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I. Introduction

The main purpose of this paper is to measure the possible
gain by applying optimal stochastic control policies using an econo-
metric model, as compared with policies that maintain a smooth growth
path for each policy variable, At the outset, it should be admitted
that our measures will depend on the econometric model used, as do
conclusions from quantitative economic studies in general. A perti-
nent argument by proponents of a nondiscretionary rule is that we do
not know the dynamic structure of the economy. The viewpoint of this
paper is: if we do know the dynamic structure, and if it resembles
the one used, how much can be gained by applying an optimal discre-
tionary policy? For those who believe that our present knowledge is
meager, this paper provides an estimate of the potential value of
acquiring knowledge of the dynamic structure of our economy. Further-
more, the method outlined here can be applied to other econometric
models, and it wuld be of interest to study the sensitivities of our
measures of gain, and of the optimal policies implied, to variations
in the models.

In order to proceed, we have adopited the following three
assumptions. (1) The welfare cost associated with a policy can be
measured by the expected value, as of the beginning of a planning
period, of a weighted sum of squared deviations of the economic varia-
bles from their specified targets., In other words, the welfare
function is quadratic. (2) The relevant econometric model is linear.

(3) The parameters of the model are known for certain. Discussion
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of the possibility of relaxing one or more of these assumptions will
be postpconed to the last section. It is believed that these assump-~
tions, though restrictive, are good enough approximations to make
our guantitative results useful,

Since these assumptions were also made in the well-known works
of Simon (1956) and Theil (1958) on first-period certainty equivalence
to be applied to multiperiod decision under uncertainty, the main
difference of the present study from their analysis should bestressed?
Because their method can be used to calculate the optimal values of
the policy variables in terms of the indirectly observed stochastic
disturbances only after the disturbances have occurred, there is no
way of obtaining the expected welfare associated with the optimal
policy, or any other policy, except by simulations that require the
generation of random disturbances. On the other hand, the calcula-
tion of expected welfare by our method is simple and analytic.
Similarly, the application of non-stochastic control theory to a
linear econometric model by ighoring the random disturbances, as
examplified by the interesting work of Pindyck (1971), does not yield
expected welfare for a given policy; nor are the alleged optimal time
paths for the policy variables calculated by Pindyck (1971) truly
optimal if random disturbances are included. By allowing for the
random disturbances of an econometric model as in stochastic control
theory, the present study overcomes these deficiencies.

In my opinion, the literature on the control of stochastic
systems is unnecessarily complicated for the researcher who wishes

to understand the main ideas and the derivations of the optimal
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control solution for the case of quadratic welfare and linear model
in discrete time. 1In two previous papers, Chow (1970b, 1972), I have
provided simple expositions using the elementary technique of
Lagrange multipliers., To make this paper self-contained, and to set
the stage for further analysis, I will include, in section II, an
exposition of the main ideas, drawing partly on the previous papers
and supplementing them by an elementary exposition using the method
of dynamic programming. Building on the basic theory, I will derive
in section III the gain of the optimal policy over a policy of main-
taining a constant rate of growth for each policy variable. The
method of section III will then be applied to a highly simplified and
aggregative econometric model of the U.S. economy in section IV,
Conclusions and possible extensions of the present study will be

presented in section V.

ITI. Basic_Ideas and Theory

To begin with, we take as given a linear econometric model

in its reduced form:
. = +- .o o s 0
(2.1) y BreYear ooy Yo n* Cop Xgheo o+ Cpp X +b +uy

where Yi is a vector of dependent variables, x is a vector of

t

variables subject to control, B, and Cit are given constant
matrices, u, is a serially uncorrelated vector with mean zero and
covariance matrix V , Exogenous variables in the system which are

not subject to control will be treated either as part of bt (also
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assumed to be given constants) or as a part of u To simplify

t L]
analysis, the system (2.1) will be rewritten as a first-order system,

Y fre P Cret Cne| |Ye-1| |Coe|®e |Pe| %
. : + e +ie | +]2
(2.2) Yt"m"‘l = L] I O (0] LY 0 yt"'m 0 (0] 0
%, 0..00 0...0 ee1l | I 0 o
el 0..0 .oox 0f x| |oO 0 0

which will be redesignated as

(2.3) Ye = Atyt—l +CX b +u .

