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I. INTRODUCTION

In a recent paper Fair and Jaffee [5] considered the problem of
estimating demand and supply schedules in disequilibrium markets.l They
suggested four possible methods of estimation: a general maximum likelihood
method for finding the optimal separation of the sample period into demand
anG supply regimes; two "directional" methods, which relied on price-setting
information to separate the sample period; and a "quantitative" method, which
relied on price;éetting information to adjust the observed gquantity for the
effects of rationing, The Fair-Jaffee study is subject to several limitations.
First, the study found that the general maximum likelihood method was not
computationally feasible. Second, their Directional method I, although

yielding a correct sample separation under the assumptions of the model,

* The authors would like to thank Dwight M. Jaffee for helpful comments.
He is not, of course, responsible for any shortcomings of this paper.

lSince many, if not most, studies of wage and price behavior (such as
studies of the Phillips curve) can be interpreted as studies of markets
that are not always in equilibrium, the study of the estimation of dis-
equilibrium markets is of some importance. For their empirical work,
Fair and Jaffee used the housing and mortgage market as an example of

a market that may not always be in equilibriunm,
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does not yield consistent estimates. Finally, their Quantitative method
is based on a rather strict assumption about price-setting behavior, namely

that price changes are strictly proportional to excess demand.

The purpose of this paper is to expand upon the results of the
Fair-daffee study in three ways. First, their Directional method I will be
modified to yield consistent estimates and then this modified technique will
be used to estimate a particular model so that these estimates can be com-
pared to the Directional method I estimates, Second, a maximum likelihood
alternative to the Quantitative method will be proposed under the same strict
assumption that price changes are proportional to excess demand, Third, and
most important, the strict assumption about price;éetting behavior will be
relaxed and a method will be proposed for estimating supply and demand
schedules under the much weaker assumption that the price eguation is a
multivariate and stochastic relationship,

The problems involved in estimating supply and demand schedules in
disequilibrium markets are inherently quite difficult ones,2 and the methods
broposed in this paper are not particularly easy to implement. The problems
are especially difficult when the price equation is generalized to a multi-
variate and stochastic relationship, for then the observed quantity can
never be strictly identified with either the quantity demanded or the
quantity supplied. It is encouraging, however, that at least one wethod
can be found for estimating models with generalized price equations, and it
is hoped that this paper will stimulate further work on the estimation of

disequilibrium models.

gAs will be seen below, the problems involved are similar to those en~
countered in sequential estimation techniques -~ i.e,, techniques in which
one stage in the estimation procedure depends upon the results (usually the
value of a t ratio) of an earlier stage. For a good presentation of
Problems inherent in general sequential techniques see Wallace and

Asher [17].
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II. DIRECTIONAL METHODS OF ESTIMATION

The Model

The model under consideration in this section is3

(1a) P T XpePy F PPty
(10) S¢ = XotPy ¥ Pe By tuy
(1c) &P, = Pt;ft_i = £(D,~3,) ,
(14) Q = min{Dt,S,c} »  t=1,2,...,T ,

where, at time t, Dt and St are the quantities demanded and supplied
respectively, Qt is the actual quantity observed, Pt is the price, Xit and
Xét are vectors of predetermined variables, and U and u,, are the dis~

turbance terms. Bl and 53 are vectors of parameters, conformably defined.

The stochastic assumptions are

(2) E[ultlxt] = Elu, |x,] =0 ,
E[uitlxt] = oi , E[ugtlxt] = cg P

where X, = (Xit’xét’Pt—l)'

3In this section the price terms are assumed to enter the demand and supply
equations with a lag rather than contemporaneously. In Sections IIT and IV
the price terms are allowed to enter the demand and supply equations
contemporaneously,
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The problem of estimation concerning the parameters of (la) and (1b)
is that the price equation, (lc), implies that prices do not adjust in every
period in such a manner as to equate Dt and St' Therefore, unless some ad-
Justments are made, all of the observations on Qt cannot be used in the

estimation of equations (la) and (1b).

