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PROBLEMS OF ECONCMIC POLICY

FROM. THE VIEWPOINT OF CPTIMAL CCMTROL

Gregory C. Chow

I have been prompted to write this paper by the reading of
Robert S. Holbrook's recent article, "Optimal Economic Policy and
the Problem of Instrument Instabiiity."l It is my purpose to show
that the questions raised, and partially studied, by Holbrook, as
well as other questions concerning optimal economic policy, can be
answered by the technigues of optimal control in a more general
setting. It will be convenient to use the problem of instrument
instability as a starting and focal point of analysis in the exposi-
tion of this paper.

"Instrument instability" was said to exist by Holbrook (1972,
P« 57) if "attempts to offset completely the cumulative impact of
past changes in the policy instrument may require ever greater changes
in the future value of the instrument." An example is provided'by

the model

where Ve is the endogenous variable to be ccontrolled and Xy is

the instrument. If the objective is to make Ve = l0 , for many

future periods, the solution is to set .hx  + 6%, _4

= -1.5%, 4 , @ situation characterized as one of "instrument

=0, or
*¢

instability."



Among the qguestions to be studied in thie paper are the

following. Given a linear econometric model in its reduced form,
(1) Yt = Alyt—l+"'+Amyt-m + Coxt+"'+cnxt-n + bt + ut

where Vi is a vector of endogenous variables, X, is. a vector of

instruments, Ai and Ci are given constant matrices, bt are
given vectors capturing the combined effects of other exogenous
variables which are not subject to control, and u, is a random
vector with mean O , covariance matrix V , and is uncorrelated
with u, (t%s) » under what conditions will "ingtrument instability"
(as examplified above, but to be specified more precisely later)
exist? Secondly, if "instrumental instability" is found to exist,
to what extent and in what way can the policy maker trade off this
instability by allowing for instability in the endogenous variable(s)
to be controlled? Third, if one instrument, say federal expenditures,
is found to be unstable when it is regarded as the only instrument
(holding as fixed another instrument such as money supply), to what
extent will the availability of another instrument alleviate the
problem of instrument instability?

As it will be seen, the third question, which was not raised
by Holbrook because his framework only allowed him to study one
instrument at a time, can be reduced to a special case of the second

question. Our framework will be more general thahn Holbrook's in (a)

having possibly more than one endogenous variable to be controlled,



(b) having possibly more than one instrument to be studied, (c)
having possibly unequal numbers of endogenocus variables and instru-
ments, and (d) having posgsibly random disturbances in the system.
Furthermore, our solution can ke generalized to the case of (e)
treating the matrices Ai and Ci as random matrices, and (£) of
non-linear dynamic models. This paper will deal only with generali-~
zations (a), (b), (c) and (d), leaving (e) and (f) to an appropriate
reference. All the questions raised so far can be analyzed fairly
ecasily once the framework of optimal control is set forth. This is

the immediate task of section I.

I. The Framework of Optimal Control

Let us begin by rewriting the dynamic system (1) as a first-
order system in which the "current endogenous variables' Ve will

incorporporate the instruments:

t -,
Ve Al"'Am CpeeeCul [Yem1 “o| ¥t ?t Y
(2) Yt"'m"‘l = ...IO O..oo yt"‘m + 0 + O + O
e O ...0 0...0 Kl I o) 0
Ke el O.et O 0. IO| Ix, 0 o 0

which will be redesignated simply as

(3) Ye = Ayt-l + Cx, 4 bt + U .



Note that the newly defined v includes current and (possibly)

t
lagged endogenous variables as well as current and (possibly)lagged

instruments, whereas x_. remains the same as before.

t
The performance of the system will be measured by the
deviations of Yo » @s defined in (3), from the target vectors a,