Note that the newly defined Yi ihcludes current and (possibly)
lagged dependent variables as well as current and (possibly) lagged

control variables, whereas =x,_ remains the same as before.

t
The performance of the svstem will be measured by the

deviations of Y » @as defined in (2.3), from the target vectors

a (t=1,...,T) . The vectors a, will have the same dimension as

t t
Yi s and since the latter include lagged variables, the elements oOf

a, have to be consistently specified through time. Specifically,

welfare cost is measured by

T
(2.4) W = E =

£ (yt-at)t Kt(Yt“at)

1

where the expectation E is conditional on the initial condition Yo
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again in the notation of (2.3), and K are known, symmetric (usually

t
diagonal), positive semi-definite matrices, with zero elements as a
rule corresponding to lagged (endogenous and control) variables.

The main idea of control is to steer Y close to the target

a, by choosing appropriately the control variables X, o It will be
fruitful to think of X, as composed of two parts, ;t which is
deterministic, and x% which is random, both from the vintage point

of the decision process at the beginning of period 1. That is to
say, it (t=1,...,T) can be specified once and for all in period 1,
whereas x¥ (t=1,...,T) may depend on the random elements u, which
are observable, at least indirectly, if the parameters in the system

are known. Similarly, the time series Vi under control will be

viewed as the sum of two parts, the first being

(2.5) Ye = Bg ¥eq *Cpox + by (vy=v,)
which is deterministic, and the remainder Vi = Ye - §t being

: % 3 * =
(2.6) vi = A, Yiop * Cp ®E o+ oug (y 0)

which is random, and independent of the first part because u are.

t
Accordingly, the welfare cost is decomposed into two parts,
T _ _ T
- - ' - %1 * =
(2.7) w = til(yt a)' K(y,-a,) +E ti:lyt Ko vy = Wy + W,

and the control problem is also separated into a deterministic control

problem of minimizing W, with respect to =X and a stochastic

1 t

control problem of minimizing W2 with respect to xé .



One elementary way to solve the deterministic control problem5
is to introduce the Lagrange multipliers Ay » and differentiate

the Lagrange expression

T iy
. 1 5 o _ 'rS o = ez

(2.8) 1 = 3 = (3, ag) ' Kelyp ~a) - 2 MF -A 7, Cexy b, ]

t=1 t=1
to yield

BLl
(2.9) -§§—t-—-— = ClA =0 (t=1,...,T)
aLl -

(2.10) ——= - Kt(yt-at)-xt * AL My =0 (t=l,”.,T;KT+l==O)y

ayt

Equations (2.10), (2.9),and (2.5) will be used, in that order, to
express A, as a linear function of §t s to solve for it s §t s
and Kt as linear functions. of §t—l » and using the last, to

express N, ; as a linear function of §t—l , and'so forth, beginning
T

with t = + Thus, by (2.10),

- W o o 1 = 7 -
(2.11) Mp Kp¥p = Kpq + Ap ) Ag Hp ¥qp = hy,
where
(2.12) Hp, = Kp s
(2,13) hy, = Kp ap -

By (2.9), (2.11) and (2.5),

2.. )4. ! = = ! " - = ' 7 - -
(2.14) CTKT 0 CT[HTyT hT] cT[HTATyT_l + HTCT}%?+ HTbT hT],



implying
(2.15) Xp = Gp Yoo *+ 9y
where
-1
(2.16) Gy = - (C%HTCT) CrHAL

]

-1
(2.17) Iy - (C%HTCT) Cé(HTbT-hT) .