Directional Method I

Fair and Jaffee's Directional method T is based on the assumption
>

> . . .
that f(Dt~St) < O when D -5, < 0. Under this assumption, if AP, >0,
then Q =83 if AP, <0, then Q, = D5 and if &P, =0, then Q. =Dy = S,.
Directional method I takes those sample points for which AP > 0 and

t
estimates the supply equation and takes those sample points for which

APt‘S O and estimates the demand equation.
Although Directional method I yields a correct sample separation
under the above assumptions, the coefficient estimates are not consistent.

For instance, according to the method

(3) Q= Dy =XPy + BBy tuyy , when P <O,
and
() 9 =8y =Xpp3+ P 18, +uy , whensp 20 .

Now, the ordinary least squares parameter estimates of (3) and (4) are
inconsistent because the means of the disturbance terms are no longer

independent of Xit’

see this, consider E[ult[Xt,A:Pt <0l. 1In light of (le), (1d), and the

X,y and P,_; over the relevant sample points. To

assumption that f(D,c~ t) S O when D, -5, %O:




(5) Eluy, [%,09, < 0] = Eluy Ix,0 <5, ] .

Let D¥ = X)48) + P, _1B,, and St = X54P3 + Py_1B). Then from (1a), (5) may

be written ag

(6) E[ultlult'u2t < SE-DhX,D .

Now, if the joint density of . and uzt, conditional on Xt’ is specified,
the conditional density of ¢t = Uy ,-u,., say gl(¢t[Xt), may be derived, and
the joint conditional density of u,, and ¢t, say gz(ult,¢%’X%), may be

derived. Therefore, (6) can be evaluated as

Clearly, the expectation in (7) will not, in general, be independent of

Xf unless Uy and ¢t are independent, in which case 85 factors. It is
interesting to note that irf . and Uy, are normal, ¢t will also be normal,
and therefore Uy and ¢t will be independent if their covariance, Eult¢t’
. . e w2 . R

is zero. Since Eult¢t = Buj, - Eultth’ u, and ¢t will be independent

——

uSee Mood and Graybill [1k4, chs. 1-5] for a discussion of the concepts
in the development up through (7).




if 0° = o . . . .
if 1 107 where 10 s the covariance of ult and u2t' Intuitively,

if o

N

boj . = -
127 for any value of Uy e the expected value of ¢t Uy =By

will be zero since Lo is expected to be of the same sign and magnitude

as ul't‘

A Consigtent Method of Estimation

The demand and supply equations, (3), and (4), can be consistently
and efficiently estimated by a maximum likelihood technique that is condi-
tional on the segmentation of the sample., Let g3(ult|APt < O’Xt) be the

conditional density of u; . given X, and Ap, <0, and let gh(uztlAPt'Z O’Xt)

be the conditional density of u ot given Xt and AP >0, In view of the

above assumptions, these conditional den31t1es can be written as
g3(ultl¢ < S§-Df, t) and gh(uet[¢ 2 S§-Df, t) respectively, Now, the

maximum likelihood estimators of the parameters 51, 62, ﬁ3, BM’ Ui, US, and

612, can be obtained by maximizing the likelihood function

AP, >0

® Y= I eslugle, sspopx) T g, o8y = sporx)
t~ APtS

where w, = Q Dt’ ot = Qt-S%, and the products are taken, respectively,

over the periods for which APt >0 and APt < 0. DNote, since APt =
implies Qt = Dt = St’ the periods for which APt = 0 are included in both

products,

Fompirical Results

The likelihood technique can be implemented as follows, First,

note that




K T) %
SE-Df

J; ACTL A BLCN

ene s
S¥-Df

& (¢, Ix,)ag,

) gyluy 19, < spopx,) =

00

where, as above, g2(ult,¢t[Xt) is the joint density of u, . and ¢$, given Xy

Likewisge,
[eod

f 85(Ups 9 1%, )by
S¥-Dy

(10) g (uy, lo, > sp-np,x,) = L& ,
fg1(¢t[Xt>d¢t
S%—D%

where g5(u2t|¢t) is the joint density of Uy and ¢t’ given Xf. If the

joint density of Uy and u2t’ conditional on Xt’ is specified to be normal,
then gl(¢tlxt) will be normal and ge(ult,¢tlxt) and gs(ugt,¢t[X£) will each
be jointly normal. Therefore, since it isg quite easy numerically to evalu-
ate normal integrals, an attempt can be made to maximize the likelihood
function in (8) using a nonlinear maximization program. Note that the
rarameters ﬂl, 62, 3 and Bh enter both the limits of the integral and
the integrand. The parameters ci, cg, and 012 enter only into the
integrand,