(t=1,...,T). Specifically, welfare cost is measured by

(&) W = E

1 MH

(ve = a.)" K lyg - a))

t=1

where E, denotes expectation conditional on the initial condition

Yo 7 again in the notation of (3), and K are known, symmetric

t
(usually diagonal), positive semi-definite matrices, with zero ele-
ments as a rule corresponding to lagged (endogenous and control)

variables,

The problem is to minimize expected welfare cost (%) by
setting the time path of the instrument X (t=1,...,T) , given the
model (3). This is one of the simplest and most basic problems in
stochastic control theory, and elementary methods of solving it can
be found in Chow (1972a, 1972b). I will provide here a solution using
the method of dynamic programming of Bellman (1957). The method
begins by solving the problem for the last period T , given the
initial condition Ypop * The welfare cost is, for H, = K, ,

T T

alk_a

h, =k, = K2, , and c; = agpKplnq

T T T

(5) Wo = EBpop (vgmag) 'Ky(yg=ag) = Ep g [ypHp¥n - 2yphp+c,l .



Ui

Using the model (3) for vp and taking expectations, we minimize

— » 1 r

(6) Wy = (AyT_l + Cxp + bT) HT(AgT_l + Cxp, + bT)

- 2(Ayg 3 + Cxp + bp)'hy + By, ufkoug + ¢
by differentiating with respect to the vector 2o

W
(7) T ' : -

axT = C HT(AyT_l + Cxp, + bT) 2C'hy, = O
or
(8) Xp = Cp ¥p_3 * 9p
where
(9) G, == (cEc)t (crma) ;

T T ™/

- - -1 . -

(10) Ip = (C’HTC) c'(thT hT) .

Substituting the solution (8) for x, in (6), we obtain

T

—-— 1 el - -
(i1) Wp = Yooy (A+CGT)'HT (A+CUT)YT_1 *2 ¥hg (A+CGT)'HTb

T
=2 Yiq (A-fCGT)'hT + terms not involving Ypoq

Next, consider the problem for one more period T-1 . The

principle of optimality of Bellman (1957) is to minimize

(12) Epop (W + ¥q g Kpog¥poy = 2 ¥goq Kp_g + 5]



with respect to the only unknown Tl sinces the other unknown
X, has already been found and eliminated in (11). Substituting (11)
for Wo into (12) will vield

- T ~ !
(13) Woiy = Bpolvpy Bpoq Yoop = 24 Bp; *+ constant]
where
(1k) Hp.q = Kpog + (B + CGp) 'Hy (B + CGy)

_ 1 -
(15) ho oy = Kpoq * (A + CGT) (hT HTbT) .

The solution is complete if one observes that the expression

(13) to be minimized with respect to x has the same form as

T-1
expression (5). One can thus repeat the process from equations (5)
to (15), with the subscript T replaced by T-1 , and so forth. 1In

summary, optimal control consists of choosing the instrument x as

t
a linear function Gt Yeop t 9 of the variables Yeo1 of the
previous period, as in equation (8). The matrices of coefficients
Gt are determined, together with Hy, by solving equations (9) and
(14) alternatively, backward in time from t=T , and with initial
condition HT = KT . Gt and H having bzen obtained, the vectors
9y » together with h_ , are determined by solving equations (10)
and (15) alternatively, backward in time from t=T , and with
initial condition hT = kT = Ky @ o

If the matrices Kt in the welfare function are all equal

to K , the solution for Gt and Ht may reach a steady state, for



t smaller than a certain value, that will satisfy

(16) G -—(c'fzc)"lc'HA :

(17) H

K+ (A +ce)'H(A+cCG) .

Since (17) can be written as an infinite series
(18) H =K + (A+CG)'K (A+CG) + (A+CG)'2K(A+CG)2+...

the steady state will exist if and only if the series converges,
i.e., if and only if all the characteristic roots of the matrix
(A +CG) are smaller than one in absolute value. Even when Gt and
Ht do reach a steady state, Iy and ht will usually not do so if
kt_l(E Kat-l) and bt are changing through time, as can be seen

from equation (15).