Using (2.5) and (2.11) respectively, in conjuncticnwith (2,15), we
solve for Yo and xT as functions of Yp.g 3

(2.18) Yo = (AT + CTGT) Yp.p * bp + Codp

"':h. 0

(2.19) Np = HT(AT + CTGT) Ypop ¥ HT(bT + chT) -

Having solved for Ap in terms of §T~l » we will csubstitute

(2.19) into (2.10) in order to obtain an equation analogous to (2,11):

(2.20) Ny = Ko ¥ = Kpjap ) +A - Hpoy Ypo1 - Ppoy
where
—_ !
(2.21)  Hpy = Ky g+ BpHn(Bg + C6p)
— -— ! 1
(2.22) hp o = Rp_13p.1 ATHT(bT + CTgT) + Ath,,

The development from (2,14) on can now be followed, with T-1
replacing T , and so forth. The above solution to this deterministic
control problem consists of using the pair of equations (2.16) and

(2.21) to obtain @G H 5 Gp_15e+9, consecutively with (2.,12)
T’ “T-1 T-1
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as the initial condition, and, given H of using the pair of

t 3
equations (2.17) and (2.22) to obtain Ip » Doy Ip_1se++s coOD-
secutively with (2,13) as the initial condition., Having obtained

Gt and 9 » We set the optimal X by the linear feedback

t
control rule (2.15) on Yol *

The stochastic control problem of minimizing W subject to

2
(2.6) can also be solved by the method of Lagrange multipliers.u

However, it may be useful to present an elementary exposition using
the method of dynamic programming of Bellman (1957), a method which
has often been applied to both deterministic and stochastic control

problems. Consider the de¢ision on xé in the last period, when

the welfare cost will be
= % 1 ¥
(2.23) W ETyT KTyT

where ET denotes expectation conditional on the information

available at the beginning of period T , hamely, vy* « To faci-

T-1
litate its generalization to Oother periods than T , we rewrite

(2.23) as
(2.24) | Wy = ETy",Iﬁ'HTyf:E
= (Bgvh_ g + Cpxt)! Bp(Apyh_p + Cpxk) + Py
Where
(2.25) Hp = Kp Pp = EquiHou, .



Minimizing (2.2k) with respect to x* by differentiation yields

T
* -
(2.26) Xt = Gpvk g
where
-1
— - )
(2.27) Gp = (cTHTcT) C&HTAT .

Substitution of (2.26) for xf  in (2.24) gives the minimum expected

cost for the last period as

(2.28) W, = vily (AT-FCTGT)' Hp(Ag + CpGo) yho1 * Pp -

By the principle of optimality in dynamic programming, the
optimal strategy for any period, say, T-1 , is obtained by mini-
mizing the expected cost from that period on under the assumption
that all future controls shall be optimally set, This is to
minimize

(2.29) By ) [y + &1y Kpoy v o

Substituting (2.28) for W, in (2.29), we find that the expression

T
to be minimized will have the same form as (2.24), i.e.,

(2.30) Bpo1 [¥511Hp 1Y% 1 + Ppl

= (Bp_1¥i_ o + CpoyXhq)" Hp((Bp_ ¥k 5 + Cpoyxh ) + Pp.y



- 10 -

where

(2.31) Hp.y = Koo ¥ (AT + CTGT) HT(AT + CTGT)
— T t ©
= Kp g+ ATHT(AT + CTGT) :
. 1

(2.32) Ppoy = Pp * Bpy Upy Hpoy Upop -

Thus, the development from (2.26) on can be followed, with T-1

replacing T , and so forth. 1In brief, we use the pair of equations

(2.27) and (2.31) to . obtain Gp » Hpy » Gpoyse-», with initial
condition (2.25), Given G, , we obtain the optimal x¥ by the

linear feedback control equation (2.26) on y{.y » nhoticing that
the feedback coefficients Gt are identical with those applied to
§t-l in the deterministic control problem earlier. In the above
exposition, we have decomposed the optimal control problem of mini-
mizing the welfare cost (2.7) into a deterministic control and a
stochastic control problem. In an ordinary treatment, the solutiocon
to the entire problem is given simply as Xy = tht + 9 where
X, = it +xt and y,_ = §t + y{ in our notations,