In order to see whether it is feasible to maximize (8), the housing
starts model that Fair and Jaffee used as an example in their study was

also used as an example in this study. The model consists of one demand

equation and one supply equation:




t-1
D _ .
(11) B, = +at + a, iil HS; + o RM, , + U s
S - .
= +
(12) HSg =¥ + ¥t + b,0F6, o + V3DHF3, , + ¥, RM 1 tuy

where HS? and Hss denote the demand for and supply of housing starts

respectively, RMt-l and RMt_2 denote the mortgage rate lagged one and two

months respectively, DFSt;i denotes the six-month moving average of the flow
of deposits into Sévings and Loan Associations (SLAs) and Mutual Savings
Banks lagged one month, and DHF3t_2 denotes the three;ﬁonth moving average
of the flow of borrowings by SLAs from the Federal Home Loan Bank lagged

two monthsf5 Fair and Jaffee assumed that the error terms, ult and u2t,
were first-order serially correlated, but for present purposes serial
correlation problems will be ignored, Serial correlation questions will
be considered at the end of this section. Fair and Jaffee also used
Seasonally unadjusted data and seasocnal dummy variables, but for purposes

here seasonally adjusted data were used.

The results of estimating equations (11) and (12) by Directional
method I and by the consistent likelihood technique are presented in
Table 1. The price variable in the model is the mortgage rate. Two
nonlinear maximizatjion techniques were tried in the maximization of
the likelihood function: the quadratic hill-climbing technique of

Goldfeld, Quandt, and Trotter [10] and the technique of Powell [15]. The
gquadratic hill;élimbing technique requires first and second derivatives,
and for this purpose numerical first and second derivatives were used, The
normal integrals were evaluated using the ERF function in the FORTRAN

library. It turned out that the likelihood function was not very well

5See Fair [3, ch, 8] for a more complete description of thig model,
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TABLE 1: Estimates of the Housing Starts Model

Directional Maximum Likelihood

Coefficient Method T Method
o, 223.7 223. 4
o 2,428 2.h2g
a, ~.0188 =.0119
o -.2032 -.2013
¥ 15.53 15.49
wl -.195 -.209
,4,.2 .0515 .0521
w.3 .0k69 .0519
% .1017 .1019
o2 151. 0k 222,90
02 76.39 69.06
12 ) -
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behaved. The function was very flat with respect to the parameter Py
for example, and the function appeared to have many local maxima, The
quadratic hill;élimbing technique and Powell's technique worked about
equally well in their ability to find loeal maxima. The maximum likelj-
hood estimates Presented in Table 1 correspond to the largest value of

the likelihood function found after considerable experimentation, but

there is no guarantee that this is the global maximum,

The maximum likelihood estimates in Table 1 are quite close to the
Directional method I estimates, which suggests that for this particular
example the biasg using Directional method I does not appear to be very
great. Whether this is true in general is, orf course, not clear,
Experimentation with other models is clearly needed before one can begin
to feel confident in the estimates obtained by the simpler, but inconsistent,

directional method,

Serial Correlation Questions

If the error terms in equations (la) and (ib) are serially correlated,
then it turns out that the coefficients of (la) and (1b) are not identified
if it is assumed that ult and uet are continuous random variables, Assune,

for example, that the error terms are first-order serially correlated:

(13) Yt T WpaPr ey

(14) u

2t = Yoy 3Pp * &5y ’

where the assumptions in (2) now pertain to €14 @nd €, rather than to g,

and u,,. Using (13) and (14), equations (1a) and (1b) can be written:
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(15) Dp1oy * X148y - X14-1P101 + By 4B, - PeoPoPy * e

L}

(16) s, = S4-1°2 * Xy By - Xo4-1P3Pp * Py 4By - PeoPyey + 5y .