IT. Economic Policy from the Viewpoint of Optimal Control -
Deterministic_ Systems

The questions raised by Holbrook (1972) are for a deterministic

model, i.e., model (1) with u. = 0. It may be of interest to con-

sider this special case first, Note that the above formulation of,
and solution to, the optimal control problem applies easily to this

case =-- simply erase the expectation signs and set u equal to zero.

t

The linear feedback control equations X, = tht~l + g and the

computations of G, and Iy remain the same as in the stochastic case.

t



Before analyzing any questions, cne would wish to define
"instrument instability." Holbrook (1972) did not give a precise
definition. By this term, one might mean (a) that the optimal time

paths of x_ are explosive and/or (b) that they contain oscilla-

t

tions, If x_ satisfies a system of lincar difference equations,

t
(a) will occur when some roots of the system are larger than unity
in absolute value; (b) can occur if some roots are complex and/or

3 1 suppose that the degrees of (a) and (b) , namely, how

negative.,
explosive and how large the oscillations, should also matter. Taus
the absolute values of the roots, be they real or complex, will
matter. If one specifics that the first differences of eccnocmic
variables satisfy a linear model like (1), he might reasonably re-
quire, in his definition of stability, that the instruments X, (also
in first differences) be not explosive, or not very explosive. But
if the model explains the levels of economic variables which are
expected to grow, some explosiveness in the instruments should not
be considered unstable. 1In short, "instrument instability" requires
one to examine the explosiveness and/or the extent of oscillations of
the optimal time paths of the instruments Xy o
Will instrument instability exist for a particular system?
To answer this question, one simply studies the optimal path of X s
which, in the notation of (3), is imbedded in the vector Vi o When

cptimally controlled, Ve will satisfy (in the deterministic case)

(19) Yp = AYi g + Cx_ + b, = (A+CGt)yt_l + b, + Cg,



and the behavior of such a system can easily be analyzed, especially

when Gy reaches the steady state G . For G. =6, and denoting
b, + Cg. by b_ , say, the solution to (19) is
(20) vy, = (a+ce)by + b, + (A+CG)E foot(arce)tt p

t Yo 7 %t £-17""" 1

in which the homogenocus part (A-«-CG)tyo is explosive or oscilla-

tory, depending on whether the roots are large in absolute value or

complex.

One might ask, if the system omitting the influence of Xy s
i.e.,
(21) Yt = A yt"l + bt

is explosive (damped), will the system including the instruments

X. Wwhich are set optimally, i.e., system (19), be explosive (damped)
also? Either case can happen, but to dampen an otherwise explosive
system by optimal control is more likely than to change an otherwise
stable system to an explosive one. After all, a purpose of control
may be to dampen an explosive system. From equations (9) and (1k4)

for G, and H (or from equations (16) and (17) for G and H ),

each column of the optimal feedback control matrix Gt can be inter-
preted as coefficients of a regression of the corresponding column

of the matrix A on columns of the matrix -C . In other words,

if the first column of A , say Al » are observations on a depen-

dent variable, and the columns of ~@ are cbservations on the



1o

explanatory variables, then the first column of Gt , say

A

¢ are coefficients in the regression

G = -(c'Htc)“l C'H

£,1 1’

A = =C G + R obtained by the method of Aitken's generalized
1 t,1 t,1

least squares. The purpose of regression is to make the columns of

residuals

(R R, = A + CG

t, 1 Rt,e"') - Tt t

small -~ in fact, for column 1, it is to minimize the weighted sum

1 t
of squares of the residuals Rt,l Ht Rt,l .

of A are larger than one in absolute value, the roots of the matrix

Therefore, if some roots

Rt = A + C:Gt of regression residuals may not be, in which case the
system under control is damped,

How would it be possible for the matrix A to be stable, but
the matrix A +CG (omitting subscript t ) to be not? It is
possible, when the weighting matrix H , which is derived from the
matrix K of welfare weights by equation (14k), is uneven in assigning
weights to different residuals., As an exanple, consider the simple

system given in the second paragraph of the introduction of this paper.

