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PREFACE

Description of behaviour by a utility function has been the
usual first principle of consumer theory. Houthakkerl has con=-
sidered conditions for a behaviour to admit such a description.
He replaces an hypothesis of Sa;muelson2 by a stronger one, also
obviously implied by a description in terms of utility, and
which — so it is hoped — 1s to imply such a descrilption.

Here an expenditure system is the concept for representing a
behaviour; and the coherence condition, which 1s the main ob-
ject of investigation, is the same as Houthakker's hypothesis.

The object is to give the concepts and the main lines of
argument for theory of the coherence of expenditure gystems, SO
as to mark out a subject within which there can be a definite
resolution of some long-lived dilemmas about the consumer.
Especlally for Houthakker's problem, and for the much discussed
matter of integrabllity, there seems to be a perfect clarifica~
tion, though the terms go somewhat beyond those in which the
matter has usually been envisaged. Also some theorems are
formulated which are of a type entirely new in the subject,
such as, for example, those relating to local and global co-
herence, and total incoherence.

Certain details of the proofs have been stated elsewhere3;

and others are to be given in due course. These are omitted
here, not just for brevity, but so as to show more plainly the
essential ideas.

Princeton, N. J. S. N. Afriat
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1. SCALES: A binary relation R between the elements of a set
C has negation R, converse R'!', symmetric part ﬁ = R/\R!
and symmetric negation R = R AR'. Also it has a chain ex-
tension.-ﬁ, which is the relation determined between the ex-
tremlties of an R-chain, that 1s, a chain in which each element
has the relation R to its successor. An R-chain with co-
incident extremities defines an R-cycle. The symmetric part of
the chain extension of R is the relation that elements have by
their lying on the same R-cycle, by which conditlon they may be
said to be R-encycled.

Iet I, D denote the relations of identification and dis-
tinction, that is of equality and inequality between the elements.
An equivalence is defined by the conditions of reflexivity
(I —>R), symmetry (R == RL) and transitivity (R =—=> R);
an order by irreflexivity (R ==> D) and transitivity; and
a scale by antisymmetry (R —> R') and negative transitivity
(transitivity of the negation). A complete order is an order
which is complete (R' =—> R).

THEOREM. If & is a scale, then it is also an order,
and S is an equivalence; and the scale S, applied
to C, 1s represented by a complete order s

applied to the classes = of S which partition C:

XSy &> oxx&cy s

where o, € I is the class of & with representative
X € Co

5. (CHOICES AND PREFERENCES: An element X 1in a set R deter-

mines a choice [x; R], with x as object and R as range. It
1s equivalent to the set {x, R - x} of preferences (x, y), of the

1
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selected element X to every rejected element yeR, ¥ # X.

With a set of choices, there is first formed the set of base
preferences Q, obtalned from the choices taken separately, and
then the derived preferences P =73, which span the chains
formed by the base preferences. By its construction, a derived
system of preferences 1s transitlve; so 1t is an order if and
only if it is irreflexive. Choices are definéd to be coherent if
theilr derived preferences form an order.

3. MARKET PURCHASE: A purchase is specified by 1ts commodity
'composition,lgiven by a vector x of quantities obtained, to-
gether with the prices of the commodities, given by another
vector p, thus

X1 Py
X = 3 | > p = : °
Zn \ Pn.

Now the expenditure in the purchase (x, p), of composition X
at prices p, 1s

e = plx-‘ 4+ oso0e + pnxn = p'X e

4. BALANCE AND COMPOSITION: The relative prices in a purchase
(x, p) are the commodity prices with the expenditure e = p'x

as unit of money; they are given by a vector u = p/e which de-
fines the expenditure balance in the purchase. Any composition
y is defined to be within, on or over a balance u according as
u'ly % 1. Now wu'x = 1 for any purchase, by definition of uj
that is, the composition in any purchase is always on the balance
in that purchase. In any purchase (x, p), the compositions Yy
in any region C which, at the same prices, could have been ob-
tained instead of x at for no greater expenditure, that 1is such

that p'y £ p'x, and equivalently u'y < 1, form the set

| Cy = {ys uty < 1, y € C}
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of compositions y ¢ C within the balance u.