The problem with estimating equations (15) and (16) is that the explanatory

t-1 t-1
For instance, given the above assumptions, only if APt'i = 0 are both

variables D, . ang S, . will generally not be observed at the same time.

St;i and Dt;i observed; otherwige only one of them is observed, However,
if ult and u2t are continuous random variables, the probability that

APt = 0, for any t, is zero, Consequently, as the sample size approaches
infinity, that roxtion of it corresponding to time Periods for which

AP, = 0 will remain finite, Now, if it ig recalled, from either (7) or
(9) and (lO), that a consistent estimation technique, for either or both
equations, necessarily involves Observations on all of the predetermined
variables, the result Cconcerning lack of identification follows.6 The same

situation also holds if D and St-l enter directly as explanatory vari-

t-1
ables in equations (1a) and (1b) rather than entering indirectly by way of

the serial correlation assumption,

§For Directional method I +this problem of identification does not arise
because one ignores the broblems that arise because of sample segmentation

and one chooses ag sample pointg for, say, the demand equation only those
points for which both D, and D¢ are observad, This sample segmentation
requires throwing away one observation for every switching point. For their
empirical work using Directional method I, Fair and Jaffee did not actually
throw away the requisite number of observations, but assumed that at a switching
point both Dy and Dt.1 or Sy and S¢_1 Wwere observed. This assumption was
admitted by them to be incorrect and was %aken only as a first approximation.




III. QUANTITATIVE METHODS OF ESTIMATION
The Model

The model undepr consideration in thig section is

(17a) Dy = X;48; + BB, +u

s 1t ’
(170) St = XpiP3 T BBy, +u,, .
a7e) &, = (o5, ,
(178) 9 = min{D,,s, } s t=l,2,..,,T .

The Quantitative Method

Fair and Jaffee show that equations (17a)-(17d) can be combined

to yield
- 1

(18) U = X4y BB, - y /My tu.
- 1

(19) U T XoP3 + BBy - S NaRN 4 Uy

where
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/APt/= {APtifAPtzo , \APt\={-APt 1:f‘APt_<_O .
- 0 otherwise - 0 otherwise

Fair and Jaffee then point out ways in which the coefficients of equations
(18) and (19) can ve consistently estimated by two-stage least squares
(with or without serially correlated errors). The two--.stage least squares
technique ignores the fact that the same coefficient, %— » appears in both
equations; thus, the technique is not efficient on this score. Fair [U4]
points out how equations (18) and (19) can be estimated to take into
account the restriction across equations (and serially correlated errors) ’

but the technique does not take into account the endogeneity of

Pt’ /AP'b/’ and \APt\ and so does not yield consistent estimates.

A Maximum Likelihood Alternative to the Quantitative Method

The model in (17a)-(17d4) can be estimated by the maximum
likelihood technique in a manner similar to that done for the model in

Section II. First, the sample can be partitioned as follows:

(20) Q= Xypg + BBy + uy

} when &p. >0

L,

- 1y '
U = X4y *P(By- 5 ) - B y T

and
(21)  Qy =Xp) +Pp, + g

.
= XopPp BBy -5 ) - P

cf-D
i

t-1
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Consider the equations in (20) corrésponding to the sample segmentation

AP, > 0. These equations can be considered as a two equation system in

the variables Qt and Pt‘ Therefore, the likelihood function for the
equations of (20), given the sample segmentation, is based on the joint
conditional density of Uy and Uy given Xt and APt > 0, where, as in
Section II, X, = (Xlt’XQt’Pt—l)' Let this density be gg(u,,u,, ]@t >0,%,).

