the auto-
regressive coefficients are unknown and must be estimated, the estimators
are consistent, but the asymptotic efficiency of the estimators has not
been established. A result by Dhrymes [5] is available, however, that is
encouraging as to the possible asymptotic efficiency of the estimators for
the case in which the auto;regressive coefficients are unknown.

The full-information estimation of simultaneous equations models with
auto-regressive errors has been discussed by Sargan [10], Hendry [8], Chow
and Fair [h], and Dhrymes [5]. Sargan originally proposed the full-
information maximum likelihood estimation of such models, and Hendry and
Chow and Fair have recently developed computationally feasible methods for

obtaining the maximum likelihood estimates. Hendry considered only the

* I would like to thank Gregory C. Chow and Phoebus J. Dhrymes for helpful
discussions regarding certain parts of this paper.



case of completely unrestricted auto-regressive coefficient matrices

(i.e., no zero elements), whereas Chow and Fair's method can handle the

case of restricted auto-~regressive coefficient matrices. Dhrymes has
recently proposed the three-stage least squares estimator of simultaneous
‘equations models with auto-regressive errors. Dhrymes also considered

only the case of completely unrestricted auto-regressive coefficient matrices.

The limited~information estimation of simultaneous equations models
with auto-regressive errors has been discussed by Sargan [10], Amemiya [1],
and Fair [7], among others. Sargan proposed the limited-information maxi-
mum likelihood estimation of such models, and Amemiya and Fair considered
various two-stage least squares estimators of such models. Most of the work
on limited-information estimators has been concerned with the case of
diagonal auto-regressive coefficient matrices,

Brundy and Jorgenson's criticism of the two- and three-stage least
squares estimators, namely that the first stage involves estimating reduced
form equations with a very large number of variables included in them,
holds even more so for models with auto;regressive errors., For these models,
the feduced form equations include not only all of the predetermined vari;
ables in the system but also all of the lagged endogenous and lagged
predetermined variables. In fact, one of the main purposes of the work in
[7] was to suggest ways in which the number of variables used in the first
stage regression of two-gstage least squares might be decreased with perhaps
small loss of asymptotic efficiency. The advantage of the instrumental-
variables techniques proposed in the Brundy-Jorgenson paper and in this

paper is that the first stage regressions need not be run.



2. The Model

The model to be estimated isl
(1) Y +X8=U |,

where Y is a n x p matrix of endogenous variables, X is a n x g matrix of

predetermined variables, U is a n x p matrix of error terms, and I' and B are
D x p and g x p coefficient matrices respectively. The X matrix may include
lagged endogenous variables as well as exogenous variables. n is the number
of observations., As distinct from the Brundy;Jbrgenson paper, it is assumed

here that the error terms in U follow a mth order auto-regressive process:

(2) U=10 R(l)

(m)
+ +
o cee FU_RY +E ,

where the R<k) matrices are p x p coefficient matrices, E is a n x p matrix
of error terms, and the subscripts denote lagged values of the terms of U,
Combining (1) and (2) yields

D+, Y_;mFR(m) + X_mBR(m) +E .

(3) VI +XB =Y ) X_

1 1

From (3) the reduced form for Y is

(4) Y = xr-t+ Y_iFR(l)r"l+ X_lBR(l)r"l ... +Y TR (m)r'l

+ X_mBR(m)r"l +Ert

lThe notation here follows as closely as possible the notation
in Brundy and Jorgenson [2],



or
(5) Y=QU+V s
where V = EP-l, Q=I[xXvY 1 X eee Y X m]’ and II is partiticned according
to Q.
It is convenient to write the structural equations in (1) in the
form:
(6) yj = Z;jaj + uj 2 ,j=l.,2,...,p 2
where
.
z. = [v. X.] , &.=1] 9 .
d Jd J d 8
J.‘

As in Brundy and Jorgenson [2, p. 208], Vs is a vector of observations on
the jth column of Y whose structural coefficient has been normalized to one,
Yj is a matrix of observations on the other endogenous variasbles included
in the equation, Xj is a matrix of observations on the predetermined vari-
ables included directly in the equation, uj is the jth column of U, and 7j
and ﬁj are structural coefficient vectors corresponding to Yj and Xj

respectively, The p equations in (6) can be combined to yield

(7) y=23 +u p)
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In order to implement the instrumental variables estimator in the

auto-regressive case, it is necessary to transform (7) so that the error term

on the right hand side is e rather than u, where

ej being the jth

8 v~ Y@y

= 1z-x ' 21)z
or
9  yremeee

column of E,

This transformation is:

N/

(m) ‘_r"' N
= ews "'(R XI)y-m

g e~z T+ e

2

where I is an n x n identity matrix and the subscripts on v and Z denote

lagged values.,



3. The Full-Information Estimator

The basic idea of the Brundy~Jorgenson paper is that if a set of
instrumental variables can be found that is based on a consistent estimate
of II, then using this set of instrumental variables will result in asymptot-
ically efficient estimates (within the class of either limited-information
or full-information methods). In the present case, I in (5) is a function

of the R(k)

matrices as well as of I' and B, Consequently, if consistent
estimates of I', B, and the R(k) matrices are available, then a congistent
estimate of Il in (5) is available, The equations in (5) can then be used
to generate consistent predictions of the endogenous variables. Consistent
estimates of I', B, and the R(k) matrices can also be used to obtain a
consistent estimate of the variance-covariance matrix, X, of the error
terms E in (3).

Assume, therefore, that initial consistent estimates of 'y B, and
the R(k) matrices are available2 so that a consistent estimate of II in (5)
is available. The matrix Z consists of current endogenous variables as well
as of predetermined variables. Since a consistent estimate of II is assumed
to be available, (5) can be used to generate consistent predictions of the
endogenous variables in the model, TLet 2 denote the matrix Z except for
the replacement of the current endogenous variables in Z by their predicted
values from (5). Let y* and Z* denote the matrices y¥* and Z¥* respectively
except for the use of consistent estimates of the R(k) matrices rather than
A

the actual matrices to transform the variables. Also, let Z* denote the

A
5 A S I
matrix Z* except for the replacement of Z by Z, and let W = (& l@QI)Z*}

2It will be seen in Section 6 how initial consistent estimates of these
matrices can be obtained.
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A
where £ is a consistent estimate of &, Then the "full-information

t"3

instrumental variables efficien estimator in the auto-regressive case

(say, FIVER) can be defined to ve:

(10) d = Wz Sy .

It is easy to show that the FIVER estimator is consistent. From (8)
or (9) and the definition of y* and Z%*, it follows that

1)  jr=2w + (D E0 e e+ (R(m)'_ﬁ(m)')@x]u_l +e

where the ﬁ(k) matrices are consistent estimates of the R(k) matrices.

Substituting (11) into (10) yields:

(12)  a=s+ @207 (RN AN e+ L+ @R ) p1ie

+ (Wzx) " Hire )

Assuming that plim n (W'Z*)fl exists amd is finite, it follows that

plim @ = &, since plim n"lﬁ'e = 0 because of the inclusion in W of only
predetermined variables or linear functions of predetermined variables and
(k)

since the R matrices are consistently estimated,

3Brundy and Jorgenson (2], p. 21k,

L‘See Dhrymes [5], Lemma 8, for a detailed proof of the consistency of the
three~stage least squares estimator of the above model. It can be shown that
the formula for the three-stage least squares estimator that Dhrymes presents,
formula (30), is the same as the formula in (10), except that for the three-
stage least squares formula W includes predicted values from the first stage
regressions rather than values generated from (5) using a consistent

estimate of IL,
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It is also easy to see that the FIVER estimator is asymptotically
efficient if the R(k) matrices are known with certainty. In this case the
model in (9) is merely a standard simultaneous equations model in y* and Z¥,
Brundy and Jorgenson have shown that asymptotic efficiency is preserved if
one changes the three-stage least squares estimator by using generated
predictions of the endogenous variables rather than predictions from the
first stage regressions, The formuls in (10) is the same as the three-stage
least squares formula (30) in Dhrymes [5] (both assuming known R(k)
matrices)5 except for the use of generated predictions rather than predic-
tions from the first stage regressions. Therefore, since the three-stage
least squares estimator of the standard simultaneous equations model is
asymptotically efficient, the FIVER estimator is asymptotically efficient
in the case of known R(k) matrices,

The asymptotic efficiency of the FIVER estimator has not been
established for the case in which the R(k) matrices are unknown and must
be estimated along with the structural coefficients. With respect to the
three-stage least squares estimator of the above model, however, Dhrymes [5]
has shown that if one iterates back and forth between estimates of & and
estimates of the R(k) matrices and if convergence is reached, then
asymptotically the set of equations that is solved by this procedure is
the same set of equations that the full-information maximum likelihood
estimator satisfies. This result cannot be extended directly to the FIVER

estimator because, unlike three-stage least squares, the FIVER estimator is

5Dbr;ymes actually considered only the case of a first-order auto-regressive
process, but it is easy to generalize his arguments and formulas to higher-
order processes., Dhrymes also considered only the case of completely
unrestricted auto-regressive coefficient matrices, but his formula (30)

is also valid for the case of restricted matrices.
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not based on the minimization of anything. Dhrymes' analysis is also

based on the assumption of unrestricted auto-regressive coefficient

matrices, an assumption that is not likely to be made in practice.