In the notation of (2) and (3), this system is
ry fo é> v | [ J]x ”ld
t * t-1 * t
= + ! + .
xtJ 0 ?] Xp_1 1J oJ

The matrix A has multiple roots of zero. If the purpose of control

is to steer Y, to target, but to ignore the behavior of x_ , the

t
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2 X 2 motrix K is diagonal with unity as its leading element,

and ,
(23) o (ML g OV\") fo -6\
23 G = = . l \ I ] ° l ! ; '
B \ %’\R/ O O/ \ © O/
= - (.16)"Yo  .2k) = (0 -1.5)
0 .6\ 7o -6 S0 0N
(24) A +CG, ={ LH \>=,’ §
W00,/ vo -l.5/ A\ 0 -l.5)
VRN
= H — — \
(25) Hp.y = K+(A+CGT)K(A+CGT) = K = \ j
\.0 o/

Therefore, the values for GT and Hpo1 given in (23) and (25) are
steady~state values, and we have an explosive root =1.5 in the
residual matrix A+CGT .

One can now state several relevant propositions concerning
optimal control that are based on the thecry of section I. First,
it is possible to steer certain endogenous variable(s) exactly to
target, under appropriate conditions to be specified below, by
using the quadratic welfare function (4) and assigning positive
weights only to the deviations of the variable(s) selected. Second,
if the number of variables to be controlled (the number of non-zero
diagonal elements in K ) is egual to the number of instruments, the

minimization problem of equation (5) will be solved with

(yT - aT)'K QyT - aT) = 0 , and so én for equation (13) etc., and
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the variables will be on target exactly -- except when the rank cf
C is smaller than the above number, in which case (C'HtC) does not
have an inverse and the optimal control matrix Gy cannot be found.
Third, if the number of variables to be controlled is larger than
the number of instruments, the former variables will not reach
targets exactly, and their deviations from targets will depend on the
welfare weights in XK assigned to them.LL

Fourth, "instrument instability," insofar as it pertains to

some . characteristic of the time path x can exist no matter

t 2
whether the welfare weights are assigned only to the originally
endogenous variables, or also to the instruments (imbeddéd in yt).
Holbrook (1972) treated only the former case, in fact, a rather
special case of the former when the numbers of target variables and
of instruments are both equal to cne. Fifth, once the last point is
recognized, as it is from the theory of section I, one can trade off
the stability characteristics not only between the truly endogenous
variables and the instruments, but also among the instruments them-
selves (and among the endogenous variables themselves, of course).
All these can be accomplished by changing the diagonal elements of
the matrix K . For -example, if total government expenditures and
money supply are two instruments, giving more weicht to the former
(and specifying its target path to be smooth) will mean more stability
for it, as compared with the latter instrument, when the weights for

the endogenous variables remain unchanged,
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Once the basic ideas of optimal control are understood, one
might not wish to take the concept of "instrument instability" very
seriously. What matter are the dynamic characteristics of the time
path in question, be it a dependent variable or an instrument.
Moreover, within the framework of section I, a good measure of the
dynamic performance of the variable is the sum of its squared de-
viations from the target path., If the variable fluctuates violently,
and the target path is smooth, its performance is poor by this
measure. If the variable increases rapidly, and the target calls
for no increase or a small increase per period, its performance is
poor by this measure. Having solved the problem of optimal control,

one can easily compute the optimal path of Vi (including x as

t
a ‘subvector) using equation (19) and thus the sums of squared devia-
tions of all variables from targets, and, in fact, a weighted sum

of these sums as a measure of welfare cost.

IIT. Egonomic Policy_from the Viewpoint of Optimal Control -
Stochastic Svstems

For a stochastic system, one retains the random disturbance
u, in equation (3) and the expectation sign in equation (5), etc.
The objective of control, in the framework of section I, is to mini-
mize the expectation of a weighted sum of squared deviations of

selected variables from targets. Because of the random disturbances,

one cannot hope to achieve the targets exactly, even when the numbers



ik

of target variables and of instruments are egual. As in section II,
one may wish to measure certain dynamic characteristics of the
(stochastic) time series under control. Space will allow only a
brief discugsion of this problaem.