Then, in a manner not dissimilar from that of Section II

(22)  ggluypipglory 20,%,) = ggluy iy, [n, > 5,,%,)
= 8g(uy gy |X B + P8, Fuy, > XoiP3 + Pyby * upnXp)

= gg(uy ol +au,, > G(X)sXe)

where the last step of (22) is obtained by replacing Pt by its reduced form
expression in Uygr Usps and the predetermined variables, putting all terms
not involving U, or Uy, on the right hand side, and denoting the resulting
expression as G(Xf). The parameters @, and @, are functions of the
parameters in equations (17a)-(17c),

The likelihood function for the equations of (21), given the sample
separation, is based on the joint conditional density of Uy and Uy, given
X, and &P, > 0. Let this density be g7(ult,u2t IAPt >0,X.). The deriva-
tion of g7(ult,u2tlAPt < O’Xt) is almost identical to that for
g6(ult’u2t,APt E;O,Xf). Now, the maximum likelihood estimators of
the parameters of equations (172)~(17c) are obtained by maximizing

the likelihood function
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(23) L = H 86(ult,u2t[APt_>:O,Xt)Jl>< H g,.{,(ult,uetlAPtSO,Xt)Jg,
APt 20 APt <0

where U, and U, are replaced in both products of (23) by their corresponding
expressions in (20) and (21) and J, and J, are the corresponding jacobians
of transformation from U and Usye to Qt and Pye

The likelihood technique can be implemented in a manner similarvto
that described in Section IT, although the situation is somewhat more
complicated in the present case. The joint conditional density g6;

for example, can be obtained as
(2k) g6(u1t’ tl Uy + Qéu > G(X ): t)

8%y 454 [ X,)

f f gg(uy s oy [ Xy )au, cau,,

(o) pHau,, > 6(X,))

where g8(u [Xt) is the joint density of Uy and Uy conditional on Xt
and where the double integral in the denominator represents the probability
that Gu, . * Qs 2> > 6(X ) A similar expression can be derived for the
joint conditional density g7. If the joint density of u1t and uzt,
conditional on Xt’ is specified to be normal, then it is possible to
evaluate numerically the double integral in (24), It is thus possible

to attempt to maximize the likelihood function in (23) using a nonlinear

maximization program. No attempt was made in this study to maximize the
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likelihood function for a particular example, and it is an open question
as to whether the gain in efficiency from using the maximum likelihood
method over the two-stage least squares version of the Quantitative method

is worth the added computational burden and cost.

IV. A METHOD OF ESTIMATION FOR THE GENERALIZED MODEL

The Generalized Model

The models described in Sections IT and III contain price equations

which are nonstochastic functions of only one variable, namely excess

demand. In this section the price equation is generalized to be a
multivariate, stochastic function. The model is taken to consist of

equations (17a), (17v), (17d), and
(17¢) APy = Ps(Dy-5,) + X, B, + U3¢ ’

where X3t is a vector of predetermined variables and 66 is a vector of

parameters,

A Method of Estimation

Because the price equation is multivariate and stochastic, the

observed quantity, Qt’ cannot be strictly identified with either Dt or St

on the basis of observed price changes. Hence, Qt must be related to Dt

and St probabilistically on the basis of observed price changes. Define

a selector variable rt, where

r, =0 if D <8 7

(25) r.=1 if D _>3§ A . <5, .

t t’

7Since the disturbance terms of the model are assumed to be continuous
variables, the probability is zero that D, will equal St‘ Thus, the problem
of defining rt‘when Dt = St can be ignored,
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Using this variable, equations (17a), (17b), and (174) can be written as
(26) Qp = T,85, + (l-rt)Dt .

Now, from (17c)! ry =1 if AP, > X31Pg + gy and r, =0 if AP, <:X3tB6+ u

In light of these relations, the conditional density of rt given APt and

3t°

Xf, where X% now includes X3t as well as X

expressed as

147 Xét’ and Pt-l’ can be

il

(27) Prob(r, = 114Pt,xt) H(OP,,X,)

Prob(r, = O[APt,Xt) = 1-.H(A_pt,xt) ’

where H<APt’Xt) = Prob(u3t < op, - X3tﬁ6 IAPt,Xt) .

The probability statement, Prob(u3t <op - 3t56,APt’Xf)’ can be
obtained from the conditional density of u3t given APt and Xt' This density
in turn depends upon the Jjoint density of APt and u3t and the marginal
density of QPt, both conditional on Xf. Finally, these densities can be
derived if the joint density of the disturbance terms is specified.8 Thus,
if the joint density of the disturbance terms is specified, the functional

form of H(APt,Xf) is determined,”

8As an example, the reduced form equation for APt is linear in the elements
of Xt and Wy 4r Upys and Ugye If the distrubance terms are assumed to be
normally distributed and independent of Xf, then the conditional density of
APt and u3t is also normal and, therefore, is completely specified by two

conditional means and variances and by the covariance of APy and ugi. The
mean and variance of u t are given by the specifications of the mo el; the
mean and variance of Agt, as well as the covariance of APy with u3t, are

easily derived from the reduced form equation for APt.