It is interesting to note the steadye-state solution for G, .

t

If At = A , Ct = C , and K, = K for all ¢t , G, may reach a

steady-state solution G , obtained by solving

(2.33) G, = -(c'Htcn -1 C'H A ;

(2.34) H = K+ (B +ce) H(A+ ce.) .

t-1
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Since the solution is obtained backward in time, starting from

t=T , G, will reach a steady-state for small values of t . This
means that, when the time horizon is leng, and with a time-invariant
model, the optimal rule is the same for the early periods, and the
terminal condition will affect behavior only for periods close to
the end of the time horizon, Note also that the possibility for

Gt to reach a steady-state depends on the parameters A and C ,

but not on the time paths of the target '@, and the combined effect
bt of other exogenous variables, the latter affecting the solution
for g. . As can be seen from (2.17) and (2.22), g, could reach

a steady-state if, in addition, a, and bt are constant through

t
time.

ITI. Deriving the Gain from Optimal Stochastic Control

From the exposition of section II, one easily sees that the
gain from applying an optimal feedback policy, as compared with the
rule of maintaining a constant growth rate for each control variable,
can be decomposed into two parts. The first is the gain of optimal
stochastic control over optimal deterministic control, the latter
being a policy which sets the values of all future control variables
at the beginning of period one. This gain is mecasured by the

T
difference between W2 = Z B yi'Iﬂ:yi for the optimal policy of
t=1

equations (2,26), (2.27), and (2.31), and that value in the absence

i * = rk
of any feedback, i.e., Vi = Atxt-l+ u, .



The second is the gain of optimal deterministic control over the
deterministic control rule of a constant growth rate for each
policy variable. These two parts will in turn be derived.

The reader will have noticed that the proponents of maintaining
a constant growth rate for just one control variable (money supply)
have not stated their position sufficiently for a meaningful and
rigorous analysis. To complete  the specification of a meaningful
proposition, we add that all control variables should grow at
constant rates, that a quadratic welfare function be used to measure
the performance of the economy, and that, for the benefit of the
proponents of such a proposition, the particular growth rates be
determined sub-optimally in accordance with the given welfare

function.5

For the first part of the gain, one can evaluate W, for the

optimal pelicy as follows. Write

1l

T
(3.1) W, f tr K (E v} y2')

T
% 1 =
" Byl Kevi f

1 t=1

Note that, for the optimal policy given by (2.26) and (2.27), the

stochastic model (2.6) becomes

(3.2) vi = (At + Cth) Y%-l o .

Postmultiply (3.2) by Yi' and take expectation to yield
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¥ * - 3 ¥ ¥ ! 1
(%3.3) E vy vi (At + CtFt) Evi, vi' + Euul .
Premultiply the transpose of (3.2) by yi_l , take expectation, and

substitute the result for E vi_; vi! in (3.3) to yield

. . _ el t !
(3.4) Eyivyi' =(a, +¢6.) (Eyt g vily) (A + C8.)" + Eupul .

Equation (3.4) can be used to evaluate E vi vi' in (3.1), starting

with E yi&ﬁf = B uul =V . Since the suboptimal policy ignores

t 't
any information on vi , and it sets G, =0 in the model (3.2),
it will have a stochastic welfare cost W2 with E yigﬁf given by
¥ oxp¥ ¥ ¥ 1 1
(3.5) B yivg A(E YR ¥R BAL + V.

This completes the evaluation of the welfare gain by using optimal

stochastic control, over the best deterministic control policy.
For the second part of the gain, Wl for the optimal deter-

ministic policy can easily be calculated by definition (2.,7). For

the suboptimal policy, the control equation is constrained to be,

with D denoting a diagonal matrix,

(3.6) X, = Dx__,

or alternatively,

(5'7) ;ét = Gi;t"l: (O°"ODO"‘O)

where the matrix G has zero elements except for the submatrix
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corresponding to the vector it-l which is imbedded in the vectox
§t-l + The problem is to minimize Wl with respect to
Cdl,d2,...,dq) = d , the diagonal elements of the matrix D .