5. EXPENDITURE ALLOCATION AND CHOICE: From a purchase
(x, p) involving an absolute money expenditure e = p'x,
allocated to the different commodities, in different partial ex-
penditures DyXqs o5 PpXps there 1s derived the representation
(x, u) with u'x = 1, where u = p/e. The fractions u;X,,
ceoy WX, give the proportions in which the total expenditure
is distributed. Such a derived representation,

which characterizes just the distribution of a \\\Ki\\
total, rather than determining that total abso-

lutely, together with its partition, among the g+
commodities, will be denoted by I[x; ul], and “‘=?41

called an expenditure allocation. It 1s equivalent to the repre-
sentation of the purchase as the choice of [x; C,;] of x from
among all the compositions in Cu’ that is in C and within the
balance Uu. Again, the choice is equivalent to the set {x, Cu ~ x}
of preferences (x, y) of X to every other composition

Y e Cu." x in Cuf Thus, in the pﬁrchase, the composition X ob-
tained, which is supposed restricted to a region C, 1is considered
chosen from and preferred to every other in the C

set of compositions which could have been ob-

tained for no greater expenditure at the same

prices, that is the set Cu‘ g+ W

6. FEXPENDITURE SYSTEMS AND PREFERENCE RELATIONS: An expenditure
system E is a2 mapping

E:Bwe> C (UW—> x; u'x = 1)

of a region B of balances u into a region C of compositions

X subject to the balance condition u'x = 1. It is equivalent to
the set of cholces [x; C,] (1 e B), with x =Eu, +that is with

x determined on each balance u e B by E.

These cholces have base preferences

Q = Eéfo, Cy —_f}; and the derived

preferences P = Q then define the $+
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the preference relation of the system. The system is called
coherent if its cholces are coherent, which condition is that
P be an order.

T. RESPONSIVITY: An expenditure system E, obtaining compositions
X, ¥ € C on any balances u, v € B, 1is invertible if
udve==>>x+%y. Let

=Inf [x -y|/lu=-v], Ag=infr, .

A
u veB 1eB u

Then E 1is called responsive at a point uw ¢ B ' if xu.> 0, and
in the region B if Ag > 0. Responsivity in a closed region 1s
equivalent to responsivity at each of its points. A system can be
responsive only 1f it is Invertible, and the inverse system is
continuous. Thus, with a responsive system, there is always a
movement of composition in response to & movement of balance,

the movement of the one being through a distance which is at

least a fixed positive multiple of that of the other.

8. DIFFERENTIABITITY: An expenditure system is differ-
entiable if

y-x=(x, +plw, v))v -u)

where p(u, v) —> 0 (v —> u). Then the partial derivatives
axi/auj of the elements of x with respect to the elements of
u all exist, and form the elements of the matrix X, The -

system 1s invertible only if the matrix X, 1s Invertible; and
the inverse matrix u 1s the partial derivative matrix of the

inverse system, which must then be differentiable also:

T = Wy =1 -

THEOREM. invertible /\ continuous . {<=== . responsive
« {== , lnvertible /\ differentiable.

9. GEOMETRIC AND ANALYTIC INTEGRABILITY: If an expenditure
system E 1is invertible, so 1 1s obtained as a function
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of x, there can be formed the differential form u'dx and
the differential equation u'dx = 0 of the system. A surface
I of compositions wﬁich has at each of its points a unique
tangent given by the locus of compositions on the corresponding
balance u defines an integral surface of the differential
equation, or of the system. The existence of at least one in-
tegral surface through any point defines the condition of
geometric integrability. The condition of simple geometbric
integrability is when there exists just one surface through any
point. Under this condition, the set $ or integral surfaces
of the system gives a partition of C, with every composition
X ¢ C Dbelonging to just one surface I ¢ J . Each surface

I ¢ f disconnects C into two domains, called its sides,
distinguished as over and under I. Also the surfaces form a
continuum, completely ordered by a relation

4, with the property that I'4 1" if and \

only if any element =x' of I' is over 1",

and, equlvalently, any element =x" of I" 1s $$
under I'. This complete order--{i of the sur-

faces which partition C determines a scale G on the elements
of C, with the definition

I"
I'

XGy = IX_SLIy ’

which may be called the geometric scale,
implicit in the condition of simple geo- L, I,
metric integrability.