9the that for certain specifications of the disturbance terms (e.g.,
normality) this function will involve integrals, More will be said
concerning this function below,
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Assuming that the joint density of the disturbance terms is
specified, the estimation of the model can now be considered, The model

under consideration isg

]

(28a) Q =15, + (l"rt)Dt

(28b) D, = Xltal + P’cﬁe +uy,

(28e) S, = X2t63 Py, + Upy
(284) 4?5 = BS(Dt—St) + X3ubg * Ugy
(28e) r, = H(APt,Xt) +uy, s

where, in light of (27), W, 1s a random variable such that E[uht [APt,Xt] = 0,
Since observations on Dt’ St’ and ry are not available, these variables will
first be eliminated from the model. For the sake of having a compact
notation, let

(29) = X8, + P8

2 o

XogPg * By
H = HCAPt,Xt) .

Now, D,, Sy» and ¥y can be eliminated from (28a)-(28e) to get

(o) Qg =S o uDp e ey,

(300) BFy = Ps(DE=SE) + X34Bg + epy ’
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vhere 8, = Hy(upe=ty)s ey= vy *+ wy (S-Dy), amd ey = ugy + (u,-u,,),
Tt is clear that E[eetlxt] = 0. Also, since Ely, [APt,Xt] = 0 for any
values of X3t and u3t, it follows from the price equation that
E[u%[(bt-st),xt] = 0, Therefore, E[eltlx,c] = 0. Thus, e;, and e, can
be considered as disturbance terms.

Unlike the remaining terms of (30a) and (30b), f, depends directly
upon the disturbance terms o and Uy pe Qt therefore cannot be considered
as part of the regression function; Qt also cannot be considered as a
disturbance term because it involves the product of Ht and (uzt—ult)
and so will not in general have a mean of zero. The procedure here,
therefore, will be to abstract the mean of Qt, conditional on APt and Xt’
and incorporate it within the regression function so as to end up with a
two-equation system based on the two endogenous variables, Qt and APt or,
since APt = Pt—Pt-l’ on Qt and Pt'

Since the expectation of one variable conditional upon a set of

others is, in general, a function of the conditioning variables, it

follows that
(31) E[QtlAP_b,Xt] = HtE[uet—ult[Pt,Xt] = HL(P,,X,) ,

where L(Pt’xt) is a function of the elements of Xt and Pt'

to note that if Uy is Usy and u3t are assumed to be jointly normal, the

It is interesting

Joint distribution of (uat-ult)iand Pt will be normal and, therefore, the
conditional distribution of ugt—ult given Pt will be normal; hence, the

function L in (31) will be linear in P, and X,
of L will be functions of the parameters of the demand, supply, and price

« In any event, the parameters

equations, as well as of the variances and covariances of U 4s Upys and Use
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In light of equation (31), it follows that @, can be expressed as
(32) 9, = HL(P,,X,) + 6, ,

where E[B[Pt,Xi] =0 , and so E[thXt] = 0 . Therefore, equations

(30a) and (30b) can be expressed as

(33a) Qp = HySf + Df ~ H.D¥ + HtL(Pt,Xt) + ¥y

g
|

(330) Py = Bo(0p-57) + Xypg + e,

= Xlt(ﬁ561) + Pt(ﬁ532) - th(5553) - Pt(ﬁsﬁh) T X3Pe ooy

where ¥ = e * 6, , and so E[wilxt] =0, _

Equations (33a) and (33b) form a simultaneous two-equation system
for Q. and Pt’ which is nonlinear in the parameters and also in one of the
endogenous variables, Pt.lo Aside from the maximum likelihood technique,
general results concerning the estimation of such systems are not available,
The difficulty in applying the maximum likelihood technique to the system
(33a)-(33b) is that the joint distribution of w; and e, will be, for just
about any specification of Uypr Uoys and u3t, quite complicated, However,