There are various methods to perform this minimization. A good
method which we have used for the calculations in section IV is the
gradient method described in Goldfeld, Quandt, and Trotter (1966).
Given any guess of the unknown vector d , the value of the function
Wl(d) can be calculated using the definition (2.7), the model
(2.5), and the control rule (3.7); so can the gradient of Wl(d) at
that point, either numerically or analytically. By using a qua-
dratic approximation to the function to be minimized near that point,
the Goldfeld-Quandt-Trotter method insures that the matrix of second
derivatives used to calculate the unknown for the next iteration is
positive definite, even if the function itself is not convex. This

method can be used to obtain the suboptimal d , and the associated

welfare cost Wl can be calculated.

From the viewpoint of applications, our analytical framework
may be applied to the levels of cconomic variables, or to their first
differences, depending on the interest of the researcher. The
variables in the welfare function and in the control equations may
be of either type. If the given econometric model explains the

levels, one can create new variables for the first differences by

introducing identities, and vice versa.



IV, Measuring the Gain for a Simple Macro Model

The econometric model to be used to measure the gain from an
optimal stochastic control policy is a very aggregative multiplier-
accelerator model that I constructed, Chow (1967), using annual data
of the United States covering the years 1931-1940 and 1948-1963,
There are four stochastic equations explaining the four dependent
variables listed below.

Yy, = AC-= first difference of +total personal consumption
expenditures, millions of current dollars.

Yo = AIl= first difference of cross private domestic
investment in producers' durable equipment plus
change in business inventories, millions.

Y3 = A12= first difference of new construction, millions.

Y, = AR = first difference of yield of 20-year corporate
bonds, annual percentage rate times 10,000.

X, = AM = first difference of currency and demand deposits
adjusted in middle of the year, millions of
current dollars,

X, = AG = first difference of government purchases of goods

and services, millions.

Five other dependent variables are explained by identities, giving
a total of nine structural equations as listed in Table 1. The
reduced form equations, corresponding to (1.l1), are given in Table 2.

There are two exogenous variables, x, =AM and x, = AG , both

1 2
of which are assumed to be control variables. They augment the
above nine variables in a newly defined 11 X 1 vector Ye » in

the notation of equation (1.3).
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There are two sets of calculations to be presented in Table 3,
one obtained by controlling the first differences of the variables,
and the second by controlling the variables in their levels.6 The
initial conditions ¥, are those for the year 196h.T The target

paths a of all expenditures variables (in first differences or in

t
levels as the case may be) are set to grow by 5 per cent per year
starting from their historical values Yo - The target path for

the first difference of the rate of interest is set equal to zero
for all periods; the target path for the interest rate variable
itself is set equal to 43,300 (or 4.33 per cent per year times 10
its value in 196L). Since the model does not explain the price level
P , and lagged price P-l is used in the first three structural
equations as a deflation device, we will assume that .this exogenous
variable grows by 2 per cent per vear from 120.7, its value in 1964,
The time horizon T is 10 years.

The matrix X in the welfare function is assumed to be
diagonal. Its non-zero diagonal elements have been chosen according
to two major considerations: whether the interest rate variable
should be weighted, and whether individual expenditures variables

c, I and I should be weighted above and beyond their sum. Total

1’ 2

of government expenditures is included in the welfare function,
either by itself or as one component of a sum, but money supply is
not because there is little rationale for doing so. Of course, the