The differential form u'dx is said to be integrable 1f it
is proportional, by a factor A called an integrating factor,
to the total differential dﬁ of a differentiable function 4,
called an integral; and then the system E is said to satisfy
the condition of analytic integrability. There can be at most
one functionally independent integral; from which it follows
that the scale A determined from any integral ¢ with the
definition




XAy = #(x) > 6(y)

is independent of #: it will be called the analytic scale on
the elements, implicit in the condition of analytic integrability.

THEOREM: (1) analytic integrebility . ==> . simple
geometric integrability N\ A = G
(ii) for a responsive system there can be at
most one integral surface through any point. '
(iii) responsivity . ==> . geometric in-
tegrability ===> analytic integrability.

Moreover, with geometric integrability implied by analytic in-
tegrability, the integral surfaces of the equation are the level
surfaces of any Integral of the form, these being the surfaces on
which the integrals are constant.

Geometric integrability is automatic in two dimensions,
but not in more than two.

10. EQUILIBRIUM: If ¢_ 1is the vector of partial derivatives '
of ¢ = #(x) with respect to the elements of

X, then the condition that it be an Integral

of the expenditure system is ;

x} g—) n
where M) = x'ﬂx since u'x = 1. This is also the condition that
¢ be stationary at =X, or the system be in equilibrium under the
constraint u'x = 1, with X now appearing as the Lagrangian
multiplier belonging to the constraint. Analytic integrabllity

is thus equivalent to the system having the structure determined
by equilibrium relative to some differentiable function 4.

uk = 98

11. MONOTONICITY: With the elements of u all poaitive, the ele-
ments of ¢, are here all positive or all negative, in whilch case
g is monotone, increasing or decreasing. An adjustment of the




sign of # will now leave it increasing:
x Dy = 0(x) > 8(y)

where x)y means the composition =x contains 2;*

the composition ¥y, 1in that each of 1ts x) Y
quantities is at least the corresponding one in

y, and not all thus corresponding quantities

are equal.

12. PREFERENCE DOMAINS AND FRONTIERS: Let E be an expenditure

system, with base preference relations Q, and derived preference
‘ -

relation P = Q, where

Xy = Wy K TAT#X .

g» '

X@y

The sets XP, Px of compositions 7y which are inferior and
superior in preference to a given composition X, that is such
that xPy, yPx respectively, define the inferior and superior
preference. domains of x. They are the domains of extremities of
chains descending and ascending from X. They have complements
xP, Px defining the non-inferior and non-superior preference
domains. Their frontiers =xF, Fx define the inferior and
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superior preference frontiers of x. The regions %x = XP N Px
and PX = xP n Px define the encyclement and indifference domains
of x, formed of elements which are encycled with x: by base
preference and therefore both inferior and superior to x by
deriyed preferences, and of elements which are neither inferior
nor superior in preference to X, respectively.

i3. ANTISYMMETRY OF‘BASE PREFERENCES: The
antisymmetry Q == Q' of the base preference
relation Q 1is the condition

uly < 1 = vix > 1,

associated with Samuelson,z and known as "the
Weak Axiom of Revealed Preference.” Since

Q ==> P, 1t is implied by the condition

P —= P', for the antisymmetry of the derived
preferences P =f§, which is the same as the
here-considered coherence condition, and also the so-called -"Strong
Axiom of Revealed Preference" which was stated by Houthakker.1

While, abstractly, the Strong Axiom is stronger than the Weak
Axiom, since there are more derived preferences than base prefer-
ences, nevertheless in two dimensions they are equivalent; but
‘not in more than two dimensions. In any case, the Strong Axiom,
which is coherence, is a fundamental theoretical condition, that
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the derived preferences form an order; and the Weak Axlom has

all its significance in relation to this. stronger. conditlon.
However, the Weak Axiom does, in the process of developing the
consequences of coherence, have some interesting implications

on its own, as shown in the following theorem.

