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1. Introduction

Several recent studies have analyzed the problem of estimating the
parameters of regression equations subject to discontinuous shifts at unknown
points in the data series.l In its simplest form the problem may be stated

as follows: Let n, observations be generated by the regression equation

1

<
§

= X8, + Uy (1~-1)

and n, observations by

Y

X,B

o = X8y * Uy (1-2)

where Y and Y

1 are nl and nawelement vectors of observations on the

2

dependent variable, Xl and X2 are

obgservations on the independent variables, Ul and U2 are n, and n,-

ny x k and n, x k matrices of
element vectors of unobservable error terms distributed as N(O,oil) and
N(O,cgl). In general, (Bl,oi) # (62,02). The investigator does not know
which particular observation was generated by which regression equation; he

only observes a vector Y with n (=nl+n2) elements and a matrix X with

lsee [11, [2], [3], [5].



n x k elements. A case in point might be the estimation of an investment
demand function over the business cycle where for some observations only
accelerator variables might be relevant whereas for others liquidity wvariables
might be more important. The objective is to find an appropriate partition

of the rows of Y and X into

iy %

and
Y2 X2

so that the two regimes may be diséntangled from one another.

As stated, the problem is quite difficult. Considerable simplification
is achieved by the assumption, which appears quite realistic in an economic
context, that there exists some observable variable(s) =z the values of which
determine whether an observation is generated by the first regression e@uation
or by the second. A specific formulation of this type of mechanism is contained
in [5] according to which Nature chooses Regimes 1 and 2 with probabilities
A(z) and 1-A(z) respectively. Denoting by x; the row vector representing
the ith observation on the independéent variables. and by ¥i the ith observation
on the dependent varisble, the probability density function of the ith

observation is

A(zi) 1

2
h(yi]xi) = J5= exp {- 5 (yi - xiBl) } o+
1 201
1 - A(z,) 1 o
—2 exp {5 (y. - x,8,)°} . (1-3)
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The corresponding log likelihood function is

L=t logh(yilxi) (1-4)
1

which may be maximized with respect to 81505,82,02 .
The purpose of the present paper is (1) to introduce a simpler, least-
squares approach to estimating the parameters under weaker assumptbns,2 and
(2) to investigate the maximum likelihood estimator (in contrast with the
least squares estimator) on the assumption that A(z) is the cumulative normal

integral. Section 2 is devoted to the theoretical description of the least

squares model and Section 3 contains the results of some sampling experiments.

2. Theoretical Description

The ith observation is generated either by

Vg = %38y Yy (2-1)
or by
Yy = XBp tup (2-2)
where E{u..) = E{u,.) =0 E(u2 ) = g2 E(u2 ) = 02, x is independent of the
11 2i ? 1i’ 1’ 21 2°

u's and the u's are not necessarily normal. Define a variable Di that has

value 1 if Nature chooses (2-1) and value O if it chooses (2-2). Multiplying

th is generally more straightforward to obtain nonlinear least squares
estimates than to maximize an arbitrary likelihood function since minimization
algorithms can exploit the special structure inherent in sums of squares.
In addition, much weaker distributional assumptions are necessary for least
squares than for maximum likelihood.



(2-1) by D; and (2-2) by 1 - D, and adding,the two regimes may be

combined as in

¥y = Dyx;8, + (1-Dy)x;8, + Du

i + (l«Di)ugi (2-3)

1i

Let z; be the vector representing the ith observation on p variables and
let ¢ be a p-element vector of unknown parameters. Assume that Nature chooses
between the regimes (i.e., sets D; = 1or 0) according to whether 2,0 >V

of zi¢ < Vv, where v is distributed according to N(O,l).3 Then

EAN S
Prob{D:.L =1} = Prob{zi¢ >vl= [ e ag . (2-k)

Denoting the integral on the right by Fi’ Di = 1 with probability Fi and

D, = 0 with probability 1-F; . Hence E(Di) = Fi and we can write

D. =F, + 60, (2-5)

where E(ei) 0, Var(ei) = Fi(l—Fi). Substituting (2-5) in (2-3) yields

¥,

3 = Fyx;By + (1-Fy)x.8, + w, (2-6)

where the error term w:.L is given by

wy = (Fe+8 Juy; + (1-F -0 Juyy + 0,x,(B1-B5) (2-7)

3There is no loss of generality in assuming that the mean of the normal
distribution is zero and the variance is unity. If the mean were not zero we
could introduce & (p+l)th 7z variable with values egual to unity and thus
absorb the mean on the left hand side. Similarly, we can scale ¢ so that
the variance is unity.



The estimation of the two regimes can be accomplished by estimating
(2-6). This, in turn, can be done in two ways. The first is to disregard the
heteroscedasticity of the error term and to estimate (2-6) directly by
n
minimizing the sum of squares I (y, - F.x,B. - (1 - F,)x.B )2 with respect
j=1 1 i"i71 i‘7iv2
to Bl, 82 and ¢.h The second is to assume again a particular distribution
for ul and ug3 say the normal, and then derive the likelihood function for
(2-6) which after some manipulation may be shown to be identical with (1-k)

with A(zi) being replaced by F, .