path of money supply is: appraised through its effect on expenditures

and, in some calculations, through its effect on the behavior of the
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rate of interest. The weight given to the interest rate, when it
is present in the welfare function, is equal to that of an expendi-
ture variable, implying that a deviation of 1 percentage point (or
10,000 in our units) from target is as costly as a deviation of
10,000 million dollars for an expenditure variable. Calculations
using other weights for the interest rate variable, and for govern-
ment expenditures, than those reported in Table 3 have also been
performed, but they provide the same orders of magnitude for the
relative gains of the optimal policies over the suboptimal policies.
The first two runs in Table 3 give no weight to the interest
rate variable, while the last three give a weight of 1 as specified
above. Within these two groups, the runs are presented with in~.
creasing number of variables to be controlled., Note that, when the
number of variables to be controlled is equal to the number of
policy instruments (2 in our casé), the deterministic components of
“these variables will reach their targets exactly, and the determinis-
tic part of the welfare cost is therefore zero. Note also that the
welfare cost is measured by a weighted sum of squared deviations in
millions, so that 100 (106) for one expenditure variable would

mean a standard deviation of 10 billion dollars.
8

As far as the five runs using first differences are concerned,

the gain of the optimal solution in the stochastic part of welfare
cost varies between about 30 to k0 per cent, and this part is much

more important than the deterministic part., Hence, if the economic
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model contains stochastic disturbances, one can hardly afford to
ignore them in the study of optimal policy. As far as the five
runs using the levels of the variables are concerned,9 the gain of
the optimal solution in the stochastic part of welfare cost varies
from about 40 to 80 per.cent, énd, again, this part dominates the
deterministic part of the welfare cost.

Cne might wish to ask why the relative gains of the optimal
policies are greater for the calculations using levels of the
varigbles than the corresponding gains using first differences, To
answer this question, let us reexamine how the stochastic part of
the welfare cost is calculated. For the optimal policy, we choose
a linear feedback control equation x¥ = thi-l in such a way that

t
the system under control

YE = Ayf_q +Cxi+u = (A+CG)y{_, +u

t

will have small weighted sum of variances. More precisely, we
-1

)

choose the matrix G, = ~(C'HtC

small, in the sense of having a minimum tr(A +CGt)' Ht(A+C Gt) <o

C'H,A to make the matrix (A+C Gt)

This is equivalent to regressing the columns of the matrix A on

the columns of the matrix -C , with the columns of G as regres-

t
sion coefficients in a multivariate regression. For the sub~optimal
policy,vmeset,Gt=(3. The gain from the optimal policy is the gain
(in reducing variances) by using a smaller matrix (A+{1Gt) in

the above stochastic system rather than the matrix A itself., If



the lag structure of the systan as reflected in the matrix A becomes
nore complicated, with reference to a given matrix C , in such a way

that the ratio of tr A'H,A to tr(A+cCGgG

t t)

larger for the optimal Gt , then the gain from optimal control

! Ht(A +C Gt) becomes

will be greater, Intuitively speaking, the.more sparse A is,

A=0 being the extreme case, the less will be the effects of the
lagged variables on the current state, and thus the less will be

the gain from optimal feedback control., If this point is valid,

one should expect larger gains from optimal control if he employs

a quarterly model instead of an annual one, because there will be
more lagged variables and the matrix A will be bigger in dimension
and less sparse.

Granted that the optimal policy is definitely better than
the suboptimal policy for a given welfare function, how much of the
superiority would remain when judged by a different welfare function?
To shed some light on this question, I have calculated the ratios of
the suboptimal stochastic welfare costs to the optimal for Runs (1),
(2), (4), and (5), using the welfare weights of Run (3) which are
unity for R and Y only. These ratios are respectively 1.254,
1.32, 1.30, and 1.34 for the calculations in first differences;
they are 1.27, 1l.24, 1.4k2, and 1.39 respectively for the calculations
in levels. The optimal policies are thus seen to be fairly robust
against different welfare functions -- recall that the optimal
policies of runs (1) and (2) were derived without including the rate

of interest in their welfare functions.
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The gains from optimal policies having been measured, it
would be of interest to examine the nature of ths optimal feedback
eguations as reflected in the matrix Gt . Table 4 shows the
matrix G1 for all the runs of Table 3. In all calculations, the
matrices G, > beginning with G10 converge very rapidly -~ for
three significant figures, Table 4 applies equally well to G5 .