THEOREM: If E is invertible and Q antisymmetric
then xP and Px are strictly concave and convex
open domains, and their frontiers XxF and Fx are
integral surfaces of the differential equation .
u'dx = o. If, moreover, E 1s responsive, then

xF and Fx are either disjoint, in which case

B_ =0, or %dentical, and passing through x, in

X ~o
which case PX = 0 and XF = PX =Fx.

J=ta )\

R
N
L
Fx

14, COHERENT SYSTEMS: The condltion of coherence is that

PX=XP/\PX=O 3

and, since a composition x must always belong o the closure
of its preference domains, thils condition requires that 1t lie on
both its preference frontiers:

PX":O@XEXF,F:XO

Since, with invertabllity, these surfaces must then be integral
surfaces, there now follows:

THEOREM: (i) invertability /\ coherence . =—=> .
geometric integrabllity

(11) responsivity /\ ccherence . =3 .
analytic integrability AP = A .
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SONTORP I — LLQ}’W?'YL A eduunk £
ovder P g

Invertability with coherence establishes the preference
frontiers as a pair of integral surfaces through X, ob-
taining the condition of geometric integrabillty. Every
composition to the one side of one surface is inferior to X,
and every composition to the other side of the other 1is
superior, while every composition on or between them is neither
superior nor inferior, but indifferent. With responsivity,
there can be at most one Integral surface through any point;
so the preference frontiers coincide in the indifference do-
main. Integrability becomes strengthened from geometric to
simple geometric, and to analytlc; and the preference order P
becomes identified with the geometric scale G, which 1s again
identical with the analytic scale A.

The coherence condition on an expenditure system E, with
preference relation P, 1is just that P be an order; and this
does not necessafily require that P, more stringently, be a
scale, which is a rather special kind of order. However, it
turns out that for responsive systems, this generally effective
distinction, between the condition that P be an order and a
scale, vanishes. Thus, though generally

gcale P === order P

but not conversely, the converse becomes true under the condition
of responsivity.

OOROLLARY: responsive E « == . order P &> scale P.
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COROLIARY: PFor a responsive coherent system,the
preference order 1s a scale,whose indifference class
with a glven composition as representative is the
unique integral surface through that composition,
everywhere smooth and strictly convex.

15. PREFERENCE GAUGES AND INTEGRALS. Given a numerical function
g and a relation R such that

g(x) > #(y) << xRy ,

the relation is necessarily a scale; and ¢ defines a gauge,
measuring that scale.

In regard to the conclusion P = A, obtalned for a
responsive and coherent system — that the preference order be
identical with the analytic scale, implicit in the analytic
integrability condition — 1ts content 1s that the preference
order is a scale for which any Integral of the system is a
gauge .

THEOREM: A responsive coherent system is analy-
tically integrable and has any integral as a prefer—
ence gauge.

The direct construction of the preference relation of an
expenditure system, by operations following the form of its
definition, is plainly impossible: it involves the construction
of all possible chains, of all possible lengths. Thus the
preference relation between any given compositions is not
directly knowable. However, from this theorem one derives an
analytic process for the indirect construction of the prefer-
ence relation of a responsive expenditure system, under pre-
clsely that condition by which it has significance as a
preference system, the coherence condition.
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16. STABILITY. It has been noted that analytic integra-
bility is the same as equilibrium for the system, constrained
by the balance condition u*x = t, with any integral ¢ as

the potential. To thils condition there may be added the further
condition that equilibrium be stable: with ¢ stationary under
u'x = 1 for equilibrium, the stationary value must be an abso-
lute maximum for stability. ZEquilibrium with stability implies
coherence. This is just what Houthakker observed. The integral
g which is the potential in terms of which the equilibrium and
the stability are defined appears as a gauge for the scale
formed by the coherent preferences. But the converse prop-
osition, that coherence implies stable equilibrium, under the
balance condition, relative to some potential function, which

1s presumably what is considered by Houthakker, is not generally
true. It does, however, become true under the responsivity
condition.

THEOREM: responsivity : ===> : coherence . &==. equi~-
1ibrium /\ stability.