a consistent estimation technique can be developed, subject to certain

approximations, using the method of moments because E[W%lXi] = E[eztlxt] = 0,

Opote that although P, does not depend directly on Q, in (33b), the
system is fully simultaneous because ¢% and ey are correlated ~- e.g.,

they both contain U ¢
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First, it will be assumed that u 147 Uop? and u3t are jointly

normal so that L(Pt’xt) is linear in P, and Xye

assumed that the error of approximation in the expansion of H (as a

Second, it will be

function of Pt and X ) in a Taylor series is negligible after a finite
number of terms. 't Now, substituting the expression for L(Pt,X£) and the
polynomial expansion of Ht into (33a) yields an equation of the form

171 * Zot?s
where th is a row vector of observations on known polynomial functions

of the predetermined variables, X%,and th is a row vector of observations
on known polynomial functions of the endogenous variable Pt and predetermined
variables, Xt‘12 71 and 7, are vectors of parameters, the elements of which
are nonlinear functions of Bl through 56 and of the variances and covariances
of Uygr Usgs and u3t. The order of these vectors depends on the degree of

the polynomial expansion.

11 . . s .
Note, if Uy s Usis and u3t are jointly normal, Hf will be of the form
Ll(Pt,Xt)
H = £(Z)az s
-0

where £(Z) is the density for a standard normal variable and L (P t)
is linear in Xt and Pt -~ see (27) and footnote 8. Therefore, the expansion
of Ht is straightforward. In a sense, most econometric systems may be

considered as depending upon such polynomial approximations -- see, for
example, Fisher [7, pp. 127-29].

l2For example, one such function might be Pi 14 where Xit is a
predetermined variable,
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Equations (33a)' and (33b) form a two-équation system that contains
nonlinear, but known, endogenous functions and nonlinear restrictions on
the parameters ;; a system in other words that is nonlinear in both vari-
ables and parameters, The system may be consistently estimated by a nonlinear
two-stage least Squares procedure. Specifically, since Z2t is the vector of
endogenous functions in (33a)', each element of ZQt’ one of which is P,

can be regressed on the elements of Z., and on the predetermined variables

1t
A A
in (33b) as well as on powers of these variables.13 Let Z2t and Pt denote
the predicted values of the elements of Z2t and Pt' Now, as will be shown

below, the basic parameters of the system Bl through 66 and the variances

and covariances of W 4 Usys and u3t, can be estimated by minimizing

) A A
+ a(0P-X,P.p, B, p_xp.0. 4380, x5, )

. N
(A_P~xlassl-1>6552+x255a3+1>s5sh-x3ﬁ6) ’

where Q, Zl’ 22, AP, Xi, Xé, X3, and ? are the vectors and matrices of
observations on the corresponding elements and « isg any nonnegative number,
If @ is taken to be zero, then only information regarding equation (33a)
is used to obtain the estimates, whereas if « is taken to be positive,
then information regarding equation (33b) is also used in obtaining the
estimates,

For a given value of @, the minimization of § in (34) with respect

to the parameters Bl through ﬁE and the variances and covariances of

lSSee Kelejian [12].
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Uypr Uoys and u3t is quite straightforward and should be able to be handled
by nonlinear optimization programs like the ones used in Section II. If
first and second derivatives of S are required, these can be computed
numerically or else one can go to the bother of actually differentiating

S twice with respect to ﬁl through ﬁ6. Indeed, the problem of minimizing S
in (34) does not appear to be as difficult as the problem of maximizing L
in (8) was since the maximization of J required the evaluation of normal
integrals, where the limits of the integrals were themselves functions of
some of the parameter values, The steps involved in computing the estimates
of the parameters of equations (33a) and (33b) are tedious because of the
need to expand Hf in a Taylor series and the need to express L(Pt,X%) as
an explicit function of Pt’ Xt’ and the parameter values, but aside from
this tediousness the computation of the estimates does not appear

infeasible or impractical.