Consider the stochastic dvnamic system (3) under optimal
control, with Gt reaching the steady state G , and with gt de-

noting bt + Cg,

o~

(26) y, = (A+cG)y,_; +b_+u = Ry, ; +b +u

t t°

-~

By repeated substitutions of y._; in (26) by Ry, , + b +u

t-1 t-1 "~

and Yieo by Ryt_3+... , etc., one egasily finds that

(27) Ve = Rtyo + (b, + Rb +...4R5 71

t t-1 l)

t-1 .
+ U, + Rut-l+°"+ R ul .
The first line on the right-hand side of (27) is the mean of the -
process, which is identical with the time path (20) of the deter-
ministic system of section II,. The second line of (27) is the

deviation from mean, or the random part of the process, as generated

by the system -
(28) Ye = R¥poyp * 9

Somewhat analogous to the deterministic situation, the

stochastic time path can be characterized by its explosiveness and



15

its cyclical fluctuations.’ If some roots of R = (A +cC3) 1is
greater than unity in absolute value, the stochastic time paths
explode, with both means and variances increasing through time. If
some roots of R are complex, and their absolute values not tco
small, the time series will have important cycles as defined by local
peaks in their spectral density functions (if the time series have
variances and covariances constant through time, or if they are
"covariance stationary"). Even when some roots of R are greater
than unity, it is possible to detrend the realizations of Y, 8©
that the remaining diviations from trends will behave like covariance-
stationary series, and thus subject to characterization by spectral
techniques.6 In short, there are convenient ways to characterize

a stochastic time series and thus to judge the performance of the
system under control. Again, if one takes the welfare function (4)
seriously, it provides a summary measure of the performance of the
system, endogenous variables and instruments included, but this
summary measure can be supplemented by some of the characterizations
described above.

Not only is the methocd of obtaining optimal feedback control
equations for the stochastic system identical with the method for
the deterministic system, but the trade-offs in terms of the expected
sums of squared deviations from targets among different variables
can be treated in the same way as in section II where mathematical
expectations were not involved. Note that each expected sum of

squares can be decomposed into (A) the sum of squares of the
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deviations of the mean of a variable, given by (20) or the first
line of (27), from target, plus (B) the expected sum of squared
deviations of the variable from its mean, to be computed from the

stochastic system (28),7

IV. Welfare Tradeoffs from A Macro-Econometric Model

To provide some illustrative calculations of the welfare
trade-offs, I have employed the simple macro-econometric model of
Chow (1967).8 This model consists of four stochastic structural
equations explaining total consumption expenditures C , gross pri-
vate investment expenditures I, » hew construction I, , and the
interest rate on 20-year corporate bonds R , in terms of first
differences and using annual data of the United States economy for
the periods 1931-1940 and 1948-1963. The instruments are government
expenditures G and money supply M . In run (1) reported below,
only two variables, private expenditures, Yl = C + I, + 12 and
government expenditures G , are .subject to control, with equal
weights of unity in the welfare matriz XK ., In run (2), the rate of
interest will be the third variable subject to control, with a weight
making a deviation of one percentage point per yvear from target as
costly as a deviation of 10 billion dollars for an expenditures
variable. The targets for the expenditures variables are to grow by
5> per cent per year from their initial values as of 1964, and the
target for the interest rate is +£o remain at 4.33 per cent, its value

9

in 196L4. The time horizon T is 10 years.
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Let us first examine the deterministic part (A) of the
expected sum of squares of each variable from target for these two
runs. The average, over ten pericds, of the squared deviations of

the mean of each variable from target, is

Yl G R Sum
Run (1) 0 0 9.124 9.12k
Run (2) .68L 752 5.898 7.334

where the variable R 1is in percentage points times 10, to make 1
percentage point eguivalent to 10 billion dollars, and the expendi-
ture variables are in billions of dollars. For example, 5.898 for
R would mean a standard deviation of 2.43, or of .2hk3 percentage
points. Since, in run (1), the number of target variables equals
the number of instruments, the deviations of Y, and G from targets
are zero in the deterministic part of the welfare cost. The above
calculations apply to the deterministic model obtained by ignoring
the random disturbances of our econometric model, and thus illustrate
the :trade-offs discussed in section II. Note that the inclusion of
R in the welfare function in Run (2) reduces the average deviation
of this variable from target and increases the average deviations of
the other two variables.