Dhrymes' result is, however, at least encouraging as to the possibility

that the FIVER estimator, based on iterating back and forth between estimates
of & and estimates of the R(k) matrices until convergence is reached, 1is
asymptotically efficient even when the R(k) matrices are unknown,

The asymptotic variance-covariance matrix of d is:

(13) asy.var-cov d = n'lplim n (W'Z*)—lﬁ’ee'W(Z*'W)_l .

A a -
From the fact that £ is a consistent estimate of I, that Z¥ differs from Z*
merely by the replacement of the endogenous variables in 7 by predictions
of the endogenous variables based on a consistent estimate of I in (5),
that the variance-covariance matrix of e is ZX), and that W = (%"%%51)%*,
it can be shown from (13) that the asymptotic variance-covariance matrix
of 4 is n"lplim n (W'Z*)“l. The asymptotic variance-covariance matrix of d

can thus be estimated as (W'Z*)-l.

4. The Limited-Information Estimator

In this section the limited-information case will be analyzed under

the assumption that the R(k)

matrices are diagonal, A brief description of
how one can estimate models with non-diagonal R(k) matrices by limited~
information techniques is presented in Section 7.

If the R(k) matrices are diagonal, then equation (6) can be

transformed as:
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1) (m) (L, (m)

l)"" .-I‘(. . ™ esse ™ . . = Z." ..Z. - ase ™ ..Z. 6.
(14) ya Jd yJ-l raa ya-m [ J rJJ J=-1 rJJ J-m] J
+ ej » J=1s25 400D ’

or
(15) V¥ =Z%, + e, s

J Jd d J

where the subscripts on yj and Zj denote lagged values and where rgg) is

the jth diagonal element of R(k) (k=1,...,m). Let %j denote the matrix Zj
except for the replacement of the current endogenous variables in Zj by their
predicted values from (5). Let i? and Z§ denote the matrices y§ and Z§
respectively except for the use of consistent estimates of the rgg) CO-
efficients rather than the actual coefficients to transform the variables.
Also, let Wj denote the matrix Z§ except for the replacement of Zj by 23.
Then the "limited-information instrumental variables efficient"6 estimator

in the auto-regressive case (say, LIVER) is:
16 a, = (z%) Ly .
( ) J ( Jd J) Jy§

The discussion of the asymptotic properties of the LIVER estimator
is similar to the discussion of the asymptotic properties of the FIVER
estimator and need not be repeated., The LIVER estimator is consistent, and
within the class of limited-information estimators, the estimator is

asymptotically efficient if the r§§) coefficients are known with certainty.

6Brundy and Jorgenson [2], p. 211.
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The asymptotic efficiency of the estimator has not been established for the
case in which the r§§) coefficients are unknown. The asymptotic variance-
covariance matrix of the estimator is n-ldjj plim n(Wézg)_l, which can be

- - A
estimated as 3..(W[Z%) 1, where 333 is the jth diagonal element of Z,

5. .Estimates of the R(k) Matrices

Given consistent estimates of the I and B matrices, consistent
estimates of the error matrices U, U—l""’U-m can be obtained from the

A
current and lagged versions of (1). Let U denote any consistent estimate of

>

U, and let U denote any consistent estimate of ﬁ, where U = (U-l"'U-m)'

Also, let R' = (R(l)' ces R(m)') and write (2) as

(17) U=0R+E .

Now, for known values of U and U, (17) can be interpreted as a Zellner
"seemingly unrelated regression' model. If the R matrix is completely
unvestricted, then (17) is, of course, merely the standard multivariate
linear regression model., Sinee consistent estimates of U and U are available,
for the full-information case R can be estimated as

A_ A A_1A

(18) & = (G2 5)" Bl ,

A -
where Z is a consistent estimate of =, PFor the case in which R is completely

AT FAYA)
unrestricted, the full-information estimator is merely (U'U) lU'U. This is

the case analyzed by Hendry [8] and Dhrymes [5]. For the limited-information

case, the (diagonal) elements of the R(k) matrices can be estimated by merely
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regressing each column of 8 on the corresponding columns of‘G_l,...,G“m.
For the limited~information case, information about g is ignored,

Similar statements can be made about the asymptotic properties of
the estimators of the R(k) matrices as were made about the estimators of
the & vector, In the full-information case, for example, % is consistent
and asymptotically efficient if the error matrices are known with certainty.
The asymptotic efficiency of the estimator has not been established for the
case in which the error matrices are unknown and must be estimated. The

A A A A
asymptotic variance-covariance matrix of R can be estimated as (ﬁ'Z'lﬁ)'l,
or as (%‘%)'l if R is completely unrestricted. In the limited information
case, an estimate of the variance-covariance watrix of the rgg) coefficient
estimates is merely the estimate of the variance-covariance matrix computed
from each of the least squares regressions.