The choice of the value of & in (34) is somewhat arbitrary. A choice
of a value of one means that both equations are weighted equally, and this
may be as good a choice asg any. One might also want to consider s two~step
procedure in which initial estimates of the parameter values are obtained
by, say, using a = 1, then estimating the variances of W% and €54 and then

reestimting the parameters taking & to be the ratio of the estimated

14
2t°

It remains to be shown that the minimization of (34) yields

variance of ¢% to the estimated variance of e

. . . A A
:on31stent parameter estimates, To see this, let Vit = Zzt-z2~b and

A
Vop = Pi~Pi. Also, rewrite equation (33b) as

lhIt should be noted, of course, that the variance of W% is not constant over

the sample period, and so what one is obtaining using this procedure is an
estimate of the average variance of W£ over the sample period,
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(35) By = Zgg73 ¥ Pyyy ey s
where‘Z3t = (Xit’x2t’x3t) and 73 and 7), are the corresponding vectors of

Parameters, the elements of which are nonlinear functions of Bl through ﬁg.

Equations (33a)! and (35) can be written:

6 =7 +2 + P+ G
(36) U =Zyg?y Y Zop¥p vV vV,
A A
(37) BPp = Zgg3 ¥ By, *oepy + V7, .
Now, let
A
Q Z, 7, 0 0
= = A
(38) o |’ 270 o Va z,Nap |
7 A
1 ¥ v 0
72 C, 1 A
7 = y €= P = s
73 \ﬁz e2 0 \ﬁﬁ Vé
7y
75
* =
7 7)_'_ ’

where the dropping of the t subscripts means that the symbols refer to
vectors or matrices of observations. Equations (36) and (37) can now be u

written, after (37) is multiplied acrOSS»by*Jbg as

(39) Y=2Zy +e+ 97* .

Using this notation, S in (3k4) is
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(o) S (YQZV)'(Y?Zr)

L}

]

Y'Y - 27'Z'Y + 1212y .

Let B be the vector of parameters consisting of ﬁl through B6

15

and of the variances and covariances of W4 sy s and u3t. Minimizing

S with respect to B yields

=2y +fpzd o

(h1) B B

OJ,O/
Wi

A A A
where y is 7 evaluated at B and 7ﬁ is the matrix of partial derivatives

07/9B evaluated at 8. Linearizing (41) about B yields
(42) 752 (77 + 275(8-B)-1] = o

or, using (39):

A - A
(43) B-p = (132127 ) ytzr (e + Tpx)
B p B
. R} A . , NS | n
Since Plim T "Z'e€ = 0, Plim (B-B) will be zero if Plim T (7éz'v7*)
Tedoo T—oo P00

is zero, Now,

AR 0
11
217 0
A 2'1
(44) Z1Y = A .
0 a Ziv,
2
AN
T
0 a Py,

15The following derivation is similar, although in a different context,
to a derivation given by Aigner and Goldberger [1, p. 715, n. 1].
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Since it was assumed that all of the predetermined variables were used in
constructing the calculated values, it follows by the least squares

A A
property that Z'V = 03 therefore, B is consistent,

V. CONCLUSION

The study of the estimation of disequilibrium models has become
quite popular recently.l6 In this paper three methods of estimating
disequilibrium models have been proposed, The first two methods -~
maximum likelihood methods -; are concerned with the estimation of models
in which the price equation is a nonstochastic function of excess demand,
The third method is concerned with the estimation of a more general
model in which the price equation is allowed to be a multivariate, stochastic
function, The problems involved in estimating disequilibrium models turn
out to be fairly complicated, and for this reason one may in practice want
to begin with the estimation of simply-specified models before considering
more general models, Nevertheless, it is encouraging that the quite
general model considered in Section IV of this paper appears capable of
estimation, and as menticned in the Introduction, it is hoped that this

paper will stimulate further work in this area,

16In addition to the study of Fair and Jaffee [5], the following studies
are concerned in one way or another with the question of estimating dis-
equilibrium models: Goldfeld and Quandt [9], Quandt [16], Goldfeld,
Kelejian, and Quandt [8], Brown and Durbin [2], Farley and Hinich [6],
and McGee and Carleton [13], See Quandt [16] for a brief review of these
studies,
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