The stochastic part (B) is the average, over 10 years, of

expected squared deviations of the time series from its mean:



18

Y1 G R Sum
Run (1) 388 .4 0 118.8 507 +2
Run (2) 396.2 8.k 82.4 487.0

Note the large mean squared .deviations here. For example, in run
(1), Y, has a standard deviation of J?%@Tﬂ‘= 19.7 billions, and
the rate of interest has a standard deviation of 1.09 percentage
points, due to the random disturbances of the model. In run (1),

G grows at 5 per cent, exactly as its target specifies, and it is
not subject to any random disturbance. The inclusion of R in the

welfare function of run (2) reduces its variance, but increases the

variances of Yl and G .

V. Conclusion

It has been shown that, using the problem of instrument
instability of Holbrook (1972) as a starting point of discourse, one
can study interesting problems of economic policy by the techniques
of optimal control, Some other interesting problems, including the
measurement of welfare gains from employing an optimal control policy
as compared with a policy of maintaining a constant rate of growth
for each instrument, and the generalizations to non-linear systems
with known parameters, or to linear systems with estimated and random
parameters A and C , can be found in a related paper.lo These
analyses have demonstrated that the framework of optimal control is

extremely useful in the study of economic policies.



19

REFERENCES

R.E. Bellman, Dynamic_ Progremming, Princeton University Press,
Princeton, New Jersey (1957).

G.C. Chow, "Multiplier, Accelerator, and Liquidity Preference in
the Determination of National Income in the United States,”
The Review of Economics and Statistics, Vol., XLIX, No. 1,

(February 1967), pp. 1-15.

________ , "The Acceleration Principle and the Nature of Business
Cycles,” Quarterly Journal of Economics, LXXXII, 3, August,
1968, pp. L03-418.

_________ , "Optimal Stochastic Control of Linear Economic Systems,"
Journal of Money, Credit, and Panking, August, 1970,
pp. 291-302,

__________ , "Optimal Control of Linear Econometric Systems with
Finite Time Horizon," International Econcmic Review, Vol, 13,
No. 1 (February 1972), pp. 16-25 (a).

________, "How Much Could be Gained by Optimal Stochastic Control
Policies," Research Memorandum No. 138, Econometric Research
Program, Princeton University, April1972 (b).

G.C. Chow and R.E. Levitan, "Spectral Properties of Non-Stationary
Systems of Linear Stochastic Difference Equations," Journal
of the American Statistical Association, Vol. 64 (June, 1969,

pp. 581-590 (a).

, "Nature of Business Cycles Implicit in
a Linear Economic Model," The Quarterly Journal of Economics,
Vol, LXXXIII, (August, 1969), pp. 504-517 (b).

R.S. Holbrook, "Optimal Economic Policy and the Problem of
Instrument Instability," The American Economic Review, Vol.
LXII, No. 1 (March, 1972), pp. 57-65.




20

FOOTNOTES

See Holbrook (1972). I would like to acknowledge, with thanks,
the financial support from the MNational Science Foundation
through Grant NSF G5 32003X.

In Holbrook (1972), the dependent variable(s) (our Ve ) is
denoted by Yt ’
is denoted by P

the control or policy variable(s) (our X, )

£ 7 the "net impact of current and lagged values
of all policy instruments (other than P ) and other truly exo-
genous variables as well as lagged values of endogenous variables”
(p. 58) is included in one symbol X -~ in the last case, we

use, respectively, other components of the vector Xy than the
component in question, bt and Yy etc.

Proofs of these wellknown propositions can be found in Chow (1969).

If the number of target variables is smaller than the number of
instruments, there will be more than one way to achieve the
targets exactly, and the computation of the optimal control
matrices Gt can be performed by using a generalized inverse for
(C'Htc) » Wwhere the rank of H_ and thus of the entire matrix,

is smaller than the number of instruments.,
This remark, and later statements to gqualify it, have been
developed and discussed at length in Chow (1968), Chow and

Levitan (1969a, 1969b), and Chow (1970).

See Chow and Levitan (1969a).
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For the computation of part (B) , see Chow (1972a) or (1972b).

This is the model consisting of equations (25), (28), (30)
and (31) of Table 1, Chow (1967), p. 9.

Calaulations using the same econometric model and the same setup,
but for different purposes, were reported in Chow (1972b).

See Chow (1972b).