I will confine myself to two observations. TFirst, concerning the
relative roles of money supply and government expenditures, other
things being equal, .optimal money supply will bscome more active,
as measured by the absolute values of the feedback coefficients.
when the rate of intecrest occupies a less important position in the
welfare function; optimal government expenditures will be more
active when this variable occupies a less important position in the
welfare function. Secondly, because our consumption function (see

Table 1) is of the form

AC = ,3083 AY

c + .193%38 AC

+ LI ]

1,t £-1

and our investment function, as derived from the accelerations

principle through a stock-flow transformation, is of the form

Ilt = -2806 AYl,t + u5375 Il’t_l + eeo
or
AIl,t = a2806 AYl’t - .6625 Il,t"‘l + eee P
a compensatory policy would be to react negatively to Act—l but
positively to Il,t~l and Iz,t—l , as indicated by the coeffi-

cients in Table 4, and suggested by the coefficients in the reduced-
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form equation for AY in Table 2, If the above formulations of
the consumption and investment functions are correct, monetary and
fiscal policies should react differently to lagged consumption and
to lagged investment expenditures as recommended here.

To provide a very crude check on the wisdom of actual
government policies during the period 1948-1963 (the post World
War II sample period of our model), I am reporting the following
two regressions of oM, and AGt on Act-l ’ 2) £-1 7
and linear trend t (t=1948,,..,1963), placing in parentheses below

(11-+1 g1 » DM

each regression coefficient its ratio to the standard errocr.

Observed Feedback Control Regressions

1958-1963
AC_4 (I1+12)_l AM_q t Intercept s YRE
aM ~,.3183 0957 .0898 -135.8 266,539, 2,673 .23
(-1.66) (.58) (.30) (-.31) (.31)
AG -,2115 7270 ~.13L43 -200%. 3,886,846, 6,401 .29
(=2k6) (1.85) (.19) (-1.89) (1.90)

In these regressions, the two investmant variables are combined to
avoid too much multicollinearity; the trend and the intercept are
used to represent g, in the feedback control equation. Allowing
for their standard errors, one can say that the coefficients of

AC_; and (Il + IE)-l do tend to be respectively negative and
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positive as in an optimal policy, and that the first three
coefficients (or four, if the coefficient of investment expenditures
countsas two) are not very different from the optimal coefficients
in Table b -~ discount the row of zeros in the optimal equaticns

for AG in run (1) because AG is given too much weight, and
discount the row for AM in run (3) because AR is given too much
weight. If uncertainties were ignored, and the above coefficients
were used for the matrix G to calculate the stochastic part of

t
welfare, one would obtain:

Run 1 2 3 b 2

leg(regression) 566.1 536.2 288.8 583.0 553.1

%Wg(suboptimal) s47,6 586.,8 358,9 s56L.7  603.9

Ratio 97 1.09 1.24 .97 1.09

Thus, a set of (non-stochastic) feedback control equations based on
historical observations would not compare unfavorably with the
suboptimal policy of Gt = 0 , However, the above estimates of
welfare gains are biased in favor of the observed regression policy
because the standard errors g of the regressions and of the re-
gression coefficients, which have been ignored in these calculations,
would increase the variances of the system.lo One cannot say, from

this very crude analysis, that monetary and fiscal policies in the

period 1948-1963 were destabilizing.
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V. Concluding Remarks

In this paper, I have set forth a theoretical framework for
measuring the welfare gains by following an optimal stochastic
control policy as compared with a suboptimal policy which only
permits a constant rate of growth for each policy variable, and have
provided numerical measures of gains using a macro-economic model.
I have found that the stochastic part of welfare cost, which takes
into account the random disturbances of an econometric model, is
much larger than the deterministic part which does not., If first
differences enter the welfare function, the gain varies between 30
to 40 per cent; if levels of the variables enter the welfare func-
tion, the gain varies between 40 to 80 per cent, both in terms of
weighted sum of squares of deviationg from targets. By examining
how the optimal stochastic control policy works in this framework,
I have indicated that the complexities of the lagged structure of
the system as reflected in the matrix A& , for a given matrix C
of the effectsof the policy variables, will tend to make the gain
from the optimal policy greater, implying, for example, that a model
using quarterly observations is likely to yield larger gains than
an annual model.