3. OSome Sampling Experiments

The sampling experiments employed the equation

Vg =8y thyx, tugy

for Regime 1 and

= { +
vy a, + b x, u

2 21

for Regime 2. A single 2z variable was used and a sample of uniformly

. distributed z-values was employed over all replications of a given experiment.
Similarly, the x-values used throughout the replications of a given
experiment were drawn from a uniform distribution over the (0,20) interval.
The true values of the parameters were al = 1.0, bl = 1.0, a, = 0.5, b2 = 1.5,
¢ = 2.0. Other parameters varied from experiment to experiment. The variable

aspects of each case are given in Table 1.

hSince 86, 1is independent of X; the regressors are not correlated
with the error térm.



TABLE I. Characteristics of
Sampling Experiments

2 2
n 1 2 _z-range
Case 1 30 2.0 2.5 -2.,0 to 2.0
Case 2 60 2.0 2.5 -2.0 to 2.0
Case 3 90 2.0 2.5 -2.0 to 2.0
Case L 30 2.0 25.0 -2.0 to 2.0
Case 5 30 2.0 2.5 -1.0 to 3.0

For each replication of a case, Nature would compute for the ith observation
(i=l,.‘.,n) the quantity zi¢ and compare it to a standard normal deviate v.
If zi¢ was greater than v, ¥y would be generated from the first regime;
if zi¢ £V, yi would be obtained from the second regime. In Cases 1, 2,

3 and 5 there is substantial overlap of the scatter diagrams from the two
regimes. In Case 4 the overlap is nearly complete. In this respect the
separation of the data into two regimes by inspection is less easy than in the
sampling experiments reported in [2] and [5]. The experiments were replicated
50 times for each case. Minimization of the sum of squares and maximization
of the likelihood function was accomplished by Powell's conjugate gradient
algorithm [4]. In the computation of least squares estimates the algorithm
failed to produce a true minimum in one instance in Case 1 and in 9 instances
in Case 4. In the computation of maximum likelihood estimates a true maximum
was not arrived at in 6 instances in Case 1, 2 instances in Case 4 and 12
instances in Case 5. The overall computational failure rate of 20 per cent

is similar to that reported in [5].



Tables 2 and 3 contain the mean estimates and the mean square errors of
the estimates. First, it is to be noted that the mean values and mean square
errors for ¢ are frequently very large in absolute value. These large
values are almost invariably due to one, two or three outliers. Thus, for
example, the individual estimates for ¢ by least squares in Case 2 are all
between 0 and 173 except for one which is 6.7 x 10h. Adjusting the mean
square error of the least squares estimate in Case 1 for these outliers
produces an adjusted figure of 1L4.45 instead of 1.58 x 105; adjusting the
mean square error of the maximum likelihood estimate in Case 2 for two
outliers produces 86.53 rather than 1.8k x 10°. The sampling variance of &
is obviously large but rare outliers are responsible for nearly all of it.
Large mean square errors are also obtained throughout Case 4 which is to be
expected in view of the large residual variance of the second regime.

The maximum likelihood method exhibits a smaller mean square error than
the least squares method for every case and coeffi¢ient and is thus uniformly
superior. The mean square errors also decline, for both least squares and
maximum likelihood, with sample size, as is to be expected, except for the
coefficient ¢ . It is interesting to note that in Case 5 maximum likelihood
estimation yields smaller mean square errors for Regime 1 than does Case 1
and larger ones for Regime 2 than Case 1. This is because in Case 5 the number
of observations generated by Regime 1 averages T5 percent of the total, in
contrast to the 50 percent share of Regime 1 in Case 1. Finally we note the
measure A reported in Table 2 which is defined as ? |D

i=1
may be called the mean classification error. A is also uniformly smaller

i,true ~ Fil/n and

for maximum likelihood than for least squares and also declines for larger

samples.
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A finsl statistic we report in Table 4 is the fraction of replications
for each coefficient and case in which the maximum likelihood method performs
better (comes closer to the true value) than the least squares method. The

percentage-win figures are without exception greater than .5. Performing a

TABLE 4. Percentage Win Statistics
for Maximum Likelihood

ay bl a, b2 ¢
Case 1 .651%  ,698% 605 .512 .512
Case 2 JT20%  .ThO*  .580 .580 .620%
Case 3 .600 .680*%  ,5ko .520 .620%
Case k JThb®  795%  66TH 615 .820%
Case 5 .526 .632 579 .632 .T37*

one-tailed test of the hypothesis that the true win statistic is .5 on the .05
level yields 12 significant entries in Table 4, (marked by an as‘te:r‘isk).5

Two more (for by and b, in Case 5) are only .001 from the critical value. It
is interesting that the percentage-win figures do not improve from Case 2 to
Case 3; it suggests that the two methods are asymptotically similar. The

best performance of maximum likelihood is in Case L4 in which it is intrinsically

most difficult to separate the two regimes.

5This disregards to obvious dependence of the percentage-win
statistics in a given row of the table.
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4., Conclusion

The present paper has examined a least squares and a maximum likelihood
formulation of the problem of separating two regimes. In a variety of illustrative
sampling experiments the maximum likelihood method appears superior to the
least squares method which may be partially attributable to the fact that the
maximum likelihood estimator uses some additional information. Since, in
addition, the problem of testing hypotheses is solved more satisfactorily by
appealing to asymptotic considerations within the maximum likelihood framework
than within the nonlinear least squares framework, the maximum likelihood

approach appears to be distinctly preferable.
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