For responsivity and coherence implies analytic integrability,
with any integral ¢ as a gauge for P. The stability of
equilibrium relative to ¢ now follows because

y%X/\u'y=1ozésXPy.é:@.ﬁ(X)>ﬂ(y) -

7. CONVEXITY. If an expenditure system has the property of geo-
metric integrability, there may be applied to it a further con-
dition, of convexity; that all the integral surfaces be every-
where strictly convgx. This condition has already been deduced
for responsive, coherent systems. With analytic integrability,
which 1s the equilibrium property, the further condition of
convexity 1s necessary and sufficlent for stability, and for
ccherence:
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THEOREM: responsivity . ==> . ccherent &=
integral /A convex.

18. SUBSTITUTIONAL SYMMETRY AND NEGATIVITY: Fcr a differentiable
expenditure system E, with partial derivative matrix X, there
may be formed the substitution matrix s = x,(1 - ux'). The con=—
ditions of substitutional symmetry and negativity, respectively,
are defined by the conditions s = s', for the symmetry of s,
and du'sdu < 0 (du -+~ u), for the negativity of s in regard

to every direction not parallel to ‘u. A system 1s respcnsive

if it is differentiable and invertible, and a necessary and
sufficient condition for ccherence, that is the irreflexivity

of the preference relation P, 1s the ccndition cn the partial
derivative given by the substitutiocnal symmetry and nsgabivity
conditions. The part of this condition glven by substitutional
symmetry is equlvalent to the part of the coherence condition
given by integrability.

THEOREM: (1) invertibility A differentiability- . —
. ===> : cOheTeHss . <===> . sy@@etyg/\\negativity»
ST fdl)  integrability <==> symmetry.

19. ENCYCLEMENT: The double-preference relation % = PP,
the symmetric part of the preference relation P, 1s transitive,
since P 1is transitive; and its symmetry is immediate in the
form of its definiticn, as the symmetric part of a relation. It
is the same as the relation of encyclement by the base prefer-
ence relation Q, or Q-encyclement, which elements have if

they teogether lie on a Q-cycle; and transitivity 1s again ob-
tained, since two cycles with a common element determine a third
cycle, which describes them both, and crosses itself at that
element. Symmetry 1s again evident in the form of the relation.
Encyclement, defined by Q, or, equivalently, dduble-preference,
defined bty P =-§, since symmetric and transitive, 1is an
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equivalence if and only if it is a reflexive relation, which is
1f and only if P is reflexive: I =—> P. This reflexivity
condition is also thatothere exists a Q-cycle passing through
every element. With P an equivalence, the compositlions are
resolved by it into encyclement classes, within each of which
every pair of elements lie together on some Q-cycle, whlle any

elements taken from different classes are not sc related.
X

Consider an invertible and differentlable
expenditure system, for which the substiltional
symmetry or negativity conditiocns fall at every
point in a region. The preference relation de-
fined for every neighbourhood of the region 1s
reflexive: in every neighbourhood of an elewent .
there exists a cycle passing through that ele- Xﬁyﬂy$%w=? x Pz
ment. The preference relaticn for the whole region is reflexlve,
and partition of the compositicns into encyclement classes 1is
obtained.

THEOREM: ~ symmetry V ~ negatlvity . =3 . I == P.

50. TOTAL INCOHERENCE: If every palr of compositions are en-
cycled, so encyclement 1s an equivalence, and there is just one
encyclement class, in which case the derived preference relation
is universal, P =V, every composition is preferred to every
other, the expenditure system will be said to be totally in-
ccherent, this being a condition which is 1like a complete
opposite of coherence, and is much stronger than just ince-
herence. Now coherence requires both integrablility, and the
antisymmetry of the base preferences:

coherence . ===> . integrability A Q-antisymmetry.

Therefore certainly the negation cf elther integrability or
Q-antisymmetry, Q == Q', will imply inccherence. However,
if the antisymmetry cf Q is affirmed while integrability 1s
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denied, much mcre, in fact total inccherence is obtalned. . .

THEOREM: Q-antisymmetry /\ non-integrabillty . ===—> .
total incoherence.

For, with antisymmetry of base preferences, the
preference frontiers, of any compositions X

will be integral surfaces. But, with non-
integrability in C, the surfaces cannct cut

C, which must therefore be contained entirely
between Ehem, and be part of the double-preference
domain PX.