It has also been found that the gain from an optimal policy,
which is derived from a given welfare function, is fairly robust
against (reasonable) variations in the welfare weights for its

evaluation. The characteristics of the optimal feedback policies
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have been examined. Historical feedback relationships have been
crudely estimated by regressions, and they do not suggest that
monetary and fiscal policies in the United States were destabilizing
in the period 1948-1963.

Let me now comment briefly on the possibility of relaxing the
three main assumptions stated at the beginning of this paper. A&s
suggested by Athans (1971), for example, an analysis using a qua-
dratic welfare function and a linear stochastic model can be applied
to a problem involving non-quadratic welfare and non-linear model by,
first, solving the deterministic version of the latter problem, a
version that substitutes zero for random disturbances, with whatever
method available (such as Pontryagin's minimum principle or dynamic
programming), and, second, controlling the deviations of Ve from
the optimal path obtained above after the linearization of the
original model around this optimal path. This suggestion deserves
further investigation, especially in view of the large differences
between the optimal stochastic solutions and the optimal deter=
ministic solutions that we have found in this paper.

If the model is linear and the welfare function quadratic,
but the parameters are unknown and treated as random, it is well-
known, and can easily be shown using techniques parallel to those of
equations (2.23) to (2.32), that the optimal feedback equations will

remain linear with matrices
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9]
1}

- [E(C'H_c)]"1 E(C'HA)

t

i
I

K

1
£-1 e-1 * E(a+cg ) H(A+CE

)

replacing those of equations (2,27) and (2.31) respectively,
provided that the random matrices A and C have density functions
which are unchanged during the planning period. If this proviso is
accepted, as it is reasonable in many applications when the prior
information on A and C at the beginning of the planning period
dominates the additiohal information to be collected during the
planning period, one has an analytical solution to the optimal
control problem after evaluating the mathematical expectation of
the product of any two elements of the matrices A and C by

Bayesian methods, as is done in Chow (1971). I hope to report on

the results of this approach in the near future.
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For a fuller discussion of this point, see Chow (1972), which
discusses other differences as well,

Although the result given below is well-known, the simple derivas
tion presented here does not seem to be available in the literature
on control,

For such a solution, see Chow (1972).

An important motivation of this study is to examine rigorously
the policy, mostly attributed to Friedman and widely discussed
after Friedman(l.968), of increasing money supply at a constant
percentage rate, We have pointed out that more is needed to
make such a proposition meaningful. For further discussion of
Friedman's methodology from the viewpoint of dynamic, stochastic,
and quantitative economics, the reader may refer to Chow (1970a).

For brief comments on the relative merits and limitations of
using levels and first differences in the welfare function, see
Chow (1970b).
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See Chow (1967), p. 12, for data on Yo o The initial conditions
will not affect G_ ; therefore, the stochastic part of the
welfare cost will not be affected,

All calculations for the stochastic part of welfare cost require
the use of the covarience matrix V of the reduced-form residuals,
for which see Chow and Levitan (1969).

These calculations require the introduction of three more

variables, i.e., the levels C, R, and ¥ into our equations

l 2
of Tables 1 and 2; these variables are explained by simple
identities. Furthermore, the control variakles are M and G ,

rather than AM and AG .

One should at least incorporate the two observed feedback control
eguations as stochasfic equaticns in the system by taking into

account the random disturbances in them, but this would still

leave out the possibly random nature of the regression coefficients,
On the other hand, large residuals in the historical feedback
regressions might be due to policies designed for non-economic
reasons (such as financing and spending for the Korean War), and
compensations for their effects later on.