The result by Dhrymes mentioned above indicates that asymptotic
efficiency is likely to be gained by iterating back and forth between

(k)

estimates of the R matrices and estimates of &, although there is no
guarantee of convergence from following this procedure., For the full-
information maximum likelihood case, iterating back and forth between

(k)

estimates of the R matrices and estimates of B and I' (or &) will result
in the maximum likelihood estimates of B, I', and the R<k) matrices. To the
extent that the separate maximization problems can be solved, convergence

to the maximum likelihood estimates is guaranteed from iterating --

see Chow and Fair [4].
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6. Obtaining Initial Consistent Estimates

There are many ways in which initial consistent estimates of r,
B, and the R(k) matrices can be obtained. One general technique is as
follows: Treat all lagged endogenous variables (as well as endogenous
variables) as endogenous, and estimate each equation of (1) by instrumental
variables ignoring the auto;regressive properties of the error terms., This
will result in consistent estimates of T and B as long as only exogenous and
lagged exogenous variables are used as instruments. Use these consistent
estimates to compute consistent estimates of the residuals U, U—l""’U-m'
Then for each equation, regress the unlagged estimated residuals on the
appropriate lagged estimated residuals. The set of lagged estimated residuals
will in general include both lagged estimated residuals of the particular
equation being estimated as well as lagged estimated residuals of other
equations of the model. This procedure will yield consistent estimates of
the R(k) matrices since the residuals are consistently estimated. In special
cases (such as diagonal R(k) matrices) there are, of course, other techniques
that can be used to obtain initial consistent estimates. For example, in the
first-order case with a diagonal R<l) matrix, the technique deseribed in [7]

can be used.7

7

Dhrymes, Berner, and Cummins [6] have also considered the estimation of the
first-order auto~regressive model with a diagonal R\l) matrix. The estimator
that they propose is similar to, but is not, a LIVER estimator. Dhrymes,
Berner, and Cummins first obtain consistent estimates of I' and B in (1) by
an instrumental-variables technique treating lagged endogenous variables as
endogenous, They then use these estimates in the reduced from of (1) --
ignoring the auto-regressive process of U -~ and obtain a set of instrumental
variables by dynamic simulation (i.e., using generated values of the lagged
endogenous variables as opposed to the actual values). They also use the

estimates of I' and B to estimate Uand U 1 and from the estimates of U and U -1

to obtain estimates of the diagonal elements of R( ) by ordinary least squares,
They then use the set of instrumental variables and the estimates of the ele-
ments of R(1) to obtain new estimates of I' and B. Johnston [9] has shown

that the estimator is not asymptotically efficient within the class of
limited-information estimators.
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7. Limited-Information Estimation of Models with Non-Diagonal R(k) Matrices

In this section it will be shown how limited information techniques

can be used to estimate models with non-diagonal R(k) matrices, Assume

without the loss of generality that the following equation is to be

estimated:
(19) .Vj = Z,jaj + U«j 2
where
i | (1) (1)

Zy =yl 8= 3 J’ IR FI S Fi B S B
r§§) and r§§) being elements of R(l). Equation (19) can be rewritten as
I A TR LR R %3

SR TA TR L
or
(21) y§ = zgﬁj + e, s
where
y¥ =y -r(l)u -r(l) Z¥ = Z.-rgl)z

3 YT Y Ve 37758 Y-
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Equation (21) is in a form like (15) except for the inclusion of the
(b
14

s 4 term in y§. If consistent estimates of rij and the residual
vector u, . are available, however, then the estimation of (21) by the
LIVER technique can procede like the estimation of (15). All that has been
done is the subtraction of a consistent estimate of r§§)ui_l from yg in (15).

8. Conclusion

One of the main advantages of the estimators proposed in this paper
is that first-stage, reduced-form regressions do not have to be run. TFor
the single~equation case, a disadvantage is that an entire model must be
specified and consistently estimated in order to obtain efficient estimates
of any single equation., In at least some practical applications this may
be a serious disadvantage, and for these cases one might wish to resort to
a less efficient estimator like the two-stage least squares estimator pro-
posed in [7], which does not require the specification and estimation of
the entire model,

Since in the full-information case it is now feasible to estimate
models with auto-regressive errors by the maximum likelihood method, it
might be desirable to attempt to estimate a model by full-information
maximum likelihood (FIML) before resorting to the FIVER estimator. As dis-
cussed in Chow [3], there are some methodological reasons for preferring
the FIML estimator over other asymptotically efficient estimators., It is,
however, likely that the FIVER estimator will be able to handle larger

models than the PIML estimator can.,
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