In the case of a differentiable system the
criterion for non-integrability is the non-
symmetry cf the substitution matrix.

217+ LOCAL AND GLOBAL FROPERTIES: C@nsidér a property =« de-
finable in respect to every neightourhoced BO in an cpen region
B, including the region B itself. If B itself has the prop-
erty it 1is said to have it globally. In contrast to the direct,
global definitlon, the property is defined locally for B 1if,
for every element X, in B, there exists scme neighbcurhood
Bg of X, in B which has the property. Obviously the global
property implies the lccal property,- since the reglon itself 1s
a neightourhood of each of its peints, so 1f the property holds
globally, it holds in some neighbourhood of each of its points,
that is to say locally. But, absiractly, a property holding
locally 1n a region does not neceésarily hold glcbally in that
region. Nevertheless, for certaln properties, under certain
conditions, the inference from the local property to the global
can be made. For example, the convexity of a surface is a
property with both a local and a glcbal definition; and they

are equivalent. Again, in certain prcblems in dynamics, local
stability of equilibria under a class of constraints is equiva-
lent global stability.
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_ Now coherence for an expenditure system, having application
to any reglon within the region of definition of the system, 1s a

property which can be possessed in a local and a global sense;

and while, in general, the local property does not imply the

global, the implication is valid, however, for responsive systems.

THEOREM: responsivity . == . local coherence =3 global
coherence.

Thus, for respcnsive systems, coherence in any region is equiva-
lent to simple geometric integrability together with the strict
convexlity of the integral surfaces. Since both these conditions
extend from the local to the global, it follows that so does their
conjunction, which is equivalent to coherence.

22, ;ﬁGALITY.. In the case of an invertible expenditure system

E:B<&— C (u&—> xj ulx = 1) ,

mapping balances into compositions there is a perfect symmetry
in the appearance of balance and composition, by which, in any
definition or proposition, their roles may be interchanged, to
obtain a dual, formally similar definition or proposition. The
duality which is thus founded is a logical instrument in the
derivation of some theorems. Alsc it reflects the duality which
exists In the analysis cof supply and demand, there being, in
form, just one analysis, which can be interpreted for one side
or the other.

An invertible expenditure system E has, as its dual, an
inverse expenditure system F, mapping compositicns into bal-
ances, with base preferences N given by

ulv = X'V 1AV #Fu

defining the dual base preferences of the direct system. The
derived preferences of N define the dual preference relation
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M = N of the system. Since u# v &= x 4y, it follows that

v &= yOx ,
and therefore that

uMv &==> yPx .

Accordingly, if P* i1s the relation between balances induced by
the relation P hetween compositions, with the definiticn

vPu = yPx ,

then M' = P*, where M' 1s the converse of M.

THEOREM: The induced preference relation of an in-
vertible expenditure system is the converse of the
dual preference relation.

The two forms of ccherence, applicable to an invertible system
and its dual, are thus equivalent. An ascending preference chain
for the system corresponds to a descending chain for the inverse
system. Any proposition concerning an inferior preference do-
main has corresponding to it a propesition concerning the
superior domain; and reversely. The propositicons concerning
infericr and superior preferences are in palrs, and it is only
necessary to prove half of them.

In case the invertabllity involved in this duality should
seem an extra restrictlon,beyond the customary, it should be
ncted that, along with the dependence of x on u, which is
the first principle cof consumer thecry, the inverse dependence
of u on Xx has almost always been granted, even if not ex-
plicitly. For example, the classical principle that x is
determined from wu as giving the absclute maximum of a differ-
entiable function ¢ wunder the constraint u'x = 1 gives
u =g /% where A= x'¢, and ¢ 1is the vector of partial
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derivatives of # with respect to =x. Alsomthe question of
"integrability" is a very standard topic in discussions; and
whenever a precise definition is given, which is not always,
1t iInvolves u as a function of x. Again, if the phenomenon
of saturation, which 1s against the invertability concept, 1s
to be admitted, it 1s always possible to replace strict
saturation by near saturation — as near as no matter.



